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Abstract 
 

 
Title of dissertation: An Extended Bayesian Belief Network Model of  

 Multi-agent Systems for Supply Chain Management 

Ye Chen, Doctor of Philosophy, 2001 

Dissertation Directed by: Yun Peng, Associate Professor, 

 Department of Computer Science and Electronic Engineering 

 

This dissertation develops a theoretical model, called an extended Bayesian Belief 

Network (eBBN), of a Multi-agent System for Supply Chain Management (MASCM), 

which formalizes agent interactions in uncertain environments.  

 

MASCM is an electronic marketplace as well as a supply chain management 

system where agents sell and buy products on behalf of their owners to gain profits. A 

virtual chain consists of agents connected by commitments triggered by an end order. The 

system performance is measured by whether the management goal, e.g. end customer 

satisfaction, shared by all virtual chains can be reached.  

 

Due to the uncertain nature of internal and external decision factors, a 

commitment made by an agent may eventually not be fulfilled. Uncertainty concerning 

one agent’s commitments may propagate over the chain via its supplier-customer 



 

 

connections. Uncertainty and its propagation may have negative impacts on agents’ 

operations, cause inventories to be increased, the chain to be disturbed or destroyed, and 

eventually end orders to be delayed. 

 

To reduce potential damage from uncertainty, agents may choose to cooperate 

with each other by sharing information. This type of agent interaction in uncertain 

environments is formalized as eBBN, in which the effects of uncertainty are modeled as 

agents’ beliefs about the failure of commitments, relationships between these beliefs as 

direct causal links, and information sharing as belief update and propagation. By properly 

incorporating actions and their consequences into the network, eBBN further extends the 

representation and inference capability of traditional Bayesian Belief Networks (BBNs). 

The model can not only reason about the effects of agents’ strategic behaviors in updating 

beliefs but can also describe dynamic causal structures as virtual chains evolve over time.  

 

As a formal model, eBBN provides a sound basis for developing effective 

algorithms of uncertainty management. It can serve as an analytic platform to 

quantitatively study the relationship between agents’ local behaviors and overall system 

performance in an uncertain environment. Several algorithms for both local decisions and 

global optimization have been developed and tested. The simulation results present that 

the system with agents using these algorithms can achieve stable performance even when 

uncertain events occur with high frequency. 
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Chapter 1   Introduction 
 

 

Businesses-to-businesses electronic marketplaces attract more attention as Internet 

technologies become increasingly available to all enterprises. Electronic supply chain 

management systems are special marketplaces that manage business entity networks 

connected by demand-supply relationships to maximally ensure that final products can be 

delivered to fulfill consumer’s requests. Uncertainty is the disturbance that hinders 

system achievement of the management goals. This dissertation studies how to formalize 

entity efforts in their interactions to diminish the impact of uncertainty. In this chapter, 

we briefly introduce research background, motivation and related works. 

1.1   Research background  
 

An enterprise (firm) in the marketplace is defined as an entity that intends to gain longer-

term profits for its owners or shareholders [1]. The success of an enterprise is measured 

by net profit that is dependent on several factors including revenues, operational fees and 

outsourcing expenses. If an enterprise can maximally improve customer satisfaction, that 

is, provide the qualified products at the right time to the right place, it can build a positive 

reputation and attract customers to place orders so that its revenues can increase 

accordingly. To create a marginal profit, the enterprise also needs to lower the internal 

operation cost and search for proper suppliers that can provide the materials it needs at 

reasonable price and also guarantee the quality of the service. This leads to the concept of 

a supply chain. A supply chain consists of a focal enterprise and its direct suppliers and 
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customers. The management work of the chain is to allow the enterprise to look for an 

optimal solution that balances customer requests, internal operation expenses and 

suppliers’ performance. 

 
Recent research in supply chains indicates that, besides the direct suppliers, the 

indirect suppliers also affect chain management. The reasons are, firstly, behaviors of 

indirect suppliers can influence direct suppliers’ actions, and eventually affect the focal 

enterprise; secondly, by knowing the situation of the suppliers’ suppliers, the enterprise 

can gain a more accurate understanding of direct suppliers’ current performance so that it 

can design a plausible plan for incoming customer orders. Certain research results related 

to the effects of indirect supplier on a focal enterprise can be found in the study of Bull-

Whip phenomenon of supply chain [2]. On the other side, the behaviors of final product 

consumers that buy goods from retailers, called end customer or ultimate customer, 

reflect the trend of market change. The purchase activities might impact the enterprise 

decisions even for the manufacturers that provide raw materials. This is true especially 

when the enterprise design a long-term plan. Therefore, a modern supply chain is usually 

defined as an inter-organization system that can contain multiple levels of enterprises and 

entities, from raw material providers to end customers. The definition of a supply chain 

used in this dissertation is as follows, 

 

A supply chain is comprised of multiple good (service) suppliers and consumers 

that transform raw materials into a certain product that can be delivered to the end 

customers.  
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Similar definitions can also be found in [3]. In a supply chain each enterprise can 

provide a certain product (or service; in the context of this dissertation these two terms 

are used interchangeably without further explanations) to the others through consuming 

various materials. System components of a chain are organized by their market-oriented 

attributes. In other words, the major connection between two enterprises, if it exists, is a 

supply-demand relationship. The difference between a general marketplace and a supply 

chain system is that a supply chain only provides one type of final product to the end 

customers and all the entities in the system are either direct or indirect suppliers that 

produce parts or materials of the final product. Even though different enterprises at 

different positions in the chain system might have totally different views of the chain 

management goals, they all realize that improving end customer satisfaction will benefit 

all of them. Thus, from a system perspective, we define supply chain management as 

follows, 

 

Supply chain management consists of all activities that help an enterprise to search 

for a solution, which can balance its current target of gains profit of maximizing 

the short-term profits and long term needs to attract as many end customers as 

possible. 

 
The connection between two enterprises can be set up, maintained through many 

ways including face to face negotiation, phone conversation, document, credit and money 

transfer, product delivery and so on. Usually in a particular instance of a connection, 

there are three types of flows coexisting as the content of the connection. They are 

information flow, material flow and money flow [4]. Face-to-face negotiation and phone 
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conversation belong to information flow. Product delivery is an example of material flow 

content. The money or credit transfer process is the example of the money flow. Given a 

material or money flow, a corresponding information flow is created or deleted. For 

example, each product delivery process is usually accompanied by the procedure of 

exchanging documents with required signatures from the supplier and the customer. 

When the delivery truck leaves the building of a service provider, an information flow is 

created and started. When the receiver (service consumer) signs the receipt and it comes 

back to the provider, the information flow is completed and deleted. Therefore, through 

the study of information flows, many valuable results from various interesting aspects of 

a supply chain can be obtained. In fact, in this dissertation we study supply chain 

management as a way of analyzing information flows among enterprises. 

 
With the rapid development of computer technologies, more and more work 

originally consigned to human workers is delegated to computer software and hardware. 

Human beings simply provide the action guidelines but let programs make automatic 

decisions on their behalf. They only authenticate sensitive or critical decisions. These 

technologies save the enterprise internal operation expenses by cutting labor costs and 

improve efficiency through the information circulation time reduction. As the Internet has 

gradually become an electronic economic platform as well as information sharing 

mechanism, inter-organization interactions have changed accordingly. Nowadays, 

Electronic Data Interchange (EDI) and eXtensible Markup Language (XML) are popular 

content formats for communication between enterprises. The information flows in a chain 

usually are bit streams consisting of 0s and 1s transmitted over TCP/IP and HTTP 

protocols rather than voice phone calls or meetings. Today, electronic commerce, 
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including both business-to-business and business-to-customer types, has become a major 

field of economic growth. It can be predicted that in the future, the enterprise will 

become virtual, in other words, dependent on more automatic decision processes and 

digital communication and less on human interventions. From this viewpoint, as an 

independent business functional entity, an enterprise can be studied and analyzed as a 

software agent that is defined as an “intelligent, cooperative and autonomous” unit [5]. 

Accordingly, agent interactive actions define information flows. In this way, traditional 

supply chains are transformed into Multi-agent Systems (MAS). A MAS, consisting of 

more than one chain of virtual enterprises or software agents that are connected through 

demand-supply relationships and can deliver certain final good to the end customer, is 

one type of electronic supply chain management system and is called Multi-agent System 

for Supply Chain and its Management (MASCM) [6]. Like an ordinary marketplace, 

MASCM has to handle uncertainty since any unexpected events can damage agents’ 

chain management goal. For example, a strike happening at a raw material provider can 

eventually cause retailers to postpone the final product delivery to end customers. 

Moreover, with low operational cost and convenient communication channels, agents can 

more easily switch to other trading partners if they think changes can create more net 

profits. This type of action lets MASCMs become more dynamic. This dissertation 

research studies agent interactive behaviors and their impact on MASCM performance 

when the system is in an uncertain and dynamic environment. 

 

1.2   Research motivations  
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Agents in the MASCM can be self-interested. They try to gain profits for their owners. 

However, since the end customer satisfaction improvement can bring all of them benefits, 

agents would like to cooperate with each other if this type of action does not harm their 

essential interests. Uncertain events can cause an order from an end customer to be 

delayed or to fail. To protect their long-term benefits, one type of cooperation that agents 

are willing to perform is to share information related to uncertainty. This brings out a 

critical problem for system study, that is, to find out an efficient way that agents can 

interact with each other to share uncertainty information without obligations to expose 

sensitive data. This leads to our research on formalizing agent interactions under 

uncertain and dynamic settings. In other words, the focus of our investigation is to 

develop a formal model that can deal with uncertainty propagation and analysis for 

MASCM. 

 

As an electronic supply management system, we observed the following to be 

true. First, in the MASCM, the most substantial business connection between two agents 

is the supply-demand relationship. In this connection, the demand side’s satisfaction 

depends on the supply side’s performance. In other words, demand side and supply side 

are causally linked. Second, the most important task in an agent lifetime is to finish its 

commitments to customers and earn profits. That is, the impact of uncertain events can be 

quantitatively measured by their effect on the completion of commitments. Naturally, an 

agent’s uncertainty propagation can be conducted through a casual network consisting of 

commitments linked by supply-demand relationships. Based on this observation, in this 

dissertation we present extended Bayesian Belief Network (eBBN) as the model to 
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formalize agent interactions with uncertainty. It can be further used as an analytic 

platform to study the relationship between an uncertainty management mechanism and 

system performance. 

1.3   Related works 
 
 

Reflecting an increased interest in software agents, a great number of publications have 

appeared in academic journals, and conferences and workshops on various topics related 

to agent technology, including the theory, methodology, and applications of agents and 

multi-agent systems. Recently, researchers have started to shift their attention to 

theoretical modeling of multi-agent systems. The majority of work in this direction 

attempted to apply various economics principles (e.g., game theory, market mechanism, 

price system, auction, tax mechanism, etc.) to Multi-agent System (MAS) of large scales 

[57][59][61][62] Their rationale is that, like an economy of many active entities that 

interact with each other, large scale MAS can be modeled and analyzed at a macro level. 

Unified Modeling Language (UML) is the industry standard to design large-scale object-

oriented systems. Some researchers have made an effort to extend UML and define 

Agent-oriented UML (AUML) that supports the agent system development cycle from 

analysis to final implementation maintenance [7][8][9]. Color Petri net is another 

potential modeling tool for agent system analysis because of its wonderful expressive 

power for concurrent events [10]. Some other works [11][12] use workflows to study 

autonomous entity interactions. The model tools have several common weak points. First, 

they are too general. These models are not specialized for supply chain management 

systems and cannot describe dynamic business flows, e.g. agent negotiation processes. 
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Second, they implicitly or explicitly assume that the system is designed and implemented 

as a whole. This is not true for a MASCM, in which system components might be 

designed, implemented and owned by different business entities. Lastly but most 

importantly, these models do not model the uncertainty in the level of detail as our model 

is intended to do, and they do not provide operational guidance for individual agents 

working in the uncertainty environment.  

 

One line of interesting research to study uncertainty in a MAS has been reported 

by Penock and Wellman where they apply a security market model to some Bayesian 

inferences by providing a mapping from a BBN to a market system [61][62]. However, 

buyer and seller agents in their model are extremely simple, each corresponding to a 

variable in an ordinary BBN. Work in [63] proposes a framework for Probabilistic Agent 

Programming. The work is concentrated on individual agents, providing syntax and 

semantics for representing uncertain inputs an agent receives in incoming messages and a 

set of rules to manipulate them. However, it gives little treatment of agent interactions at 

the system level beyond simple message passing. Moreover, the manipulation of 

uncertainty with each agent is done following a set of heuristic rules for synthesizing 

range probabilities. 

