<- previous    index    next ->

Lecture 28k, extending to 8 dimensions

Just extending seventh order PDE in four dimensions, to eight dimensions

Desired solution is U(x,y,z,t,u,v,w,p), given PDE: ∇4U + 2 ∇2U + 8 U = f(x,y,z,t,u,v,w,p) ∂4U(x,y,z,t,u,v,w,p)/∂x4 + ∂4U(x,y,z,t,u,v,w,p)/∂y4 + ∂4U(x,y,z,t,u,v,w,p)/∂z4 + ∂4U(x,y,z,t,u,v,w,p)/∂t4 + ∂4U(x,y,z,t,u,v,w,p)/∂u4 + ∂4U(x,y,z,t,u,v,w,p)/∂v4 + ∂4U(x,y,z,t,u,v,w,p)/∂w4 + ∂4U(x,y,z,t,u,v,w,p)/∂p4 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂x2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂y2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂z2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂t2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂u2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂v2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂w2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂p2 + 8 U(x,y,z,t,u,v,w,p) = f(x,y,z,t,u,v,w,p)

Test a fourth order PDE in eight dimensions.

4U + 2 ∇2U + 8 U = f(x,y,z,t,u,v,w,p) pde48hn_eq.java solver source code pde48hn_eq_java.out verification output ∇4U + 2 ∇2U + 8 U = f(x,y,z,t,u,v,w,p) pde48hn_eq.c solver source code pde48hn_eq_c.out verification output pde48hn_eq.adb solver source code pde48hn_eq_ada.out verification output pde48h_eq.adb solver source code pde48h_eq_ada.out verification output

Some programs above also need:

nuderiv.java basic non uniform grid derivative rderiv.java basic uniform grid derivative simeq.java basic simultaneous equation deriv.h basic derivatives deriv.c basic derivatives real_arrays.ads 2D arrays and operations real_arrays.adb 2D arrays and operations integer_arrays.ads 2D arrays and operations integer_arrays.adb 2D arrays and operations rderiv.adb derivative computation inverse.adb inverse computation Plotted output from pde48hn_eq.java execution plot8d.java source code User can select any two variables for 3D view. User can select values for other variables, option to run all cases. Then, going to a spherical coordinate system in 8 dimensions gen_8d_sphere.c source equations gen_8d_sphere_c.out verification output

