<- previous index next ->
Just extending eighth order PDE in four dimensions, to nine dimensions
Desired solution is U(x,y,z,t,u,v,w,p,q), given PDE: ∇4U + 2 ∇2U + 10 U = f(x,y,z,t,u,v,w,p,q) ∂4U(x,y,z,t,u,v,w,p,q)/∂x4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂y4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂z4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂t4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂u4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂v4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂w4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂p4 + ∂4U(x,y,z,t,u,v,w,p,q)/∂q4 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂x2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂y2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂z2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂t2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂u2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂v2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂w2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂p2 + 2 ∂2U(x,y,z,t,u,v,w,p,q)/∂q2 + 10 U(x,y,z,t,u,v,w,p,q) = f(x,y,z,t,u,v,w,p,q)Maple check on solution
pde49hn_mws.out analytic solutionTest a fourth order PDE in nine dimensions.
∇4U + 2 ∇2U + 10 U = f(x,y,z,t,u,v,w,p,q) pde49hn_eq.c solver source code pde49hn_eq_c.out verification output pde49h_eq.adb solver source code pde49h_eq_ada.out verification output pde49hn_eq.java solver source code pde49hn_eq_java.out verification outputSome programs above also need:
nuderiv.java basic non uniform grid derivative rderiv.java basic uniform grid derivative simeq.java basic simultaneous equation deriv.h basic derivatives deriv.c basic derivatives real_arrays.ads 2D arrays and operations real_arrays.adb 2D arrays and operations integer_arrays.ads 2D arrays and operations integer_arrays.adb 2D arrays and operations Plotted output from pde49hn_eq.c execution plot9d.java plotter source codeUser can select any two variables for 3D view. User can select values for other variables, option to run all cases.
You won't find many open source or commercial 9D PDE packages
many lesser problems have many open source and commercial packages
en.wikipedia.org/wiki/list_of_finite_element_software_packages
<- previous index next ->