 

Inspired by game theory, BBN, influence diagrams, and logic programming, 

Poole proposes the Independence Choice Logic (ICL) to model multiple agents under 

uncertainty [64]. In essence, ICL extends logic and represents actions as choices from 

pre-defined alternatives. Using logic programming, an extended influence diagram is then 
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formed that seeks optimal results in game theoretic terms (e.g., Nash equilibrium and 

Pareto optimization). We take a different approach by directly extending the BBN 

formulation to MAS. As such, many results in BBN research can be adopted relatively 

easily. ICL is more expressive than our proposed framework in that it can represent other 

aspect of agents such as policies or strategies. The price to pay for the expressiveness is 

its difficulties in using this model and its high computational complexity.  

 

Research efforts have been made in the uncertainty community to extend the 

classic BBN formulation to higher order structures. The most notable work is that of the 

“Multiply Sectioned Belief Networks” [65]. The primary goal of their work is to improve 

run-time computational efficiency with BBN. This is achieved by partitioning a given 

ordinary BBN according to the natural division of the domain into subdomains, and 

limiting the computation to within one subnet most of the time. Although the objectives 

are different, the results from their work such as the principles guiding the formation of 

linkages between aggregates, the formulation of d-sepsets between subnets, and the 

preservation of the original joint distribution by the sectioned network are relevant to our 

proposed work. “Object Oriented Belief Networks” [66] attempts to extend BBN to the 

OO programming environment so that a BBN can be built with objects, rather than 

variables, as the basic units. The emphasis is on how to represent the uncertainty 

relationships between an object and its attributes, and how to connect objects to form a 

high level BBN. In contrast, our model is at a higher level of abstraction in that the 

internal structures of agents and their interactions are not restricted to an object oriented 

representation. 
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The issue of representing actions in the probabilistic setting is perhaps best 

addressed by Pearl et al [51][49]. Although developed for flat graphic representation of 

uncertainty and causality, some results from their work provide useful insights to the 

relationships between actions and probabilities, and will be valuable when considering 

incorporating actions in eBBN. 

 
The rest of this dissertation is organized as follows. Chapter 2 clarifies the 

MASCM concepts, including its architecture, management activities and measurement of 

system performance. Chapter 3 introduces uncertainty and the basic of Bayesian Belief 

Network. Chapter 4 presents the extended Bayesian Belief Network (eBBN) model in 

details. Chapter 5 contains several algorithms using eBBN for agent decision-making 

procedures in different scenarios. Chapter 6 describes an experiment to study the impact 

of uncertainty on system performance with two different settings. System performance 

comparison and analysis is also given. Chapter 7 concludes dissertation research, 

discusses the limitations of the current model, as well as future extensions. 

 

 



 11

Chapter 2   Multi-agent System for Supply Chain 
Management 

 

 

In the 1980’s, manufacturers were faced with escalating demand for new products and the 

need to bring products to market with ever-increasing speed. To respond to these 

pressures, manufacturers were compelled to become more flexible and responsive in their 

manufacturing processes. As manufacturing capabilities improved in 1990s, managers 

realized that material and service inputs from suppliers had a major impact on the ability 

of their business to meet customer needs. As a result of these changes, businesses 

concluded that, in order to optimize their manufacturing processes, they needed to 

manage the network of all upstream firms that provide inputs (directly or indirectly), as 

well as the network of downstream firms responsible for delivery and after-market 

service of the product to the end customer. This leads to the inception of supply chain and 

chain management studies. As the development of information and networking 

technologies evolved, enterprises gradually transferred business responsibilities away 

from human beings to computer software and hardware. To some degree, an enterprise 

evolves into a complex information system or software agent programmed by humans to 

automatically fulfill business tasks. Correspondingly, the supply chain becomes an agent 

chain. A marketplace consisting of virtually existing agent chains that provide one final 

product to end customers and implement chain management functionalities is called a 

Multi-agent System for Supply Chain Management (MASCM). In this chapter, we first 

introduce the basic ideas of supply chain and chain management from an operational 

economics perspective. Then we clarify concepts of MASCM, many of which are directly 
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or indirectly linked to the concepts behind traditional supply chain and chain 

management. 

 

2.1   Enterprises and a marketplace 
 
An enterprise (organization or firm) is a basic economic unit that produces a product 

(good or service) for sale. A marketplace (market) is a group of enterprises and human 

beings interacting with each other to buy and sell under certain controlled conditions. The 

purpose of all activities that an enterprise performs in the marketplace is to earn 

maximum profits for its owner or shareholders over a long time period [1]. It has been 

observed that, in an uncertain world the concept of “maximum profit” is not clearly 

defined. While a particular course of action might not result in a unique, deterministic but 

a variety of possible levels of profits, each of which has a certain probability of 

occurrence. It is meaningful to say that a firm is pursuing maximized profit only when the 

firm can explicitly or implicitly attach a probability to each level of profit that could 

result from each course of action. The time period for measuring profit must also be 

defined. In general, it means that the enterprise will not count on the profits from current, 

limited number of transactions but the sum of profits from the ones over a relatively long 

time period such as one year. In the real life, an enterprise’s long-term profits-earning 

targets might conflict with short-term ones. For instance, increasing the price of a product 

could temporarily increase a retailer’s revenue but could reduce the number of. If the gain 

from the increasing price cannot cover the loss from the decreased number of customers, 

the enterprise may reduce long-term profits, e.g. the expected revenue for a financial 

year. Therefore, it can be assumed that, if the result of an action can be predicted, an 
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enterprise will always sacrifice short-term benefits for long-term goals. In a market, an 

enterprise usually has the following attributes. First, it is a rational entity. That is, it 

knows how to rationally choose a suitable action from a set of alternatives. For example, 

hungry buyers know that they should choose foods rather than clothes when they shop in 

a market. Second, an enterprise’s business behaviors are consistent. In other words, its 

actions can be determined and, to some extent, predicted by a finite set of rules. Third, 

each enterprise is greedy and self-interested. It prefers more commodities to fewer given 

the same conditions such as price and quality. 

 
A product is defined as a scarce and none-free valued resource that either can be 

used to produce other goods or directly satisfied human wants. With respect to a 

particular product, the resource provider side is called a product supplier or just supplier; 

the resources consume side is called a product consumer or just consumer. Goods that are 

directly consumed by the human beings are called final products. Human beings are 

called end customers. The supply-demand connection is the basic and fundamental 

relationship between enterprises. All other relationship can be directly or indirectly 

derived from it. Furthermore, a market, consisting of suppliers and customers, can be 

classified into four categories, perfect competition, monopoly, monopolistic competition 

and oligopoly, according to the number of product suppliers [1]. If the market, for any 

product, has many suppliers, it can be classified as a perfect competition or monopolistic 

competition marketplace. If there is only one supplier for a certain product, the market is 

a monopoly. The oligopoly is the intermediate case, in which a product only has a few 

suppliers. In this dissertation, we discuss the perfect competition market with the 

following attributes: 
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1) Any supplier of a given product can provide the same service as anyone else. That 

is, consumers of the product do not care whether they purchase the product from 

one seller or another, as long as the price is the same and the product is available. 

2) No single supplier or customer can affect market attributes related to a product 

such as the price and where and how it goes. 

3) All enterprises can join and leave the market freely. 

4) Both supplier and demand have a perfect knowledge of product data. This 

information includes the name of the enterprise, the product requirements and 

good description. 

 
In a perfect competition market, no central authority controls transaction between 

the demand and supply sides. Since both sides are greedy and self-interested, there are no 

existing agreements for certain product allocation. The conflicting interests are resolved 

through negotiation process that might lead to a compromised solution somewhere 

between each side’s ideal outcome and one barely accepted. The successful negotiation 

process results in a commitment that can be a contract or just a verbal promise. In either 

case, a neutral party trusted by both buyer and supplier monitors the commitment. If one 

side does not honor the commitment, it can be punished either explicitly through 

confiscation of the transaction deposits or implicitly by receiving a bad reputation. 

 

2.2   The concept of supply chain and its management 
 
In this section we introduce the basic concepts of supply chain and its management. A 

general definition of supply chain can be found in [13]. The definition is “A supply chain 

is a network of facilities that procures raw materials, transforms them into intermediate 
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subassemblies and final products and then delivers the products to customers through a 

distribution system.” A supply chain is commonly referred to as a network because it 

involves the bi-directional flows of materials, information and money. The information 

flow is defined as enterprises’ interactive actions in electronic, spoken or written format. 

The material and money flows are defined as products and payment transfer between 

enterprises, respectively. In this dissertation, the term “supply chain” is used 

interchangeably with the term “supply chain network (SCN)” or “supply chain system.”  

 
A supplier network, also called an upstream network or just an upstream, consists 

of all organizations that provide inputs, either directly or indirectly to the focal firm. 

Similarly, the customer network of an enterprise is called downstream network or just 

downstream. For example, an automotive company’s upstream includes the thousands of 

firms that provide items ranging from raw materials such as steel and plastics, to complex 

assemblies and subassemblies such as transmissions and brakes. The upstream may 

include both internal divisions of the company as well as external suppliers. A given 

material may pass through multiple processes within multiple suppliers and divisions 

before being assembled into a vehicle. The vehicle may go through its downstream, 

consisting of warehouses, long distance transportation companies and dealers, and finally 

reaches the end customer. A supplier for this car company has its own set of suppliers 

that provide inputs that is also part of this supply chain. The beginning of a supply chain 

inevitably can be traced back to “mother earth”; that is, the ultimate original source of all 

materials that flow through the chain (e.g., iron ore, coal, petroleum, wood, etc.). A 

supply chain is essentially a series of linked suppliers and customers; every customer is in 

turn a supplier to the next downstream organization until a final product reaches the 
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ultimate end user. We always assume a supply chain is in a “perfect competition” type of 

market.  

 
Enterprises with no direct supply-demand relationship but that share or partially 

share a set of direct customers are said to sit at the same tier as each other. Direct 

suppliers of an enterprise are one tier level higher that. The tier an enterprise is in shows 

the relative importance of supply inputs to the enterprise. Roughly speaking, the higher 

tier an enterprise belongs to, the less impact supply inputs has on its ability to complete 

orders. However, since the supply-demand relationship can be complex, with different 

business connections, an enterprise can be placed in more than one tier. Only by adding 

additional constraints can the exact tier of each enterprise in a supply chain be 

determined. At that time the chain can be described as a “leveled” network. 

 
A graphic illustration of a supply chain follows, 
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Figure 2.1 An example of supply chain 

 

2.2.1 Supply chain classifications  
 
Supply chains exist in virtually every industry, especially industries that involve product 

manufacturing. In [14], Lin identified three main types of supply chain networks, Type I, 

II and III, based on such attributes as manufacturing process, primary business objective, 

product differentiation, range of product variation, assembly stages, product life cycle, 

and main inventory type as shown in the following table.  

 
 

Attributes Type I SCN Type II SCN Type III SCN 

Manufacturing process Convergent 
Assembly 

Divergent 
Assembly 

Divergent 
Differentiation 

Primary business 
objectives 

Lean 
production 

Customization Responsiveness 

Downstream 

Upstream 

Legend: 

Material flows Raw materials 
provider 

Manufactory Distribution  
Center 

Retailer 
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Product differentiation Early Late Late 

Range of product 
variations 

Small Medium Large 

Assembly process Concentrating 
at the 
manufacturing 
stage 

Distributed to the 
distribution stage 

Concentrating at the 
manufacturing stage 

Product life cycle  Years Months to years Weeks to months 

Main inventory type End products Semi-products Raw materials 

Example industries Automobile 
and aerospace 

Appliance, 
electronics and 
computers 

Apparel/fashion 

 

Table 2.1 Different types of supply chain 

 

The automobile and aerospace industries are associated with Type I supply chain 

networks, where two main issues are how to efficiently meet customer demand without 

carrying excessive inventory, and how to coordinate suppliers and assemblers to smooth 

material flow. Structurally, there are many suppliers. The wide range of materials and 

sub-components that come from these suppliers converges through a series of 

manufacturing stages until the final product is assembled at one location. The final 

product is then shipped to several distributors and ultimately to a large number of 

retailers. The appliance, electronics, and computer industries can be classified as Type II 

supply chain networks, where the main issues are reducing the lead-time (planning, 

scheduling and manufacturing time) of the assembly-to-order process, and managing the 

inventory and purchasing for the assembly. In these supply chain networks, a relatively 

small number of suppliers provide materials and sub-components that are used to produce 
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a number of generic product models. Complex assembly processes for generic models 

(semi-products) are executed at factory sites, and simple assembly processes for 

customized models are executed at distribution sites. A number of distribution points may 

be needed to quickly respond to customized orders. The apparel/fashion industry is a 

Type III supply chain, where the main issues are acquiring market information to respond 

to demand, and deferring product differentiation to maintain flexibility to handle 

constantly changing markets. In these supply chain networks, the number of end items is 

larger than the number of raw materials. There are a small number of suppliers and 

manufacturers, but a larger number of distributors and retailers. These three types of 

supply chains serve as the basis for understanding the issues and challenges for 

improving supply chain management.  