The above was all Cartesian Coordinates, now Spherical Coordinates

faces.c source code for output faces.out output for n dimensional cube and spheretest_faces.c source code for test test_faces.out output of test Spherical Output faces.c running, data for various n-cubes, n-spheres, n dimensions n=8-cube 8-cubes = 1 7-cubes = 16 6-cubes = 112 5-cubes = 448 4-cubes = 1120 cubes = 1792 2D faces = 1792 edges = 1024 vertices = 256 spheres of n dimensions note: surface is derivative of volume D-1 surface D volume 2D circle 2 Pi R Pi R^2 3D sphere 4 Pi R^2 4/3 Pi R^3 4D 4-sphere 2 Pi^2 R^3 1/2 Pi^2 R^4 5D 5-sphere 8/3 Pi^2 R^4 8/15 Pi^2 R^5 6D 6-sphere Pi^3 R^5 1/6 Pi^3 R^6 7D 7-sphere 16/15 Pi^3 R^6 16/105 Pi^3 R^7 8D 8-sphere 1/3 Pi^4 R^7 1/24 Pi^4 R^8 9D 9-sphere 32/105 Pi^4 R^8 32/945 Pi^4 R^9 volume V_n(R)= Pi^(n/2) R^n / gamma(n/2+1) gamma(integer) = factorial(integer-1) gamma(5) = 24 gamma(1/2) = sqrt(Pi), gamma(n/2+1) = (2n)! sqrt(Pi)/(4^n n!) or V_2k(R) = Pi^k R^2k/k! , V_2k+1 = 2 k! (4Pi)^k R^(2k+1)/(2k+1)! surface area A_n(R) = d/dR V_n(R) 10D 10-sphere volume 1/120 Pi^5 R^10 10D 10-sphere area 1/12 Pi^5 R^9 one definition of sequence of n-spheres a1, a2, a3, a4, a5, a6, a7 are angles, typ: theta, phi, ... x1, x2, x3, x4, x5, x6, x7, x8 are Cartesian coordinates x1^2 + x2^2 + x3^2 + x4^2 + x5^2 + x6^2 + x7^2 +x8^2 = R^2 Radius R = sqrt(R^2) 2D circle x1 = R cos(a1) typ: x theta x2 = R sin(a1) typ: y theta R = sqrt(x1^2+x2^2) a1 = arctan(x2/x1) or a1 = acos(x1/R) 3D sphere x1 = R cos(a1) typ: z phi x2 = R sin(a1) cos(a2) typ: x phi theta x3 = R sin(a1) sin(a2) typ: y phi theta R = sqrt(x1^2+x2^2+x3^2) a1 = arctan(sqrt(x2^2+x3^2)/x1) or a1 = acos(x1/R) a2 = arctan(x3/x2) or a2 = acos(x2/sqrt(x2^2+x3^2)) if x3>=0 a2 = 2 Pi - acos(x2/sqrt(x2^2+x3^2)) if x3<0 4D 4-sphere continuing systematic notation, notice pattern x1 = R cos(a1) x2 = R sin(a1) cos(a2) x3 = R sin(a1) sin(a2) cos(a3) x4 = R sin(a1) sin(a2) sin(a3) R = sqrt(x1^2+x2^2+x3^2+x4^2) a1 = acos(x1/sqrt(x1^2+x2^2+x3^2+x4^2)) a2 = acos(x2/sqrt(x2^2+x3^2+x4^2)) a3 = acos(x3/sqrt(x3^2+x4^2)) if x4>=0 a3 = 2 Pi - acos(x3/sqrt(x3^2+x4^2)) if x4<0 5D 5-sphere x1 = R cos(a1) x2 = R sin(a1) cos(a2) x3 = R sin(a1) sin(a2) cos(a3) x4 = R sin(a1) sin(a2) sin(a3) cos(a4) x5 = R sin(a1) sin(a2) sin(a3) sin(a4) R = sqrt(x1^2+x2^2+x3^2+x4^2+x5^2) a1 = acos(x1/sqrt(x1^2+x2^2+x3^2+x4^2+x5^2)) a2 = acos(x2/sqrt(x2^2+x3^2+x4^2+x5^2)) a3 = acos(x3/sqrt(x3^2+x4^2+x5^2)) a4 = acos(x4/sqrt(x4^2+x5^2)) if x5>=0 a4 = 2 Pi - acos(x4/sqrt(x4^2+x5^2)) if x5<0 6D 6-sphere x1 = R