<- previous    index    next ->

Lecture 28k, extending to 8 dimensions

Just extending seventh order PDE in four dimensions, to eight dimensions

Desired solution is U(x,y,z,t,u,v,w,p), given PDE: ∇4U + 2 ∇2U + 8 U = f(x,y,z,t,u,v,w,p) ∂4U(x,y,z,t,u,v,w,p)/∂x4 + ∂4U(x,y,z,t,u,v,w,p)/∂y4 + ∂4U(x,y,z,t,u,v,w,p)/∂z4 + ∂4U(x,y,z,t,u,v,w,p)/∂t4 + ∂4U(x,y,z,t,u,v,w,p)/∂u4 + ∂4U(x,y,z,t,u,v,w,p)/∂v4 + ∂4U(x,y,z,t,u,v,w,p)/∂w4 + ∂4U(x,y,z,t,u,v,w,p)/∂p4 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂x2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂y2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂z2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂t2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂u2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂v2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂w2 + 2 ∂2U(x,y,z,t,u,v,w,p)/∂p2 + 8 U(x,y,z,t,u,v,w,p) = f(x,y,z,t,u,v,w,p)

Test a fourth order PDE in eight dimensions.

4U + 2 ∇2U + 8 U = f(x,y,z,t,u,v,w,p) pde48hn_eq.java solver source code pde48hn_eq_java.out verification output ∇4U + 2 ∇2U + 8 U = f(x,y,z,t,u,v,w,p) pde48hn_eq.c solver source code pde48hn_eq_c.out verification output pde48hn_eq.adb solver source code pde48hn_eq_ada.out verification output

Some programs above also need:

nuderiv.java basic non uniform grid derivative rderiv.java basic uniform grid derivative simeq.java basic simultaneous equation deriv.h basic derivatives deriv.c basic derivatives real_arrays.ads 2D arrays and operations real_arrays.adb 2D arrays and operations integer_arrays.ads 2D arrays and operations integer_arrays.adb 2D arrays and operations Plotted output from pde48hn_eq.java execution User can select any two variables for 3D view. User can select values for other variables, option to run all cases. Then, going to a spherical coordinate system in 8 dimensions gen_8d_sphere.c source equations gen_8d_sphere_c.out verification output

You won't find many open source or commercial 8D PDE packages

many lesser problems have many open source and commercial packages

en.wikipedia.org/wiki/list_of_finite_element_software_packages
<- previous    index    next ->

Other links

Go to top