 

2.2.2 An abstract of a supply chain and its experimental research foundation 
 
Any business behavior of an enterprise or a human will create one or more flows to pass 

through the supply chain network. Among the three types of flows (information, material 

and money flows), the information flow is in a dominant place because it usually defines 

the attributes of the other two types and affects their creation and consumption. For 

example, the phone conversation begins and a contract is created before the product 

delivery. The contract or commitment records how the product is to be transported from 

supplier to customer and how much the customer must pay. In other words, in a supply 

chain, once information flows are determined, the chain status is set. From this 

perspective, a supply chain can be defined by the enterprises and the information flows it 

contains. This observation gives a high level abstract of supply chains. It also provides 
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the foundation for supply chain experimental research. In this dissertation, we study a 

supply chain system based on this abstract. 

 
Within a supply chain, information flows can be roughly classified into two 

categories. One type of information flow is used to establish a demand-supply 

relationship between enterprises. This type of information flow includes supplier 

advertisement, the process that a customer uses to search for suppliers, and the 

negotiation processes that might lead to a commitment among negotiating parties. The 

negotiation process is the most important information flow of this type. In the real life, in 

order to save inventory cost, an enterprise usually starts its internal processing once it 

receives an incoming request. This is a very common business strategy, called Just In 

Time (JIT), which has been widely used and studied. When this strategy is used, it is the 

customer side that initiates the negotiation process. If not specified otherwise specified in 

the dissertation the term “negotiation” refers to JIT with the customer side triggering the 

process. The other type of information flow involves commitment processing, which 

maintains the supply-demand relationship between enterprises. Commitment processing 

is the core of a demand-supply relationship; that is, the demand side satisfaction is relied 

on supply side performance. This dependency between supply side and demand side is 

the basis for modeling and analyzing business interactions in a supply chain. 

 

2.2.3 Supply chain management 
 
The activities of an enterprise in the supply chain include sourcing and procurement, 

production scheduling, order-processing, inventory management and so on. They can be 

roughly divided into three categorizes: 
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• Internal functions,  

• Upstream management  

• Downstream management. 

Supply chain management of an enterprise is the integration of these three activities [4]. 

 

An enterprise’s internal functions include the different processes used in 

transforming the inputs provided by its upstream to the output requested by its 

downstream. In the case of an automotive company, this includes all of its parts 

manufacturing (e.g., stamping, power train, and components), which are eventually 

brought together in their final assembly operations to create actual automobiles. 

 

The two most important internal functions are order processing and production 

scheduling. Order processing is responsible for translating customer requirements into 

actual orders. It may involve extensive customer interaction, including quoting prices, 

possible delivery dates, delivery arrangements and after-market service. Production 

scheduling translates orders into actual production tasks. This may involve working with 

Materials Requirement Planning (MPR) systems, scheduling work centers, employees, 

and maintenance on machines. 

 
Another important enterprise activity involves the management of upstream external 

supply chain members. In order to manage the flow of materials between all of the 

upstream organizations in a supply chain, firms need to ensure that the right materials 

arrive at the right locations, at the right time. These activities include: 

• Supplier selection 
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• Supplier performance monitoring and evaluation 

• Employment of appropriate contractual mechanisms 

• Relationship maintenance. 

 
Lastly, a firm has to take care of the downstream that encompasses all of the distribution 

channels, processes, and functions so that the product passes through its way to the 

customer. An enterprise may have relatively small upstream but fairly long downstream 

distribution channels. The downstream management includes  

• Issuing information related to current situation about the commitment processing 

• Dealing with the actual movement of materials between locations 

• Collecting payments and feedback. 

 

2.2.3.1 The performance measurement of supply chain management 
 
For a given enterprise, supply chain management is not an easy task because large 

numbers of activities must be coordinated across organizational and global boundaries. 

The goal of supply chain management is to balance the internal operations, requests from 

customers, and supplier performance so that the enterprise successfully completes 

commitments (contracts) and earns profits. The goal is also described as to deliver “the 

right products in the right quantities (at the right place) at the right moment at minimal 

cost.” (From NEVEM-workgroup [15]). More specially, the supply chain management tries to 

achieve following targets [16]. 

 

Customer satisfaction  
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Improvement in customer satisfaction can enhance an enterprise’s reputation and lead to 

new business opertunities. Typical measures of customer service are a company's ability 

to fill orders within due date (fill rate) and its ability to deliver products to customers 

within the time quoted (on-time deliveries). Other metrics should be used to evaluate the 

delivery performance of orders that are not delivered on-time. One way is to measure the 

average time from order to delivery. 

 

Minimizing inventories 

Manufacturing entities have inventories for raw products (RPI), products in the 

production process (WIP), and finished products (FGI). In addition, there are often 

warehouses or distribution centers between the different levels of the downstream. 

Inventories are costly. Binding capital in inventories prevents the company from 

investing this capital in projects of higher return. The holding cost inventories are 

therefore often set as high as 30 - 40% of the inventory value. It is in every enterprise's 

interest to keep inventory levels at a minimum.  

 

Flexibility  

Flexibility can be defined as the ability to respond to changes in the environment. In the 

case of a manufacturer, flexibility is the ability to change the output in response to 

changes in the demand. A flexible enterprise can capture market share more readily. 

Enterprises usually rely on safety stocks, which reserve certain amounts of product or 

service capbilities to improve their flexibility. Upstream enterprises’ flexibility can affect 

flexibility of their direct or indirect customers. 
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The performance for an enterprise’s supply chain management can be measured 

by whether it can attain one or more of the above goals. However, there are usually 

tradeoffs between the different goals. It is difficult to meet all of them simutaneously. For 

example, if lead time is constant, the ability to fulfill orders is directly dependent on the 

inventory levels in a supply chain. As long as there are products in the Finished Goods 

Inventory (FGI), from which products are taken, orders can be satisfied. But oversized 

inventories is costly. On the other hand, the company's reputation may be severely 

damaged if it can not complete the customer orders within the required time. Therefore, 

the enterprise will find it to achieve both minimum inventory holding cost and perfect 

customer satisfaction. The trade-off between inventory costs and customer satisfaction is 

one of the classic issues of logistics and supply chain management. 

 

From a system perspective, supply chain management is a management process 

that attempts to optimize the operation of the entire supply chain. Although different 

entities in a supply chain typically operate subject to different sets of constraints and 

objectives, there is one central, overriding focus toward supply chain management for all 

the enterprises in the chain, that is, continual improvement of end-customer service. [17]. 

All the enterprise will profit by receiving more orders from their direct customers if the 

number of end orders increases. End customer needs must be satisfied if overall supply 

chain is to succeed on a long-term basis. Thus, at the system level, the fundamental 

concern of supply chain management is to continually reduce total cycle time and 
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improve the efficiency of end customer order fulfillment [17]. In other words, the overall 

supply chain management performance can be measured by end customer satisfaction. 

 

Beyond this customer-oriented aspect of effective management performance 

measurement, a number of phenomena indicative of overall supply chain management 

desirability have been stressed. They are: 

• Changes in both the average volume of inventory held and frequency turns 

across the supply chain over time [18]. 

• The adaptability of the supply chain as a whole to meet emergent end 

customer needs [19]  

• The extents to which relationships between chain members are based on 

mutual trust [19].  

 

In this dissertation, the overall supply chain management performance is 

measured by end customer satisfaction. The better the customer satisfaction, the better the 

performance of overall supply chain management. 

 

2.2.3.2 Uncertainty in supply chain management  
 
One major problem involved in supply chain management is understanding and 

managing the uncertainties. This is especially true in industries such as fashion ski-wear 

where demand is heavily dependent on a variety of factors that are difficult to predict - 

weather, fashion trends, the economy - and the peak of the retail selling season is only 

two months long [20]. Three fundamental sources of uncertainty exist along a supply 
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chain. They include demand (volume and mix), process (yield, machine downtimes, 

transportation reliabilities), and supply (part quality, delivery reliabilities) [21] [22]. The 

source of uncertainty in the supply chain will be further discussed in chapter 3. It has 

been indicated by previous studies that through improved collection and sharing of 

information between supply chain members, uncertainty can be well-managed [23]. 

Information sharing also results in better customer service, through better coordination, 

and improves asset management, by giving decision-makers the information necessary to 

optimize inventory and capital asset costs. The difficulty arises when trying to design an 

information sharing mechanism that can handle the information needs of each of the 

supply chain members to allow efficient, flexible, and decentralized supply chain 

management in a dynamic and uncertain environment. Three approaches address this 

problem; they are case study, simulation and formal modeling. Currently, there is no 

model that can be used to generalize and analyze uncertain information-sharing for a 

supply chain management system [33]. In Chapter 4, we introduce the extended Bayesian 

Belief Network (eBBN) as formal model to study chain member interactions in the 

uncertain setting. 

 
In summary, a supply chain is an enterprise network that delivers only one type of 

final product to end customer. Chain members are linked through information, material 

and money flows. The overall supply chain management goal is to maximally satisfy the 

needs of the end customer. Dealing with uncertainty is an important challenge for supply 

chain management but it has not been adequately addressed. 

 
The description of a supply chain and its management is summarized in following table. 
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1. Supply members 
(enterprise) 

Suppliers and customers (includes manufacturers, 
assemblers, distributors and so on) 

2. Chain flows Material, payment and information flows 

3. Interdependencies Demand-supply relationship that includes material 
shipments and orders, funds transfer, and information 
sharing. 

4. Supply chain 
management goals for 
a given enterprise 

Minimize order fulfillment cycle time,  
Minimize inventory levels and costs, 
Maximize flexibility 
 

5. Overall supply 
chain management 
measurement 

End customer satisfaction 

6. Problem addressed Study uncertain information sharing among enterprises 
in a supply chain 

 

Table 2.2 Supply chain and its management 

2.3   A framework of a Multi-agent System for Supply chain 
Management 

 
In the last decade, computing power has increased dramatically. The CPU speed of a 

computer doubles every two years with little change in price. In the mean time, the 

popularity of new generation programming languages such as Java makes commercial 

software development easier and faster. Nowadays, powerful software and hardware are 

affordable for many enterprises, allowing them to adopt computer technologies to save 

operating expenses and improve efficiency. The development of networks and 

information sharing allow enterprises to establish close connections through electronic 

data exchange and automatic procedure handling. This capability has also lead to the 

emergence of electronic commerce (e-commerce), defined as “doing business 
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electronically” [24]. With these developments, supply chains gradually have evolved into 

autonomous systems. The technologies that are relevant to our discussion include 

Internet, Electronic Data Interchange (EDI), and Extensible Markup Language 

(XML)/EDI. 

 
With the proliferation of PCs, LANs, and modems and the establishment of open 

standards such as TCP/IP, HTTP, and HTML, the Internet has become the system that 

allows information sharing among supply chain partners across geographical regions. 

Originally, Internet was developed to be a pool of human knowledge that would allow 

collaborators in remote sites to share their ideas and all aspects of a joint project [25]. 

Because a supply chain is similar to the projects the Web was designed (remote sites, 

shared knowledge, common target), the Web can serve as an infrastructure for sharing of 

information in a supply chain.  

 
To permit automatic and electronic date exchange, information must be structured 

according to predefined formats and rules that a computer can use directly [26]. EDI is an 

existing information technology that provides a method of electronic business-to-business 

transaction transfer between computers without interpretation or transcription by people. 

EDI technology was shown to facilitate accurate, frequent, and timely exchange of 

information to coordinate material movements between trading partners. It increases the 

speed and the accuracy of processes compared with non-electronic transfer of 

information [27]. When a supplier and a procurer use information technology to create 

joint, interpenetrating processes at the interface between value-adding stages, they are 
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taking advantage of the electronic integration effect. Benefits include is the time saved 

and the errors avoided because data need only be entered once [28].  

  
A practical problem needs to be addressed EDI is that it lacks of a globally 

recognized standard format for data storage and transfer across the Internet [27]. One 

solution that has been considered by a number of businesses is to use the combination of 

Extensible Markup Language (XML) and EDI. XML is the subset of Standard 

Generalized Markup Language (SGML) developed by the World Wide Web Consortium 

(W3C). XML allows users to specify the role and syntax of each piece of data in an 

interchanged document and the order in which each piece of information is expected. 