cos(a1) x2 = R sin(a1) cos(a2) x3 = R sin(a1) sin(a2) cos(a3) x4 = R sin(a1) sin(a2) sin(a3) cos(a4) x5 = R sin(a1) sin(a2) sin(a3) sin(a4) cos(a5) x6 = R sin(a1) sin(a2) sin(a3) sin(a4) sin(a5) R = sqrt(x1^2+x2^2+x3^2+x4^2+x5^2+x6^2) a1 = acos(x1/sqrt(x1^2+x2^2+x3^2+x4^2+x5^2+x6^2)) a2 = acos(x2/sqrt(x2^2+x3^2+x4^2+x5^2+x6^2)) a3 = acos(x3/sqrt(x3^2+x4^2+x5^2+x6^2)) a4 = acos(x4/sqrt(x4^2+x5^2+x6^2)) a5 = acos(x5/sqrt(x5^2+x6^2)) if x6>=0 a5 = 2 Pi - acos(x5/sqrt(x5^2+x6^2)) if x6<0 7D 7-sphere x1 = R cos(a1) x2 = R sin(a1) cos(a2) x3 = R sin(a1) sin(a2) cos(a3) x4 = R sin(a1) sin(a2) sin(a3) cos(a4) x5 = R sin(a1) sin(a2) sin(a3) sin(a4) cos(a5) x6 = R sin(a1) sin(a2) sin(a3) sin(a4) sin(a5) cos(a6) x7 = R sin(a1) sin(a2) sin(a3) sin(a4) sin(a5) sin(a6) R = sqrt(x1^2+x2^2+x3^2+x4^2+x5^2+x6^2+x7^2) a1 = acos(x1/sqrt(x1^2+x2^2+x3^2+x4^2+x5^2+x6^2+x7^2)) a2 = acos(x2/sqrt(x2^2+x3^2+x4^2+x5^2+x6^2+x7^2)) a3 = acos(x3/sqrt(x3^2+x4^2+x5^2+x6^2+x7^2)) a4 = acos(x4/sqrt(x4^2+x5^2+x6^2+x7^2)) a5 = acos(x5/sqrt(x5^2+x6^2+x7^2)) a6 = acos(x6/sqrt(x6^2+x6^2)) if x7>=0 a6 = 2 Pi - acos(x6/sqrt(x6^2+x7^2)) if x7<0 8D 8-sphere x1 = R cos(a1) x2 = R sin(a1) cos(a2) x3 = R sin(a1) sin(a2) cos(a3) x4 = R sin(a1) sin(a2) sin(a3) cos(a4) x5 = R sin(a1) sin(a2) sin(a3) sin(a4) cos(a5) x6 = R sin(a1) sin(a2) sin(a3) sin(a4) sin(a5) cos(a6) x7 = R sin(a1) sin(a2) sin(a3) sin(a4) sin(a5) sin(a6) cos(a7) x8 = R sin(a1) sin(a2) sin(a3) sin(a4) sin(a5) sin(a6) sin(a7) R = sqrt(x1^2+x2^2+x3^2+x4^2+x5^2+x6^2+x7^2+x8^2) a1 = acos(x1/sqrt(x1^2+x2^2+x3^2+x4^2+x5^2+x6^2+x7^2+x8^2)) a2 = acos(x2/sqrt(x2^2+x3^2+x4^2+x5^2+x6^2+x7^2+x8^2)) a3 = acos(x3/sqrt(x3^2+x4^2+x5^2+x6^2+x7^2+x8^2)) a4 = acos(x4/sqrt(x4^2+x5^2+x6^2+x7^2+x8^2)) a5 = acos(x5/sqrt(x5^2+x6^2+x7^2+x8^2)) a6 = acos(x6/sqrt(x6^2+x7^2+x8^2)) a7 = acos(x7/sqrt(x7^2+x8^2)) if x8>=0 a7 = 2 Pi - acos(x7/sqrt(x7^2+x8^2)) if x8<0 R > 0 and |x1| ... |xn| at least one > 0 a1, a2, ... an-2 in range 0 to Pi an-1 in range 0 to 2Pi sin(0, Pi/4, Pi/2, 3Pi/4, Pi)=0.0000, 0.7071, 1.0000, 0.7071, 0.0000 cos(0, Pi/4, Pi/2, 3Pi/4, Pi)=1.0000, 0.7071, -0.0000, -0.7071, -1.0000 acos(1.0, .70, 0, -.70, -1.0)=0.0000, 0.7854, 1.5708, 2.3562, 3.1416 faces.c finished It is left as an exercise to student to develop equations for gradient and laplacian 4D to 8D spheres.

You won't find many open source or commercial 8D PDE packages

many lesser problems have many open source and commercial packages

en.wikipedia.org/wiki/list_of_finite_element_software_packages
<- previous    index    next ->

Other links

Go to top