[CMSC 455] | [Syllabus] | [Lecture Notes] | [Homework] | [Projects] | [Files] | [Notes, all]

CMSC 455 Numerical Computations

Class schedule, topic and assignments

Monday and Wednesday 6:00pm to 9:00pm ITE 229

Reading assignments: pages from Applied Numerical Analysis

by Gerald and Wheatley ISBN 0-321-13304-8

Subject to change. Check periodically.

Cls Date   Subject                                 Reading     Homework
                                                   and Notes   assigned due
 1. 6/1    Introduction, Overview, floating point  Lect 1
                                                   pp10-14

 2. 6/1    Rocket Science                          Lect 2       HW1

 3. 6/1    Solving Simultaneous Equations          Lect 3
                                                   pp100-101
           Case Study, matrix inversion            Lect 3a
           Parallel processing with MPI (optional) Lect 3b

 4. 6/6    Least Square Fit                        Lect 4       HW2
                                                   pp199-206

 5. 6/6   Polynomials                              Lect 5

 6. 6/8    Curve Fitting                           Lect 6              HW1
                                                   pp221-226
                                                   pp240-243

 7. 6/8    Integration                             Lect 7      HW3
                                                   pp272-276
                                                   pp301-307

 8. 6/13   Integration                             Lect 8
                                                   pp297-301

 9. 6/13   Review                                  Lect 9              HW2

10. 6/15   Quiz 1                                  Lect 10

11. 6/15   Complex Arithmetic                      Lect 11

12. 6/15   Complex Functions                       Lect 12

13. 6/20   Eigenvalues of a Complex Matrix         Lect 13
                                                   pp383-385

14. 6/20   LAPACK                                  Lect 14              HW3
                                                   p5

15. 6/20   Multiple precision, bignum              Lect 15      HW4 

16. 6/20   Finding Roots and Nonlinear Equations   Lect 16
                                                   pp44-45

17. 6/22   Optimization, finding minima            Lect 17      proj
                                                   pp417-427

18. 6/22   FFT, Fast Fourier Transform             Lect 18      HW5
                                                   pp288-296
           Digital Filtering, db sound             Lect 18a
           Molecular frequency responce, light     Lect 18b

19. 6/22   Review                                  Lect 19              HW4

20. 6/27   Quiz 2                                  Lect 20

21. 6/27   Benchmarks, time and size               Lect 21      HW6     

22. 6/27   Project Discussion                      Lect 22

23. 6/27   Computing Volume and Area               Lect 23

24. 6/29   Numerical Differentiation               Lect 24

25. 6/29   Ordinary differential equations         Lect 25
                                                   pp340-347

26. 6/29   Ordinary differential equations         Lect 26

29. 6/29   Review                                  Lect 29

7/4 holiday

27. 7/6    Partial differential equations          Lect 27
           Differential equation definitions       Lect 27a
                                                   pp461-463
28. 7/6    Partial differential equations          Lect 28              HW5
           High order, high dimensional            Lect 28a
           Optional Biharmonic PDE case study      Lect 28d
           Optional Navier Stokes case study       Lect 28b
           Optional 5D five dimensions             Lect 28e
           Optional 6D five dimensions Biharmonic  Lect 28f

29. 7/6    Optional Creating PDE Test Cases        Lect 31
Note Room Change!

30. 7/6    Final Exam  ITE 227                     Lect 30              HW6, proj


           Optional Finite Element Method          Lect 32
           Optional Finite Element Method, tria    Lect 33
           Optional Equation Boundary Reduction    Lect BR
           Optional fem_50 case study              Lect 28c



    No late homework or projects accepted after midnight July 7, 2011
    Late penalty is 10% per class, limit 50% penalty.
    * submitted, not graded until next weekend (not late for a while)
    "optional" means no homework and no exam questions on that lecture.

Other links

Last updated 6/25/11