XML also identifies which programs should be used to control the document exchange. It 

can encode the document's information precisely and in a richer structure than was 

previously possible with earlier formats [29]. Through this way, XML/EDI transactions 

are self-describing and can be automatically processed by applications over the world. 

 
With the growing maturity of the technologies we discussed above and with the 

rapid development in information technologies, it can be seen that an entity (enterprise) 

in the supply chain can make decision and interact with others electronically and 

automatically. In [6], we present a framework of electronic supply chain management 

system, called Multi-agent System for Supply Chain Management (MASCM). It is 

described as follows.  

 

MASCM is an electronic marketplace. 
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MASCM is a special perfect competition marketplace. The participants in this 

marketplace are virtual enterprises, called software agents, which conduct business 

actions using software applications and electronic data flows with little human 

intervention. Business entities are allowed to join or leave this market freely. However, 

the marketplace only provides one final product to end customers. 

 

MASCM is a chain management system. 

A supply chain in MASCM consists of software agents connected by supply-demand 

relationship. MASCM provides basic mechanisms for software agents to pursue their 

various chain management goals in business activities. These mechanisms include social 

conventions for conducting business and other functions that facilitate transactions 

among software agents (naming service, ontology definition etc.). In a MASCM, there 

can exist one or more supply chain at the same time. The components of the supply chain 

can change over time, however, the system ensures at any given time all supply chains 

pursue one and only one common goal as their overall chain management target, e.g. the 

end customer satisfaction.  

 

The following figure shows a graphic illustration of a MASCM. 
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Figure 2.2 An illustration of MASCM 

 

In following sections we discuss MASCM in detail. 

 

2.3.1 Software agents as virtual enterprises 
 

Although there is still no universal agreement on the definition of a software agent, many 

researchers define software agents with following attributes: autonomy, learning and 

cooperation [5]. Autonomy refers to the principle that agents can operate with little or no 

human guidance. The key element of autonomy is proactivity. That is, when given a goal, 

a software agent knows how to take actions to reach it. The attribute of learning means 

software agents can learn from the experiences and knowledge they gain from interaction 

with humans or other computational entities. This learning ability is critical criterion for 

distinguishing a software agent from ordinary software. One simple measurement of 

Legend: 

Information flows Self-interested  
Software agents 

Altruistic  
Software agent 

Agents moving 
direction 
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whether a software agent has learning ability is to see if it can automatically improve 

performance over time [30]. Lastly, the attribute of cooperation, which is paramount, 

describes agents taking on roles in an artificial society e.g. MASCM instead of standing 

alone. 

 
Software agents used to represent virtual enterprise must also be business-oriented 

and rational. This means their behaviors can be described by a finite rule set of business 

logics. These rules guild agents to approach goals set by their owners. 

 

Based on their business behavior in a marketplace, software agents in MASCM 

fall into two categories: 

 
Functional agents. These types of virtual enterprises buy or sell products in order to 

make profits for their owners. These agents are self-interested, and designed and 

implemented by different agent owners. In the system each is one of the suppliers to the 

end customer. We also assume each functional agent sells one and only one product in a 

MASCM. 

 

Informational agents. These agents provide public service including supplier (customer) 

lookup, commitment verification and justice, system registration etc…. Informational 

agents are altruistic and do not belong to particular owners. As the party trusted by every 

functional agent in the system, informational agents can be defined as the components of 

a specific MASCM. They are maintained by the organizer of marketplace. Their 

operational expenses are collected by levying a “tax” on all functional agents.  
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2.3.2 Information flows 
 
Both types of information flows discussed in Section 2.2.2 have to be implemented in a 

MASCM. They consist of sequences of messages exchanged between agents. In the 

future, Information flow is interchangeable with the term “message”. Messages used to 

establish the demand-supply relationship are more much complicated than ones used to 

maintain the relationship. The first case includes the query messages from functional 

agents to informational agents and the negotiating messages between two functional 

agents. The exchange commitment status between two functional agents is an example of 

the second case. 

 

Usually, the study of information flows in a MASCM should include the following areas,  

 
Communication.  How agents exchange messages. Communication requires: an 

interaction protocol, a communication language, and a transport protocol. The interaction 

protocol refers to the high level strategy, pursued by the agent, that governs its 

interaction. Such a protocol can range from negotiation schemes and game theory 

protocols to a simple one such as “every time you do not know something, find someone 

who knows and ask.” The communication language is the medium through which the 

attitudes regarding the content are communicated. The transport protocol is the actual 

transport mechanism used for the communication, such as TCP, SMTP, HTTP, etc.  
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Representation.  How agents represent complex objects (physical or abstract). This may 

require the support of a sophisticated representation scheme and ontology. Examples can 

range from orders to contracts. 

 
Problem solving.  How agents extract the content from information flows, and how they 

apply their reasoning to it. There is a large body of work on algorithms and techniques 

for constraint solving that can be applied to this problem [31]. 

 
Human interaction.  How the information flows can be integrated with humans in 

appropriate ways, either for authorization and authentication or as part of a larger 

workflow environment. 

 
Communication is a fundamental issue for transactions between agents. It is 

largely domain-independent in that the nature of the content being transferred does not 

matter. Representation, problem solving, and human interaction are problem- or agent- 

dependent and require detailed consideration when a system is being constructed. In the 

dissertation, we assume: 

• Agents use Knowledge Query and Manipulation Language (KQML) as their 

communication language. 

• Interaction protocols and representation schemes are well known by all 

entities. 

• Agents use proper decision-making algorithms chosen by their owners to 

retrieve and utilize the information sent by other parties. 

• Agent owners have a firm control and understanding of agent actions in the 

system. 
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The detailed study about KQML is in [32]. A high-level negotiation protocol for a 

MASCM and its analysis can be found in [6]. 

 

2.3.3 Order Fulfillment Process (OFP) 
 
Since JIT is widely used as business logic for many enterprises, we assume it is the 

default strategy functional agents follows. Correspondingly, chain activities described in 

Section 2.2 that a software agent is involved in can be further simplified as an Order 

Fulfillment Process (OFP) [34]. Thus, functional agent’ behaviors in a supply chain can 

be logically divided into the following steps.  

 

1) Order generation. Based on the commitment made to its customers or set by 

internal needs, the functional agent selects suppliers, generates orders and 

chooses negotiation strategies for each supplier. Since more than one supplier 

is usually needed to provide different materials this functional agent may 

generate more than one order to fulfill the commitment. No information flows 

are triggered at this time. 

 

2) Negotiation. The functional agent sends orders to the desired suppliers and 

negotiates with them. The functional agent can negotiate simultaneously with 

different suppliers. However, we usually assume in each negotiation process, 

there is only one supplier is involved. That is, the default negotiation protocol 

between two functional agents is bilateral. An order is temporarily solved if 

there is a commitment reached with a supplier. If there is no agreement, the 
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functional agent must look for an alternative supplier or must fail in its 

commitment. Information flow involved in this step is used to establish an 

active instance of supply-demand relationship, called a sell-buy connection.  

 

3) Commitment processing. The functional agent processes the commitment, 

deals with the unexpected events, and exchanges information with its supplier 

and customers. When it receives notice that the product is delivered by a 

supplier, the order sent to this supplier is eventually solved, and the 

commitment between these two agents has been resolved successfully. An 

order will not be eventually solved if its supplier aborts the commitment or 

itself cancels the commitment following the decision made by internal 

functions. The consequence of commitment cancellation by this functional 

agent is to cause all direct supplier agents involved in sell-buy connections 

with that functional agent to cancel any orders they have generated which 

have not yet been eventually solved. When direct suppliers provide all the 

materials the functional agent needs, the commitment held by this agent is also 

resolved successfully. We say an OFP initialized by this functional agent 

completes. Otherwise, the commitment is resolved unsuccessfully and an OFP 

fails. In either case, the functional agent has to notify its customers. 

Information flows involved in this step are to maintain the active supply-

demand relationship or buy-sell connection.  
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On thing to be noticed is that the steps above are logically divided according to 

type of information flows. A functional agent can be involved in multiple and different 

type of information flows at the same time. Therefore, in practice, an OFP cannot be 

actually divided into sequential steps. For example, let us consider a case in which a 

functional agent makes commitments with more than one supplier, but suddenly one of 

them abandons the commitment. This agent then has to search for an alternative supplier 

and negotiate with it while exchanging information with other suppliers. During that 

period, we cannot tell at which step of an OFP this functional agent is. 

 

We assume that each functional agent has a certain inventory of the products it 

needs or safety stock before it makes a commitment to customer. In other words, 

suppliers might have full or partial capabilities to fulfill the customer’s order without 

asking for help from their suppliers. This assumption assures that a functional agent has 

some flexibility in responding to customer requests. Thus, customers have freedom to 

choose or switch suppliers.  

 

When its activities in a supply chain are described as an OFP, a functional agent 

controls each step of an OFP properly to reach its chain management goals. 

 

2.3.4 Virtual supply chain and system performance 
 

Instead of being formed several rigid networks in the marketplace, the supply chain in the 

MASCM is constructed dynamically [6]. That is, when the end customer submits an 
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order, called an end order, to end customer agent (functional agent), this special order 

will trigger interconnected OFPs. All functional agents involved in OFPs (related to that 

end order) with supply-demand relationships comprise a dynamic supply chain. This 

supply chain is called a Virtual Supply Chain (VSC). If the end customer agent’s OFP 

completes, all functional agents that have resolved commitments successfully in the serial 

of OFPs with the supply-demand relationship among them, define a completed VSC. It is 

the solution to the end order. If an OFP triggered by end customer agent fails, the system 

cannot find a solution to the end order. Correspondingly, a VSC that emerges after an end 

customer commitment is created but before it is resolved either successfully or 

unsuccessfully is called an evolving VSC. In a MASCM, at any given time, there might 

be more than one VSC. And a functional agent might be a participant in different VSCs. 

The following figure illustrates a VSC emerging when an end order arrives in a system. 
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Figure 2.3 An end order and a VSC 

 

Since all VSCs in a MASCM shared one overall chain management goal, this common 

target is used to define as the MASCM management target. Performance of a MASCM 

can be measured by checking whether this target has been reached or not. In this 

dissertation, the MASCM management goal is defined as end customer satisfaction. 

Thus, related metrics, e.g. the system responding time and the number of end customer 

orders with solutions can be used to measure or compare system performance.  

 

2.4   Summary 
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In this Chapter we reviewed the concept of supply chain and chain management and 

discussed the Multi-agent System for Supply Chain Management (MASCM). Agents’ 

activities in a supply chain have been described as an Order Fulfillment Process (OFP). 

To any given order, through interconnected OFPs, a Virtual Supply Chain may emerge. 

System management goal is defined as end customer satisfaction. The system 

performance is measured by checking whether this goal has been reached. The MASCM 

is the framework for this dissertation research. 
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Chapter 3   Uncertainty in a MASCM and Bayesian Belief 
Networks 

 

 

In this Chapter we discuss uncertainty in a MASCM, and its impact on supply chain 

management and system performance. We also review the basic concepts of Bayesian 

Belief Networks that serve as the fundamental model for our future studies. 

 

3.1   Uncertainty in a MASCM  
 

The term “uncertainty” in an agent system is used to describe the fact that agents’ 

behaviors cannot be known with certainty before they actually take place. As many 

researchers point out, to study the commitment between software agents is fundamental, 

it is fundermental to understand the behavior of an agent that takes a social role in a 

multi-agent system.  

 

In a MASCM, each software agent takes a role as a product producer or 

consumer. Their actions are not isolated but interactive ones. The major and important 

interactions occur among functional agents, in which they communicate, negotiate and 

share information so that they can sell or buy products to gain profits for their owners. A 

commitment is the common goal for social activities of functional agents in the supply 

chain. It works as a mutual agreement for all parties in the interaction. Given a pair of 

functional agents from different tiers, one acts as a product supplier or consumer direct or 



42 

 

indirectly to the other one. A supplier can determine from the commitment what is the 

particular goal to pursue so that it can design and execute the internal action plan. A 

customer, based on the commitment, can evaluate upstream works and adjust its 

corresponding interactive strategies. A commitment also can coordinate behaviors of 

functional agents at the same tier to achieve extra benefits, for example, gain monopoly 

price over a single resource (product) control. In all these scenarios, commitment plays 

the central roles in functional agents’ autonomous actions. Consequently, a functional 

agent’s unpredictable behaviors will eventually reflex in its commitment execution 

process. In other words, in the MASCM, the type of uncertainty being concerned is how 

likely an agent is to break the promise it has made to others or the possibility of a 

commitment to fail. 

 

In this section, we discuss the source of uncertainty that could make a 

commitment fail and its impact on supply chain management.  

 

3.1.1 The sources of uncertainty 
 

Uncertainty comes from following three sources. 

