[CMSC 455] | [Syllabus] | [Lecture Notes] | [Homework] | [Projects] | [Files] | [Notes, all]
Subject to change. Check periodically.
Cls Date Subject Reading Homework
and Notes assigned due
1. 5/31 Introduction, Overview, floating point Lect 1
pp10-14
2. 5/31 Rocket Science Lect 2 HW1
3. 5/31 Solving Simultaneous Equations Lect 3
pp100-101
Case Study, matrix inversion Lect 3a
Parallel processing with MPI (optional) Lect 3b
Equation Boundary Reduction (optional) Lect 3c
openMP parallel computing (optional) Lect openMP
4. 6/2 Least Square Fit Lect 4 HW2
pp199-206
5. 6/2 Polynomials Lect 5
6. 6/2 Curve Fitting Lect 6
pp221-226
pp240-243
7. 6/7 Numerical Integration Lect 7 HW3 HW1
pp272-276
pp301-307
8. 6/7 Numerical Integration 2 Lect 8
pp297-301
9. 6/7 Review Lect 9
10. 6/9 Quiz 1 Lect 10 HW2
11. 6/9 Complex Arithmetic Lect 11
More Complex Arithmetic Lect 11a
12. 6/14 Complex Functions Lect 12
13. 6/14 Eigenvalues of a Complex Matrix Lect 13
pp383-385
14. 6/16 LAPACK Lect 14 HW3
p5
15. 6/16 Multiple precision, bignum Lect 15 HW4
16. 6/16 Finding Roots and Nonlinear Equations Lect 16
pp44-45
17. 6/21 Optimization, finding minima Lect 17 proj
pp417-427
18. 6/21 FFT, Fast Fourier Transform Lect 18 HW5
pp288-296
Digital Filtering, db sound Lect 18a
Molecular frequency response, light Lect 18b
19. 6/21 Review Lect 19
20. 6/23 Quiz 2 after lectures Lect 20 HW4
21. 6/23 Benchmarks, time and size Lect 21 HW6
22. 6/23 Project Discussion Lect 22
23. 6/23 Computing Volume and Area Lect 23
24. 6/28 Numerical Differentiation Lect 24
Computing Partial Derivatives Lect 24a
Polar, Cylindrical, Spherical Lect 24b
Fourth order Spherical Lect 24b4
25. 6/28 Ordinary differential equations Lect 25 HW5
pp340-347
26. 6/28 Ordinary differential equations 2 Lect 26
27. 6/30 Partial differential equations Lect 27
Differential equation definitions Lect 27a
pp461-463
28. 6/30 Partial differential equations Lect 28 HW6
High order, high dimensional Lect 28a
Optional Biharmonic PDE case study Lect 28d
Optional Navier Stokes case study Lect 28b
Optional 5D five dimensions Lect 28e
Optional 6D six dimensions Biharmonic Lect 28f
Optional extending to 7 dimensions Lect 28g
Optional extending to 8 dimensions Lect 28k
Optional extending to 9 dimensions Lect 28m
29. 7/5 Optional Creating PDE Test Cases Lect 31
29. 7/5 Review Lect 29
30. 7/7 Final Exam 6:00 PAHB 234 Lect 30 proj
Optional sparse solution of PDE Lect 31a
Optional nonlinear PDE Lect 31b
Optional parallel solution of PDE Lect 31c
Optional parallel multiple precision PDELect 31d
Optional fem_50 case study Lect 28c
Optional PDE timing case study PDE timing
Optional cylinder, sphere PDE Lect 28h
Optional toroid PDE Lect 28j
Optional Finite Element Method Lect 32
Optional Finite Element Method, tria Lect 33
Optional Lagrange Fit triangles Lect 33a
Optional Special PDE's Lect 36
Optional Sea of Unknown Points Lect 36a
Optional Various utility functions Lect 37
Optional Open Tutorial on LaTex Lect 38
Optional Tutorial on numerical DE's Lect 39
Optional Unique numerical solution DE's Lect 40
Optional Numerically solving AC circuitsLect 41
Optional Numerically Compute permanent Lect 42
Optional Airfoil lift and drag coeff Lect air
Optional Continuum Hypothesis Lect con
Optional openMP parallel computing Lect openMP
Optional Functional Programming Lect functional
Optional Derivatives of Sum G Lect Derivatives of Sum
Optional WEB PDE with equations Lect WEB input PDE
No late homework or projects accepted after midnight July 10, 2016
Late penalty is 10% per class, limit 50% penalty.
* submitted, not graded until next weekend (not late for a while)
"optional" means no homework and no exam questions on that lecture.
Last updated 6/21/2016