A B C D E F G H I J L M N P R S T U V

C

CIPFP - Class in umbc.ebiquity.BayesOWL.coreAlgorithms
Q(X): A joint distribution of random variables in X.
CIPFP(JointProbDistribution, ProbDistribution[]) - Constructor for class umbc.ebiquity.BayesOWL.coreAlgorithms.CIPFP
Constructor.
CIPFPOneR - Class in umbc.ebiquity.BayesOWL.coreAlgorithms
This class implements algorithm "CIPFP" for one constraint.

Q(X): A joint distribution of random variables in X.
R(Si|Li): A conditional constraint to be satisfied and Si, Li are disjoint non-empty subsets of X.
(1) Q_k(X) = 0 if Q_k-1(Si|Li) = 0
(2) Q_k(X) = Q_k-1(X) * R(Si|Li) / Q_k-1(Si|Li) if Q_k-1(Si|Li) > 0
Assume Q(X), R(Si|Li) are valid distributions, complete and consistent.
CIPFPOneR(JointProbDistribution, CondProbDistribution) - Constructor for class umbc.ebiquity.BayesOWL.coreAlgorithms.CIPFPOneR
Constructor.
com.swtdesigner - package com.swtdesigner
 
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.CIPFPOneR
The computation process of one-step conditional iterative proportional fitting procedure (CIPFP), for a single conditional constraint.
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.DIPFPConditionalOneR
The computation process of one-step de-composed iterative proportional fitting procedure (DIPFP), for a single conditional constraint, either local or non-local.
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.DIPFPMarginalOneR
The computation process of one-step de-composed iterative proportional fitting procedure (DIPFP), for a single marginal constraint, either local or non-local.
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.IPFPOneR
The computation process of one-step iterative proportional fitting procedure (IPFP) for a single constraint.
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.SDIPFPConditionalOneR
The computation process of one-step simplified de-composed iterative proportional fitting procedure (SDIPFP), for a single simple local conditional constraint.
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.SDIPFPMarginalOneR
The computation process of one-step simplified de-composed iterative proportional fitting procedure (SDIPFP), for a single simple local marginal constraint.
computation() - Method in class umbc.ebiquity.BayesOWL.coreAlgorithms.SDIPFPOneR
The computation process of one-step simplified de-composed iterative proportional fitting procedure (SDIPFP), for a single simple constraint.
ConditionalConstraint - Class in umbc.ebiquity.BayesOWL.commonDefine
ConditionalConstraint is an abstract class.
ConditionalConstraint(String, CondProbDistribution) - Constructor for class umbc.ebiquity.BayesOWL.commonDefine.ConditionalConstraint
Constructs a conditional constraint with the specific type, i.e., local or non-local.
CondProbDistribution - Class in umbc.ebiquity.BayesOWL.commonDefine
This class implements a full conditional probability distribution, which includes:
(1) An array of n prior random variables {vi}, i = 1 to n, each vi has vdi states
(2) An array of m condition random variables {ci}, i = 1 to m, each ci has cdi states
(3) A m+n-dimensional array with size "cd1 x cd2 x ...
CondProbDistribution(RandomVariable[], RandomVariable[]) - Constructor for class umbc.ebiquity.BayesOWL.commonDefine.CondProbDistribution
Constructs a new conditional probability distribution table, given a set of prior and condition variables.
CondProbDistribution(CondProbDistribution) - Constructor for class umbc.ebiquity.BayesOWL.commonDefine.CondProbDistribution
Copy Constructor.
Constraint - Class in umbc.ebiquity.BayesOWL.commonDefine
Constraint is an abstract class.
Constraint(String) - Constructor for class umbc.ebiquity.BayesOWL.commonDefine.Constraint
Constructor.
constructBN(String[], ExNode.TAG[], String[][]) - Method in class umbc.ebiquity.BayesOWL.constructor.BNConstructor
Method to construct BN structure.
containsCondVariable(String) - Method in class umbc.ebiquity.BayesOWL.commonDefine.CondProbDistribution
This method tests whether the given random variable is involved in the "condition" part of this conditional probability distribution.
containsPriorVariable(String) - Method in class umbc.ebiquity.BayesOWL.commonDefine.CondProbDistribution
This method tests whether the given random variable is involved in the "prior" part of this conditional probability distribution.
containsVariable(String) - Method in class umbc.ebiquity.BayesOWL.commonDefine.JointProbDistribution
This method tests whether the given random variable is involved in this joint probability distribution.
CPTConstructor - Class in umbc.ebiquity.BayesOWL.constructor
CPTConstructor implements BayesOWL's Conditional Probability Table Constructor.
It takes probability constraints and a target BN as inputs.
To have input constraints, go to see class umbc.ebiquity.BayesOWL.commonDefine.Constraint.java
CPTConstructor(Net, Constraint[]) - Constructor for class umbc.ebiquity.BayesOWL.constructor.CPTConstructor
Constructor.
CrossEntropy - Class in umbc.ebiquity.BayesOWL.commonMethod
This class provides method to compute the cross entropy between two joint probability distributions.

Definition of I-divergence (also named Kullback-Leibler divergence, cross-entroy):
if P(X)< I(P||Q) = sum_over_all_X's assignments{P(x)log(P(x)/Q(x))}, only picks those assignments when P(x)>0
if P(X)!(<<)Q(X), then:
I(P||Q) = positive infinity

Generally,I(P||Q) != I(Q||P)
Note: When P is dominated by Q, we have: 0/0 = 0 and 0*log(0/0) = 0.
see also:
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://en.wikipedia.org/wiki/Cross_entropy
Assume: P(X) and Q(X) are valid distributions, w.r.t our implementation here.
CrossEntropy(JointProbDistribution, JointProbDistribution) - Constructor for class umbc.ebiquity.BayesOWL.commonMethod.CrossEntropy
Constructs a new class for cross entropy.

A B C D E F G H I J L M N P R S T U V