 

First, it can from functional agent’s limited and local knowledge about the system. To 

complete an Order Fulfillment Process (OFP), a functional agent has to rely on its 

capability as well as inputs from suppliers. It is impossible for a functional agent to 

collect all the information on its upstream suppliers before it makes commitment to the 

customer. The commitment is always made with performance estimation of its suppliers. 
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When the system allows the agent to join and leave it freely, the global information 

becomes even more difficult to gather. If an agent make an incorrect guess of its supplier, 

its commitment is likely to be retracted later [35].  

 

Second, it can from agents’ strategic self-interested actions. Each functional agent takes 

actions on behalf of its owner. In order to protect its own interests or gain extra benefits, 

a functional agent may choose to issue a false, overoptimistic or over-pessimistic claim 

related to the incoming order request. The commitment based on such information is 

fragile and easy to fail. Compared with cheating actions in a traditional supply chain this 

type of behavior if much more prevalent in a MASCM. In traditional supply chains, 

human beings involve in each step of the procedure to set up a business relationship 

including look up a service provider, negotiate and make commitment. Human 

involvement leads to higher investment and easier cheating catches. As a result, in 

traditional chains, a dishonorable action is thought as the high risk with low reward and 

irrational decision with little attempt. On the contrary, in a MASCM, all business 

processes get through the automatic information exchange procedures with relatively low 

operational cost and less misconduct discovery possibilities. This makes agents to be 

inclined to seek one-shut intangible benefits. 

 

Third, it can come from unpredictable events in marketplace or internal components of a 

functional agent. For example a network jam might cause two agents to lose 

communication for a long period and will be treat as a de-commitment by one side. Bad 

weather may delay the product delivery. Other events include computer crash, sudden 
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human intervention or shortage of labor resources and so on. These events are 

uncontrollable by any single functional agent. Even though most of them are rare events, 

they will make prediction of other functional agents’ behaviors more difficult. 

 

3.1.2 The impact of uncertainty on supply chain management 
 

As we discuss in last chapter, the goal of MASCM management work is to ensure the 

demand from end customers can be mostly satisfied. Thus, the system performance can 

be measured by shorted processing cycle per end order and higher percentage of the 

ender user order fulfillment. For different functional agents, they may emphasize 

different aspects of chain management, e.g. minimum inventory and so on. However, the 

impact of uncertainty makes negative impacts to both system performance and 

management target of individual functional agents.  

 

When there is an end order put into system by end customer, an interconnected 

OFP may emerge. If there is no uncertainty, functional agent can exact know what it can 

do for its customer, the process to construct a VSP can be simplified as a Distributed 

Satisfaction Problem (DSP) [31] that the order from end customers is solved by a solution 

consisting a serial of sub-solution contributed by functional agents within their 

restrictions. In this setting, it is usually not necessary to search all possible combination 

of different functional agents in the system or at most once to know whether there is a 

solution or not. With uncertainty, the searching process becomes complicated. Since a 

functional agent may get wrong estimation of its suppliers, and unexpected events can let 

it be adjusted again and again, a solution to end order may be found out through many 
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times of searching over all possible combinations. In addition, with uncertainty, the 

functional agent can fail in commitment execution (withdraw a commitment) because of 

many unpredictable events, it obviously increase failure possibility of the end order 

eventually. Compare the case with and without uncertainty, it can see that with 

uncertainty, end order process time is prolonged and its fulfillment possibility is lower. 

Accordingly, end customer satisfaction is reduced. In other words, uncertainty can 

damage system performance. 

  

To an individual functional agent, when an unexpected event related to the 

demand-supply connection occurs, it is forced to change manufacturing, transportation, 

customer service plans and re-in-store all the produced products. It may also have to 

withdraw the commitment. Both of these actions can dissatisfy its customers since it fails 

to fulfill the task following the original agreement. Face the uncertainty, if functional 

agents choose to keep the customer satisfaction or flexibility as its priority, it have to 

keep a high volume “safety stock.”  This increases its inventory, so is the total amount of 

inventories in the system. No matter which strategy it chooses, uncertainty has negative 

impact on its management goal.  

 

In realities, the uncertainty sources cannot be totally blocked. The impact from 

uncertain events cannot be ignored but counts heavily on supply chain goal 

accomplishment. Therefore, one critical task of MASCM design and implementation is to 

formally study functional agent interaction in uncertain settings and analyze the 

relationship between uncertainty management mechanism and system performance.  As 



46 

 

we can see the buy-sell activities among functional agents are triggered by end customer 

orders. These actions are connected link by link through commitments created in OFPs. 

That is, the commitment accomplishment possibilities are connected. The commitment-

processing situation of a functional agent can affect the others’. For example, the failure 

of a commitment occurring at higher tier agents might increase the failure possibility of a 

commitment from the retailer agent to an end customer. From this perspective, functional 

agent interaction in the uncertain environment can be formalized as the propagation and 

analysis of commitment failure possibility through commitment network setup in the 

OFP after an end order put into the system. However, currently there is no serious 

research work on the modeling business entity behaviors related to uncertainty in the 

supply chain management system especially the emerging electronic chain management 

system. In the next chapter, we introduce a formal model, called extended Bayesian 

Belief Network (eBBN), which formalizes functional agent interaction related uncertainty 

and is used as analytical platform to study the impact of uncertainty on system 

performance. In the next section, we give a brief summary on Bayesian Belief Network 

(BBN).  

 

3.2   Bayesian Belief Networks 
 

Generally speaking, a Bayesian Belief Network (BBN) is a graphical model, which 

combines both probability and graph theory. Probability theory provides the glue 

whereby the parts are combined, and it ensures that the representation as a whole is 

consistent. The graph theoretic side of graphical models provides both an intuitively 
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appealing interface by which humans can model sets of variables and their 

interdependence as well as a data structure that lends itself naturally to the design of 

efficient general-purpose algorithms. The graph itself consists of nodes and arcs. Nodes 

represent the random variables and the lack of arcs represents the assumption of 

conditional independence.  

 

BBN has been proven a good tool to causal-effect knowledge representation and 

uncertainty reasoning. It initially arose from an attempt to add probabilities to expert 

systems and has a long history to be used in decision analysis [40]. One of the famous 

examples is a decision-theoretic reformulation of the Quick Medical Reference (QMR) 

model [36]. Nowadays, BBN model has been used as research analysis tools in the fields 

such as reinforce learning, speech recognition, tracking, data compression, etc. Practical 

applications include real time decision under uncertain situations [37], human-computer 

interaction analysis [38], deep-space exploration and knowledge acquisition [39], the 

popular productive software Microsoft Office, etc.  

 

3.2.1 Basic axioms of probability 
 

Probability theory, also known as inductive logic, is a system of reasoning under 

uncertainty. Within the Bayesian framework, probability is interpreted as a numerical 

measure of the degree of consistent belief in a proposition. 
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The probability of an event x (y), denoted by p(x) (p(y)), is a number in the interval [0,1], 

which obeys the following axioms, 

 

• p(x)=1 if and only if x is certain. 

• If x and y are mutually exclusive, then p(x or y) = p(x)+p(y). 

  

We use lower-case letters to represent single variables and upper-case letters to 

represent sets of variables. Suppose x is a random variable having a finite number of 

mutually exclusive and exhaustive states ( naaa ..., 21 ). Then p(x) will be represented by a 

vector of non-negative real numbers p(x)= ( nbbb ..., 21 ) where p(x= ia )= ib is a scalar and 

1=∑ i ib . 

 

A basic concept is that of conditional probability, a statement which takes the 

form: “Given y=c the probability of even x=a is b,” written p(x=a|y=c)=b. It means if y=c 

is true, and other information is irrelevant to the x, then p(x=a)=b. The important property 

about conditional probability distribution is called conditional independency, that is, 

given random variable x, z and variable set Y if p(x|Y,z)=p(x|y), we say x and z is 

conditional independent given Y. 

 

The fundamental rule for probability calculus is the product rule, 

 p(x and y)=p(x|y)p(y) or p(x, y)=p(x|y)p(y)   (3.1)  
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Equation (3.1) defines the relationship among conditional probabilities, individual 

variable probability and joint probability for a set of variables. 

 

The probability basis of BBN inference is Bayesian theorem as follows,  

 
)(

)()|(
)|(

yp
xpxyp

yxp =   (3.2) 

 

Equation (3.2) can be easily obtained through algebraic manipulation of Equation 

(3.1). It can be interpreted as given a random event x, we have certain known knowledge 

(belief) represented as p(x), called priori probability. If a new event y is observed, the 

revised belief of event x, represented as p(x|y), called posterior probability, can be 

obtained by multiplying the prior p(x) by the ratio p(y|x)/p(y).  

   

3.2.2 BBN representation  
 
BBN provides a graphical representation for the joint distribution of a set of variables in 

terms of conditional and prior probabilities, in which nodes represent variables, and the 

orientations of the arcs represent influence between variables. Because variable and node 

are two different ways to represent a random event, in the future, these two terms are 

interchangeable. For example, the following diagram represents in different ways the 

joint distribution of random variable x and y. The first represents the prior beliefs 

(consider we know certain information of random event x) while the second represents 

the posterior beliefs (consider we observe a new random even y later). Usually, x is 

though as a possible “cause” of the “effect” y. The downward arrow represents this 
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relationship. The upward arrow represents an “argument against the causal flow,” from 

the observed effect to the inferred cause. That is the reason the BBN is also called as 

causal network or influence diagram. In the context of this dissertation, these terms are 

interchangeable with BBN. 

 

 

 

 

 

Figure 3.1 A simple example of using BBN to represent joint probability  

 

Bayesian networks are generally more complicated than the ones in Figure 3.1, in the 

most general form, a BBN of n variables is a direct acyclic graph (DAG) of n nodes and a 

number of arcs, referred to as the network structure [40][41]. Nodes in a DAG correspond 

to variables, denoted ix . Let ia  denote an instantiation of ix , and 

},...,{ 21 naaa representing a joint assignment or an instantiation to the set of all variables 

},...,{ 21 nxxxX = . An arc >< ij xx ,  represents a direct causal or influential relation from 

jx  to ix . Also given in a BBN is the conditional probability distribution )|( iixp π  for 

each variable ix  where iπ  is the set of ix ’s parent nodes. When ix  does not have any 

parent, )|( iixp π  becomes )( ixp . The conditional independences assumption discussed 

above is made for belief: ),|( Qxp ii π = )|( iixp π , where Q  is any set of variables 

x 

y 

x 

y 
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excluding ix  and its descendants. In this dissertation, we restrict all variables to be 

binary, i.e., ix  ∈ {0, 1} ∀i. 

 

We pay a special attention to a class of simpler BBN of binary nodes, known as 

the noisy-or network [40][41][42]. Instead of using the conditional probabilities 

)|( iixp π , a noisy-or network associates a single probability measure, called causal 

strength and denoted jic , to each arc >< ij xx , . jic  can be interpreted as the probability 

of 1=jx , among the parents of jx , to cause ix  to become 1. In addition to tremendously 

reducing the number of conditional probabilities needed to specify a BBN, the one-to-one 

correspondence between the arcs and causal strengths makes noisy-or networks more 

natural to humans than those using the more general form of the conditional probabilities 

)|( iixp π . 

 

3.2.3 BBN inference 
 

BBN inference is the reasoning process over the uncertain knowledge stored over the 

graph structure. The computation of a joint probability distribution over variables 

}...,{ 21 nxxx  can be determined based on the chain rule of probability, which is the 

extension of (3.1). It indicates that, 

 ∏
=

=
n

i
iin xpxxxp

1
21 )|()...,( π    (3.3) 

For noisy-or networks, Equation (3.3) can be re-written as, 



52 

 

 ∏
∈

−−==
ikx

kkiii acxp
π

π )1(1)|1(  (3.4) 

That is, )|1( iixp π=  is a function of inputs ka  from the parent nodes kx  weighted with 

respective causal strength kic . Fro unspecified ka , we have, 

 ∏∏
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x
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π )1()1())1(1()|(   (3.5) 

 

Deduced from (3.3), in principle, any probability of interest in the domain can be 

computed from it. For example, suppose there is a very simple BBN with structure 

zyxw →→→ . If we want to know )|( zwp , it can be done through the following 

formula, 
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(3.6) 

Besides the basic formulations similar to (3.6) discussion above, some other 

algorithms for probabilistic inference in BBN have been exploited. For example, Howard 

and Matheson [43], Olmsted [44] and Shachter [45] have developed an algorithm that 

reverses arcs in the network structure until the answer to the given probabilistic query can 

be read directly from the graph. Peal [46] has developed a message-passing scheme that 

updates the probability distributions for each node in a BBN in response to observations 

of one or more variables. Even though we can exploit assertion of conditional 

independence in a BBN for probabilistic inference, exact inference in an arbitrary BBN 

work is NP-hard [47]. Even approximate inference is NP-hard too [48]. 
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3.2.4 Probability propagation 
 
In the BBN, node probability can update locally via communication between vertices in 

the DAG. This allows the BBN can be used to model human reasoning. In [47], Pearl 

notes that such update scheme satisfies a primary goal of rule-base systems, namely the 

separation of the control mechanism or inference engine from the knowledge base. The 

scheme also can be easily implemented in object-oriented languages [42], which provides 

further advantages to model “belief” update and broadcast in a distributed system. In this 

section, we summarize Peal’s probability propagation scheme in singly connected 

networks.   

