[CMSC 455] | [Syllabus] | [Lecture Notes] | [Homework] | [Projects] | [Files] | [Notes, all]
Subject to change. Check periodically. Cls Date Subject Reading Homework and Notes assigned due 1. 8/27 Introduction, Overview, floating point Lect 1 pp10-14 2. 9/3 Rocket Science Lect 2 HW1 3. 9/8 Solving Simultaneous Equations Lect 3 pp100-101 Case Study, matrix inversion Lect 3a Parallel processing with MPI (optional) Lect 3b Equation Boundary Reduction (optional) Lect 3c openMP parallel computing (optional) Lect openMP 4. 9/10 Least Square Fit Lect 4 HW2 pp199-206 5. 9/15 Polynomials Lect 5 6. 9/17 Curve Fitting Lect 6 HW1 pp221-226 pp240-243 7. 9/22 Numerical Integration Lect 7 HW3 pp272-276 pp301-307 8. 9/24 Numerical Integration 2 Lect 8 pp297-301 9. 9/29 Review Lect 9 HW2 10. 10/1 Quiz 1 Lect 10 11. 10/6 Complex Arithmetic Lect 11 More Complex Arithmetic Lect 11a 12. 10/8 Complex Functions Lect 12 13. 10/13 Eigenvalues of a Complex Matrix Lect 13 pp383-385 14. 10/15 LAPACK Lect 14 HW3 p5 15. 10/20 Multiple precision, bignum Lect 15 HW4 16. 10/22 Finding Roots and Nonlinear Equations Lect 16 pp44-45 17. 10/27 Optimization, finding minima Lect 17 proj pp417-427 18. 10/29 FFT, Fast Fourier Transform Lect 18 HW5 pp288-296 Digital Filtering, db sound Lect 18a Molecular frequency response, light Lect 18b 19. 11/3 Review Lect 19 20. 11/5 Quiz 2 Lect 20 HW4 21. 11/10 Benchmarks, time and size Lect 21 HW6 22. 11/12 Project Discussion Lect 22 23. 11/17 Computing Volume and Area Lect 23 24. 11/19 Numerical Differentiation Lect 24 Computing Partial Derivatives Lect 24a Polar, Cylindrical, Spherical Lect 24b 25. 11/24 Ordinary differential equations Lect 25 pp340-347 26. 11/26 Ordinary differential equations 2 Lect 26 27. 12/1 Partial differential equations Lect 27 Differential equation definitions Lect 27a pp461-463 28. 12/3 Partial differential equations Lect 28 HW5 High order, high dimensional Lect 28a Optional Biharmonic PDE case study Lect 28d Optional Navier Stokes case study Lect 28b Optional 5D five dimensions Lect 28e Optional 6D six dimensions Biharmonic Lect 28f Optional extending to 7 dimensions Lect 28g Optional extending to 8 dimensions Lect 28k 29. 12/8 Optional Creating PDE Test Cases Lect 31 29. 12/8 Review Lect 29 30. 12/15 Final Exam 3:30 ITE 233 Lect 30 HW6, proj Optional sparse solution of PDE Lect 31a Optional nonlinear PDE Lect 31b Optional parallel solution of PDE Lect 31c Optional parallel multiple precision PDELect 31d Optional fem_50 case study Lect 28c Optional cylinder, sphere PDE Lect 28h Optional toroid PDE Lect 28j Optional Finite Element Method Lect 32 Optional Finite Element Method, tria Lect 33 Optional Lagrange Fit triangles Lect 33a Optional Special PDE's Lect 36 Optional Sea of Unknown Points Lect 36a Optional Various utility functions Lect 37 Optional Open Tutorial on LaTex Lect 38 Optional Tutorial on numerical DE's Lect 39 Optional Unique numerical solution DE's Lect 40 Optional Numerically solving AC circuitsLect 41 Optional Numerically Compute permanent Lect 42 Optional Airfoil lift and drag coeff Lect air Optional Continuum Hypothesis Lect con Optional openMP parallel computing Lect openMP Optional Functional Programming Lect functional No late homework or projects accepted after midnight Dec ?, 2014 Late penalty is 10% per class, limit 50% penalty. * submitted, not graded until next weekend (not late for a while) "optional" means no homework and no exam questions on that lecture.
Last updated 10/23/2014