 

In the DAG, the probability update message from a parent node to a childe node is 

denoted as Π type of message; the message from a child node to a parent node is denoted 

as λ type of message. )( ixλ  and )( ixΠ  are called λ value and Π value respectively. They 

are the middle results used to compute )( ixBEL  that represent the updated probability 

when node receives new information. Using the notation above and ones listed in Section 

3.2.2, we have following propagation scheme that is adapted from [42]. 

 

Operative Equations 

1. If ix  is a child of jx , and it has another parent gx , the λ message given ix  to jx  

is given by  

∑ ∑
= =

==Π=
0,1 0,1

)(),|()()(
g i

ii
a a

igjiiggxjx axxaxpaxa λλ  

2. If ix  is a child of jx , the Π message given jx  to ix  is given by  
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1)( =Π ix a
i

, if ix  is instantiated for ia ; 

0)( =Π ix a
i

, if ix  is instantiated as others than ia ; 

)(
)(

)(
ix

ii
ix a

axBEL
a

i

i λ
=

=Π , if ix  is not instantiated. 

3. If s( ix ) is the set of ix , the λ value of ix  is given by 

∏
∈

=
)(

)()(
ik

k
xsx

ixi aa λλ , if ix  is not instantiated; 

1)( =iaλ , if ix  is instantiated for ia ; 

0)( =iaλ , if ix  is instantiated as others than ia . 

4. If ix  has two parents jx  and gx , The Π value of ix  is given by 

∑ ∑
= =

ΠΠ====
0,1 0,1

)()(),|()(
j g

ii
a a

gxjxggjjiii aaaxaxaxpaπ  

5. The conditional probability of ix  based on the variable thus far instantiated, is 

given by, 

)()()( iiii aaaxBEL παλ== (α  is normalization parameter) 

The BBN is first initialized to compute the priori probabilities (i.e., the probabilities 

based on the instantiation of no variables) of all variables as follows: 

 

Initialization  

1. Set all λ values, λ message, and Π message to 1. 

2. For all roots jx , set )( jj ax =Π = )( jap , 0,1=ja ; 

3. For all roots jx  for all children ix  of jx , do  

Post a new Π message to ix  using operative formula 2. 
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{ jx  propagation flow will then begin due to updating procedure C.} 

When a variable is instantiated, or a λ or Π type of message is received by a 

variable, one of the following updating procedures is used. 

 

Updating 

A. If a variable ix  is instantiated for ia  ( 0,1=ia ), then 

BEGIN 

1. Set 1)( == ii axBEL  and for ii aa ≠' ( 0,1' =ia ), set 0)( '' =iap ; 

2. Compute )( ixλ  using operative formula 3; 

3. Post new λ message to all ix ’s parents using operative formula 1; 

4. Post new Π message to all ix ’s children using operative formula 2; 

END. 

B. If a variable ix  receives a new λ message from one of its children, then if ix  is 

not already instantiated, 

BEGIN 

1. Compute the new value of )( ixλ  using operative formula 3; 

2. Compute the new value of )( ii axBEL =  using operative formula 5; 

3. Post new λ message to all ix ’s parents using operative formula 1; 

4. Post new Π message to all ix ’s other children using operative formula 5; 

END. 

C. If a variable ix  receives a Π message from a parent, then 
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BEGIN 

 If ix  is not instantiated, then 

  BEGIN 

1. Compute the new value of )( ixΠ  using operative formula 4; 

2. Compute the new value of )( ii axBEL =  using operative 

formula 5; 

3. Post new Π message to all ix ’s children using operative 

formula 2; 

END; 

  If )( ixλ ≠ (1,1…1), then 

Post new λ message to all ix ’s  other parents using operative 

formula 1; 

 END. 

 

3.2.5 Limitations of Bayesian Belief Networks 
 

Despite the remarkable power and potential to address inferential processes, there are 

some inherent limitations and liabilities to Bayesian Belief networks.  

 

The first problem is it is not good at representing and reasoning over actions and their 

interaction with observations. The reason is, in principle, actions are not part of standard 

probability theory. Probabilities capture and represent the casual relationship among 
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observations while actions thought as the force to perturb these relationships [49]. Thus, 

the BBN, originally defined as a knowledge repository, expressed in the join probability 

distribution of random variables in a special domain, is unable to propagate the effect of 

an action.  

 

The second problem is that for a particular BBN, causal relationships among random 

events are hard coded into the network [36]. Causal structure is pre-known and 

predefined without changes after the system is implemented. In the graph, the element in 

a node’s parent set is fixed. If a causal relationship has to be updated after system is set 

up, the inference is crippled. BBN does not have this adjustment capability. 

 

The third problem centers on the quality and extent of the prior beliefs used in Bayesian 

inference processing. A Bayesian network is only as useful as this prior knowledge is 

reliable. Either an excessively optimistic or pessimistic expectation of the quality of these 

prior beliefs will distort the entire network and invalidate the results. Related to this 

concern is the selection of the statistical distribution induced in modeling the data. 

Selecting the proper distribution model to describe the data has a notable effect on the 

quality of the resulting network. 

 

In next chapter we introduce the causal network model, extended Bayesian Belief 

Network (eBBN). It extends BBN syntactically and semantically so that it has the ability 

of representation and reasoning over actions. This model is also capable of representing 

the changing casual structure. 
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3.3   Summary 
 
In this chapter, we discuss the uncertainty and its impact on system performance. 

Generally speaking, uncertainty damages the supply chain management goals of an 

individual functional agent as well as MASCM performance. Since there is no way to 

block all uncertainty sources, one critical task of MASCM design and implementation is 

to formally study functional agent interaction in uncertain settings and analyze the 

relationship between uncertainty management mechanism and system performance. 

There is no existing work in this field. As we try to extend Bayesian Belief Networks to 

model functional agent interactions in uncertain environment, in the chapter, a summary 

of BBN research is also given. 
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Chapter 4   An Extended Bayesian Belief Network Model for 
MASCM 

 

 

A MASCM defined in the Chapter 2 comprises a number of functional and informational 

agents. In this chapter, we focus our study on functional agents interaction in uncertain 

environment. Information agents are treat as parts of the marketplace. Without otherwise 

explanation, in this chapter, the term “agent” is equal to “functional agent.”  

 

In a MASCM, business activities of an individual agent are defined as Order 

Fulfillment Processes (OFP), which are the efforts for the agent to manage individual 

supply chain. When an end order arrives in the system, a Virtual Supply Chain (VSC), 

consisting of agents from raw material suppliers to end customer agents, might emerge 

through multiple interconnected OFP practices. At the system level, the supply chain 

management is the combination of all agents’ activities ignited by one end order. The 

ultimate goal of the system management is to satisfy end customers’ requirements. 

 

In the real life agents are exposed in an uncertain and dynamic environment. Their 

performances are affected by many unexpected physical failures such as electricity 

outrage, virus attacks and so on. In addition, agents must deal with sudden changes made 

by their trading partners. In either case, the agents have to adjust their behaviors 

accordingly. The uncertain events occur in a high frequency not only because of the 

complexity of current computer system but also because, in the electronic world, the 
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business relationship is easy to setup at the low operational costs and there is little chance 

to punish agents for their strategic cheating behaviors. 

 

Uncertainty damages the system performance. The dynamic environment creates 

more difficulties in performance improvement. To protect their common interests and 

improve social benefits, agents are inclined to cooperate with each other. Information 

flows can integrate agents’ actions. Through information sharing and analysis, the 

negative impact of uncertainty on system performance can decrease. Therefore, from 

system design and implementation’s perspective, studying how to establish an efficient 

and reasonable mechanism for agents’ cooperation on dealing with uncertainty is critical. 

In this chapter, we present the research effort to develop a theoretical model that 

formalizes agents’ interactions regarding to uncertainty in the environment. As the basis, 

the model can be further used to algorithm design for agents’ uncertainty management 

and serve as the platform to analyze their relationship with various measurement of 

system performance. 

 

The rest of this chapter is organized as follows: firstly, we describe observations 

on agent behaviors in OFPs; secondly, we give the formal description of MASCM states 

and introduce a simplified type of MASCM, called 1MASCM ; thirdly, we give a general 

discussion on extended Bayesian Belief Network (eBBN) approach for 1MASCM  

modeling; lastly, we present three related eBBN models in the increasing order of 

complexities. 
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4.1   Observations of agent interactions in OFP 
 

In this section, we discuss several important observations on how agents operate their 

supply chains. These observations directly lead to our efforts on using causal network to 

study agent interactions in uncertain environment. They are listed below. 

 

Firstly, in OFPs, agents interact with each other in order to reach mutual agreement and if 

they reach one, agents will keep contacting the other parties till it is finally resolved. In 

other words, a commitment plays a central role in agent interactions. However, agents’ 

limited knowledge may cause a commitment to be created but fail to finish. When 

unexpected events occur, agents may abort the commitment. Therefore, the possibility of 

a commitment to accomplish successfully (unsuccessfully) can be used as a measurement 

for agents to estimate the impact of uncertainty. Accordingly, the uncertainty in the 

system can be represented as end customer agent’s computation on the likelihood of 

commitment processing status. In this dissertation, we use the commitment failure 

probability (or agent’s belief on commitment failure) to describe this likelihood. 

 

In addition, OFPs describe supply and demand relationship between suppliers and their 

direct customer agent. The customer agent tries to reach a deal with direct suppliers. A 

supplier determines whether the product can be really delivered. If there is no agreement 

being reached or direct supplier withdraws the commitment, the customer agent may be 

forced to cancel its commitment on-hold. The common example is one of the key 

suppliers fails to fulfill its promise, e.g. failure of the CPU supplier to deliver the product 

on time can cause the PC factory to fail its agreement with its customers even though it 
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has obtained all other components. That is, supply-demand relationship is one type of 

causal relationship since direct supplier’s performance impacts customer agent’s 

performance. Whether the demand of a customer agent can be satisfied or not depends on 

whether all its commitments made with direct suppliers can be completed. If they all 

accomplish, the customer agent’s commitment finish successfully. Considering the 

disturbance of unexpected events during OFP period, it can be said that failure 

probability of commitments made by a pair of supply-customer agents are causally 

linked. The failure probability of a commitment made by direct supplier to the customer 

agent affects the one made by this customer agent to its downstream direct customer. 

Similarly, when further exploring the upstream of a supply chain, we can see current 

supplier agent’s performance also depends on its own suppliers’ performance. In other 

words, the casual relationship between commitment failure probabilities exists in any 

supply-demand connections. Therefore, the supply-demand relationship exhibited in 

OFPs triggered by one end order or in a VSC can be described as a casual chain 

(network) consisting of commitments with their failure probabilities.  

 

Since each agent has certain level safety stock for each product it needs and can 

have alternative suppliers, one important property of the causal chain is that commitment 

failure from one of agent’s direct suppliers might not eventually cause the commitment 

held in this agent to fail. In other words, the relationship between linked commitment 

failure probabilities cannot be defined as a deterministic function. It also has to be 

noticed that the causal chain represents two types of supply-demand relationship. One is 

supplier and customer relationship, which is stored as the static knowledge before agents 
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start OFPs. The other one is buy-sell connections as we defined in Chapter 2, which is 

dynamically created and accompanied with the construction of an evolving VSC.  

 

Lastly, agents’ limited knowledge, internal function failure, and strategic actions are the 

uncertain sources that change the failure probability of a commitment. Their impact can 

be propagated through the whole VSC through interconnected OFPs and updates causally 

connected failure probabilities of commitments. Many fundamental procedures related to 

OFP can be illustrated through agent’s update and propagation of commitment failure 

probabilities. For example, an agent’s chain performance monitoring procedure can be 

described by its update of commitment failure probability based on the propagated 

information from up or down stream. Bilateral negotiation process between a supplier 

and direct customer agent also can be explained as the process that both sides work 

toward a mutually acceptable failure probability of a commitment, that is, searching for 

the low risk of a commitment accomplishment.  

 

From above discussion we can see that agent interaction in an uncertain 

environment can be formalized as probability distribution propagation and update 

through causal links connected by agents’ commitments made in OFPs.  

 

4.2   System State Description 
 

The states of a MASCM can be described by demand-supply relationships among agents. 

In this section, we study how to represent these relationships through directed graphs. We 
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define the Supply-Demand Graph (SDG) and Dynamic Supply-Demand Graph (DSDG) 

to describe supplier-customer relationship and sell-buy connection respectively. We first 

give definitions of basic terms and notations. 

 

We use symbol iA  to denote a functional agent. Accordingly, the MASCM is 

defined as an agent set S, },...,...,,{ 21 ni AAAAS = . Based on the discussion in Chapter 2, 

each agent only provides one certain type of product; correspondingly, the total products 

provided by a MASCM can be denoted as set G, },...,...,,{ 21 mk ggggG = . The final 

product that sells to end customers is denoted as Fg  and usually is the first element in G, 

that is, Fgg =1 . In the system, two agents iA  and jA  can provide the same type of 

product that satisfies one direct customer needs. Therefore, if set S is finite, we have 

nm ≤ . We use notation “G( iA )” to express the relationship between the product and 

agent. For example, )( ik AGg =  means agent iA  can provide product or service kg  to its 

direct customers. 

 
We use symbols s

iA , c
iA to denote iA ’s direct supplier and customer agent sets, u

iA  

and d
iA to denote its upstream and downstream network respectively; || s

iA , || c
iA ,  | u

iA | 

and | d
iA | are used to denote the number of agents in each of these sets. Obviously, we 

have s
iA ⊆ u

iA  and c
iA ⊆ d

iA . 

 

Symbol iB = },...,{ 21 k
iii bbb  is an ordered and finite set of outstanding commitments 

that agent iA  currently hold. These commitments are made between agent iA  and its 
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customer agents or itself (if it is an end customer agent). Symbol k
ib  denotes kth element 

in the set. Symbol | iB | represents the number of commitment in the set. We use symbol 

U
i

iBB =  to denote all commitments in the system. Symbol ji AA ⋅  is used as a label to 

describe the on-going business activities between agent iA  and its direct supplier agent 

jA  when they have a sell-buy connection. More specifically, in the dissertation, business 

activities refer to negotiation and commitment information exchange between a pair of 

direct supplier-customer agents. ji AA ⋅  is initialized (setup) by an order from agent iA  in 

order to complete the unsolved commitment it has; it is removed if agent iA  determines 

supplier jA  is no longer useful for its unsolved commitment, e.g., agent jA  withdraws its 

commitment to agent iA . When system is reset, label of ji AA ⋅  is removed. In other 

words, whenever symbol ji AA ⋅  is used, it means there is a sell-buy connection between 

two agents; they are either doing business or the supplier has successfully finished the 

commitment. At this time we also say agent iA  ( jA ) is active. 

4.2.1 Supply-Demand Graph (SDG) 
 

The Supply-Demand Graph (SDG) describes supplier customer relationship among 

agents. Using these symbols, we give the definition of SDG as follows. 

 

Definition 4.1. SDG=<V, E>, V=S, E={ >< ji AA , | iA ∈ S, jA ∈ s
iA }. Symbol 

SDG(S) denotes the SDG corresponding to a specific agent system S. 
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From the definition, we know SDG is a directed graph that describes the long-term 

knowledge on supply-demand relationship among agents. It is used to represent initial 

state of a MASCM, in which no end orders arrive to the system and no commitments as 

been made by any agents. Usually, each system has one SDG. 

 

4.2.2 Dynamic Supply-Demand Graph (DSDG) 
 

Dynamic Supply-Demand Graph (DSDG) represents sell-buy connections dynamically 

established by OFPs after an end order comes to the system. We give the formal 

definition of VSC and Dynamic Supply-Demand Graph (DSDG) as follows, 

 

Definition 4.2. kVSC ={ iA , jA | ∃ ji AA ⋅ , iA ∈ S, jA ∈ s
iA ; iA , jA  ∈ u

kA , G( kA )= Fg }. 

 

This definition covers both two types of chain, evolving VSC and completed VSC. At 

any given time, we use symbol VSC(S) to identify the set of virtual supply chains, kVSC , 

currently in the system. 

 

Definition 4.3. DSDG=<VSC(S), L>, L= { >< ji AA , | ∃ ji AA ⋅ , iA ∈S, jA ∈ s
iA }. 

Symbol DSDG(S) denotes the DSDG corresponds a specific agent system S. 

 

From the definition we know the sell-buy connections or OFPs can be described by 

DSDG. In the lifetime of a MASCM, at any given time, one of its states that contain 
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actual business activities is described by a DSDG. In other words, the MASCM runtime 

states are determined by a set of DSDGs.  

 

4.3   1MASCM  
 

A MASCM is a complex system. To simplify the study, in this section, we introduce 

assumptions posted on the MASCM settings. Based on these assumptions, we define 

1MASCM , which serves as the basic framework for our future discussion. 

 

4.3.1 Assumptions 
 

To define a 1MASCM , we make followings assumptions on system settings.  

 

Assumption 4.1. There is only one end customer agent in the system. It is denoted as 1A  

∈ S and cA1 =φ. 

 

Assumption 4.2. ∀ iA ∈ S, if 1≠i , then || c
iA =1. That is, each agent, except agent 1A , 

has exactly one customer. 

 

Assumption 4.1 and Assumption 4.2 simplify system architecture.  

 

We have following assumptions on agent transactions. 
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Assumption 4.3. At any given time, | iB |≤1. That is, each agent make/hold no more than 

one commitment to its customer agent at a time. 

 

Assumption 4.4. At any given time, if ∃ ji AA ⋅ , ∃ ki AA ⋅ , )()( kj AGAG = , then kj = . 

That is, no agent will order the same product from two or more different suppliers at the 

same time.  

 

Following assumptions are for agent internal business logics.  

 

Assumption 4.5. (Accountability Assumption) 

 

∀ iA ∈ S, the commitment set iB  has certain probability to fail when any of its demand 

for certain service is not satisfied. However, if all these demands are satisfied, the 

commitment set iB  is resolved successfully. 

 

Assumption 4.5 says any failure from an agent iA ’s direct supplier in finishing 

commitments may cause its own commitment to fail. When all commitments (if there are 

any) have been resolved by its direct suppliers, the commitment that an agent made to its 

own customer agent is considered as successful accomplished. However, as we discussed 

in Section 4.1, a single supplier failure might not necessarily cause a failure in customer 

agent to definitely happen. It is the reason that we use the term of “certain probability to 

fail,” instead of “fail,” to describe the situation. 
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Assumption 4.6. (Process Independence) 

 

Different OFPs triggered by iA  ( iA ∈ S) are independent to each other. 

 

Assumption 4.6 regulates that OFPs between two agents, agent iA  and one of its direct 

supplier agent jA , are not created or affected by other on-going or finished OFPs 

initiated by iA . Process Independence can derive the Exception Independence [41], which 

indicates the influence from a direct supplier that causes the customer agent fails in 

commitment processing is independent to one from another supplier. It is an important 

assumption when we analyze the run-time uncertainty of a system. 

 

The MASCM that follows above assumptions (Assumption 4.1 - Assumption 4.6) is the 

system we intend to model and study in the dissertation. This type of MASCM can be 

defined as follows, 

 
Definition 4.4. Symbol 1MASCM  represents an agent system S that satisfies 

Assumption 4.1 to Assumption 4.6. 

 

In the future, unless specified otherwise any agent system S represents a 1MASCM . 

 

4.3.2 Properties of 1MASCM  
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From the assumptions that define 1MASCM , we can directly derive some useful 

properties for our study. For example from Assumption 4.3, we know that an agent at 

most hold one commitment to its customer. Thus, we can use iB  to describe the unsolved 

commitment agent iA  hold instead of 1
ib . Specifically, the commitment hold by end 

customer agent 1A  is 1B . Since a VSC is triggered by an order, based on Assumption 4.1 

through Assumption 4.4, it is obvious that at any given time, there is only one VSC in the 

system. Therefore, instead of using “ kVSC ,” we use symbol of “VSC” to represent the 

unique chain in the system. 

 

Proposition 4.1. SDG(S) is a tree rooted as 1A . 

Proof.  From Assumption4.1 and Assumption 4.2, we know any nodes in the graph has at 

most one parent node and node 1A  does not have any parents. Thus, SDG is a tree rooted 

as 1A . 

 

 

Corollary 4.1.  ∀ iA , jA ∈ s
kA  ( ji ≠ ), u

iA ∩ u
jA =φ 

Proof.  It can be proved from Proposition 4.1. 

 

 

From Chapter 2 we know that the concept of tier in supply chain management research is 

based on the relative distance to the concerned customer [4][34], i.e. a direct supplier is 

one tier close to its customer than its direct suppliers are. In some situations, this 



71 

 

definition is ambiguous. For example, if agent kA  is the supplier for both agent iA  and its 

direct supplier agent jA , we cannot determine the relative distance between iA  and kA . 

However, based on Corollary 4.1, in 1MASCM , there are no agents that can be another 

agent’s direct and indirect suppliers at the same time. Therefore, these situations would 

not occur in the system we study. The following rules is used to determine the exact tier 

an agent sits in. 

 

Definition 4.5. The rules blow are used to determine the tier an agent belongs to,  

i. t( 1A )=0;. 

ii. t( jA )=t( iA )+1; if jA ∈ s
iA . 

 
Definition 4.5 gives a measurement of the distance from an agent to an end customer 

agent or the height of from a leave node to root note in the SDG. 

 

For transactions among agents that are at the same tier, we have following proposition, 
 
Proposition 4.2. If  ∃ ji AA ⋅ , then t( jA )≠t( iA ). 
 

Proof. From definition of symbol ji AA ⋅ , we know if ∃ ji AA ⋅ , then jA ∈ s
iA . However, 

the Definition 4.5 tells us at this time point, t( jA )=t( iA )+1. 

 

From Proposition 4.2, we can see in our setting, at any time, there are no business 

activities between the agents at the same tier.  
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For the graph structure we have following proposition. 

  

Proposition 4.3. DSDG(S) is a tree. 

 

Proof.  Obviously, we have L⊆E, VSC(S)⊆S. That is, any time graph DSDG is a sub-

graph of graph SDG. Graph SDG(S) is a tree, so is graph DSDG(S). 

 

Proposition 4.3 shows both sell-buy connections among agents and system final solution 

to an end order can be organized as a tree.  

 

From the discussion above we can see that the states of 1MASCM  are determined 

by supply-demand relationship among agents. This relationship can be described by a 

SDG (static) and a group of DSDG (run-time). Since the demand-supply relationship is a 

special type of causal relationship as we discussed in section 4.1.1, the agent interactions 

in a 1MASCM  can be modeled using a causal network. In other words, given the SDG(S) 

and the set of DSDG(S) for certain 1MASCM , we can define a corresponding belief 

network. 

 

4.4   Modeling agent interactions in uncertain environments 
 

In this section we generally discuss how to establish a Bayesian Belief Network (BBN) 

model to formalize agent interactions in MASCM under uncertain settings. We first 
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define the basic network components and explain their physical meanings. Then, we give 

a brief discussion on probability propagation and uncertainty analysis. 

 

4.4.1 Modeling commitment failure probability as an agents’ belief  
 
In section 4.3.1, we know at any given time, each agent only holds one commitment (to 

its customer agent or itself). It leads us to use one single random variable to describe the 

situation of commitment processing. We give the definition of the random variable 

below, 

 

Definition 4.6. Commitment failure variable ix  is a binary random variable. It 

represents the current processing situation of the commitment iB  made by agent iA  to its 

customer; 1=ix  means the commitment iB  fails; 0=ix  means the commitment iB  is 

successfully accomplished.  

 

In the BBN, variable ix  is represented as a node. In the future, without further 

explanation, the node and random variable are interchangeable terms in the context of 

BBN.  

 

As a random variable, each ix  has a probability distribution, which is denoted as 

)( ixp . From the discussion in section 4.1, this distribution and its update describe an 

agent’s observation on the impact of uncertainty, that is, in the term of BBN, an agent’s 

belief on how likely a commitment may fail.  
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Based on Definition 4.6, agent iA ’s initial belief on commitment failure can be 

represented as )1( =ixp . It reflexes agent iA ’s estimation to complete the most common 

case of orders from its direct customer agent under the current situation e.g. inventories 

of each material and how likely the products the agent requests can be obtained based on 

the past experiences. Since its belief will be updated when a commitment fails (resolves 

successfully), or other agents change beliefs, agent iA ’s belief on commitment failure in 

fact is a posterior probability of ix , written as )|1( Exp i = . It represents the overall 

likelihood of proposition 1=ix  considering all evidence system so far has received, 

where E represents all facts in the system or the value combination of all instantiated 

commitment failure variables in the corresponding causal network. E can be an empty 

set. In this case )|1( Exp i = = )1( =ixp . 

 

The way we define agent’s belief is identical to the one given by Judea Peal in his 

book [41]. The concept of “belief” in [41] represents the dynamic value of a node’s 

probability in a knowledge base. Followed the convention in [41] )|1( Exp i =  can be 

written as )1( =ixBEL . In the dissertation these two expressions are equal.  

 

System uncertainty can be defined as the combination of agents’ beliefs in a VSC. 

These agents are currently involved in OFPs in order to resolve commitment 1B  held by 

end customer agent. Following Judea Peal’s convention, we have the following 

definition. 
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Definition 4.7. At any given time, the uncertainty in the system S is 

)(SUNC = )1( 1 =xBEL . 

 

Directly from Definition 4.7, we know if the end order finishes successfully, )(SUNC =0; 

when it fails, )(SUNC =1; otherwise, 1)(0 ≤≤ SUNC . Or we can say, when an end order 

is successfully solved, the impacts of uncertainty observed by all agents are eliminated. 

 

4.4.2 Modeling causal relationship as directed links 
 

Agents’ beliefs represent observation on the impacts of uncertainty. They are the pivots 

to formalize agents’ interaction in uncertain environment. In this section, we study how 

to use and extend the concept of “link” of BBN to represent the causal relationship 

related to agents’ beliefs. 

 

From the discussion in 4.1, we can see for a given commitment, two types of 

sources can affect its failure probability. One exhibits in the supplier-demand 

relationship. That is, the direct suppliers’ commitment failure probability changes cause 

this commitment failure probability to change accordingly. Other sources are internally 

from an agent. They can be internal function failures or strategic actions. In other words, 

in a system, direct suppliers’ beliefs, and specified or unspecified internal situation 

changes affect an agent’s belief. Following definitions in BBN, a directed arc, called link, 

the representation of relationship from the cause to the effect, is drawn from node of 
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commitment failure variable associated with a supplier to the one associated with its 

customer. Similarly, there should be links from all possible internal unexpected changes 

to a commitment failure variable. In the realities, it is impossible and unnecessary to 

enumerate internal causes that can change an agent’s belief. An agent is a proactive entity 

pursues business goal on half of its owners. Thus, an agent’s strategic actions (decisions) 

are considered as important source that change its belief. In this dissertation, we study the 

causal relationship between an agent’s belief and its actions related to supplier selection, 

commitment cancellation. For other unspecified internal sources, their impact on agent’s 

belief change (distribution of commitment failure variable change) is recognized even 

though they may not be specified. 

 

There are two difficulties when applying the concept of link to causal relationship 

related to agent beliefs.  

 

First, although there should be a link between two commitment failure variables 

associated with a pair of supply and customer agents based on their long-term supply-

demand relationship this link might not correctly catch the actual the sell-buy connection 

between them during a specific end order solving time period. For example, if agent jA  

is one of agent iA ’s direct suppliers, the impact of jA ’s belief on the one of iA  can be 

represented as the link between jx  and ix . However, let us consider the following 

scenario: between the time point when an end order arrives at the system and the one 

when it is finally resolved, no transactions are between iA  and kA . In this situation, we 

cannot claim beliefs about commitment failure associated with agent iA  and kA  are 
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casually related. The situation occurs whenever the direct supplier agent jA  does not 

have a sell-buy connection agent iA  at runtime. This problem is directly related to the 

representation and inference capability limitation of traditional BBN. Many researches 

found that BBN lacks the power to represent and infer system probability when causal 

structure can dynamically change or update (see Chapter 3). We will further address this 

problem and present our solution in Section 4.6 when we introduce model of 1eBBN .  

 

Second, since actions are not compatible concepts with traditional BBN definition, when 

studying their effects to agent belief, we have to cautiously define their intervention to 

the network, and solve ramification and concurrent problems. In addition, we also have to 

extend the concept of link itself so we can have a proper representation between the cause 

of action and the effect of an agent’s belief. We will further address this problem and 

present our solution in Section 4.7 when we introduce model of 2eBBN . 

 

One thing we have to notice that in order to properly represent causal relationship, 

except the commitment failure variable, we define some new type of nodes into the 

network. For instance, a type of dummy nodes is introduced into the BBN to represent 

effect of decision consequence. Nodes that represent agent actions also have to be defined 

in the model. In addition, the concept of link needs to capture both short-term sell-buy 

connections and long-term supplier and customer relationship. Therefore, links are not 

necessarily between two commitment failure variables. We give the definition of link 

used in this dissertation as follows.  
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Definition 4.8. A causal link is a direct arc connected two nodes, from the causal to 

the effect.  

 

Usually, we use symbol <causal_node, effect_node> to represent a link literately 

(causal_node and effect_node represent two random variables defined in the model. They 

can be regular nodes, dummy nodes and action nodes defined in Section 4.7.). For 

example, if the commitment failure variable jx  is the direct cause of node ix , the explicit 

link between them is represented as < jx , ix >. It is depicted as the following figure,  

 

 

 

Figure 4.1 A link in BBN for MASCM 

 

4.4.3 Modeling information sharing in uncertain environment 
 

The uncertain information that an agent is willing to share with others should be the one 

that do not expose its internal sensitive data. An agent’s belief hides a lot of details 

related to its internal situations. It can be used to describe the type of information agents 

can send to its business parties. Moreover, any incoming information may change agent 

business behaviors. Thus, when using nodes to represent the observed impact of 

uncertainty and casual links to model the relationship of these impacts, agents’ 

information sharing under uncertain settings can be easily described as belief update and 

propagation follow certain rules dependent on chain architectures.  

ixjx
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The theoretical model, including nodes, links, related conditional probability distribution, 

and rules on nodes’ probability distribution update and propagation, formalize agents’ 

cooperative efforts to decrease the negative impact of uncertainty on chain management.  

This model describes agents’ interactions in each of MASCM states defined by SDG and 

DSDG in uncertain environment, and is called extended Bayesian Belief Network 

(eBBN) as it has the ability to represent and infer on dynamic causal structure and the 

effect of actions. 

 

To establish an eBBN model for a MASCM, we need to determine graph structure 

and probability distribution for each node at any given time. In the context of this 

dissertation, the former topic is called as syntax analysis of the model and latter one is 

called semantics analysis.  

 

In the rest of this chapter, we define eBBN models for 1MASCM . We first study the 

model for a special type of 1MASCM , called 0MASCM . In 0MASCM  each agent only 

has one direct supplier to provide one type of goods it needs, and all of agents in the 

system are active at any time. The eBBN model of 0MASCM  is called 0eBBN . Then, we 

discuss a more complex eBBN model, called 1eBBN , for 1MASCM , which can represent 

dynamic causal structures. Agents’ action are not directly represented by both model of 

0eBBN  and 1eBBN . Lastly, we introduce the concept of action into 1eBBN  leading to 

model of 2eBBN . Through model analysis we have found that both 1eBBN  and 2eBBN  

have similar syntax and semantics as model 0eBBN  does.  
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4.5   The model of 0eBBN  
 

In this section, we study an eBBN model for a simply type 1MASCM , called 0MASCM , 

in which each agent has to order certain product from one and only one supplier and all 

agents are involved in OFPs triggered by an end order at any time. This model is called 

0eBBN . Agent actions are not explicitly represented in the model. Model of 0eBBN  

serves as the basis of construction and analysis for more complex types of models. In this 

section, first, we define model of 0eBBN , and then we represent syntax and semantic 

analysis for 0eBBN . 

 

4.5.1 The basic definitions of 0eBBN  

 

System 0MASCM  is defined as follows,  

 

Definition 4.9. 0MASCM  is 1MASCM , ∀ iA ∈S, if jA , kA ∈ s
iA , )( jl AGg = , 

)( km AGg = , then ml gg ≠ ; VSC(S)=S.  

 

In system 0MASCM , an agent has implicitly chosen all direct suppliers to satisfy its 

demands. At any time, we have SDG(S)=DSDG(S). An agent’s commitment processing 

is affected by its direct suppliers’ performance. That is, an agent’s belief on commitment 

failure is influenced by ones from its direct suppliers and affects direct customer’s belief.  
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The model of 0eBBN  is defined as follows, 

 

Definition 4.10.  0eBBN =( 0V , 0EL ), 0V ={ ix | ix  associates with iA , iA ∈S},  

0EL ={< jx , ix >| ∃ ji AA ⋅ , jA , iA ∈S}. 

 

In eBBN model for 1MASCM , we use iπ  to denote parent set of node ix . In 0eBBN , 

iπ ={ jx | ∃< jx , ix >}. The conditional probability distribution table of node ix  can be 

recorded as )|1( iixp π= .  

 

4.5.2 Syntax and semantic analysis of model 0eBBN  

 

In this section, we analyze the syntax and semantics of 0eBBN . For the syntax of 0eBBN , 

we have following theorem. 

 

Theorem 4.1. Model of 0eBBN  is a reverse tree. 

 

Proof.  Node ix ∈ 0eBBN  if and only if ∃ iA ∈S; Link < jx , ix > ∈ 0eBBN  if and only if 

∃ ji AA ⋅ . From Definition 4.4, we know if ∃ ji AA ⋅ , jA  ∈ s
iA , we have < iA , jA > in 

DSDG. Thus, 0eBBN  is identical to DSDG(S) at any given time, except the name of 
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nodes and reversed links. From Proposition 4.3, we know DSDG(S) is a tree. Then we 

know 0eBBN  is a reverse tree. 

 

 

Now, we prove that model 0eBBN  is semantically equivalent to Noisy-Or network. In 

order to proceed with our argument, we introduce the following random variable. 

 

Definition 4.11. Let random variable jic  denote the causal connection from a 

commitment failure variable jx  to ix . If 1=jic , then jx =1 indeed causes ix =1. 

Otherwise, jx =1 does not affect ix . 

 

Node jic  is used to describe the working status of the underlying causal mechanism 

between a pair of direct supplier and customer agents. 

 

Lemma 4.1. The model of 0eBBN  is a Noisy-Or network. 

 

Proof.  Based on Assumption 4.5 (Accountability Assumption) and Assumption 4.6 

(Process Independence or Exception Independence), in 0MASCM , at any given time, the 

business logic about the processing failure of commitments between agent iA  and its 

direct supplier set s
iA  can be described by the proposition logic among the commitment 

failure variables in 0eBBN  using the following equation, 
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 )11()1( =∧=∨≡= jijji cxx , jx ∈ iπ , ∀ ix ∈ 0eBBN . (4.1) 

 

Equation (4.1) is a standard way to describe the logic relationship among nodes in a 

Noisy-Or BBN [42]. Thus, lemma is proved. 

 

 

From the Lemma 4.1, we can directly determine probability distribution of commitment 

failure variables in the 0eBBN  using the followed theorem. 

 

Theorem 4.2. ∏
∈

=−−==
ijx

jjii xBELexBEL
π

))1(1(1)1(  ∀ ix ∈ 0eBBN .   

From the Equation (4.1) we have, 

   )|)11(()|1( EcxpExp jijji =∧=∨== , jx ∈ iπ .  (4.2) 

 

If we let jie = )1|1( == jji xcp , equation (4.2) can be easily transformed into the 

following equation, (this detailed process can be found in [41]) 

 

 ∏
∈

=−−==
ijx

jjii ExpeExp
π

))|1(1(1)|1( . (4.3) 

 

That is, we have, 

 ∏
∈

=−−==
ijx

jjii xBELexBEL
π

))1(1(1)1( . (4.4) 
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According to equation (4.4), at given time, the uncertainty in system S can be represented 

as follows, 

 
 )(SUNC = ∏

∈

=−−==
1

))1(1(1)1( 1
πjx

jji xBELexBEL  (4.5) 

 
Equation (4.5) shows we can use model of 0eBBN  to determine uncertainty in the 

system.  

 

The conditional probability jie , defined in Theorem 4.2 as )1|1( === jjiji xcpe , is 

called the link strength of link < jx , ix >. Generally speaking, the link strength represents 

the causal strength between two random variables (events). For example, jie  is used to 

measure the impact of the agent jA ’s ( jA ∈ s
iA ) belief on commitment failure to the one 

of agent iA . The value of jie  is a real number between 0 and 1. When jie  is equal to 1, 

the commitment failure from jA  will independently cause the commitment in iA  to fail.  

The value of jie  encodes agent iA  knowledge on interaction with agent jA  regarding to 

uncertainty in the system. As an entry of CPD associated of ix , jie  is pre-stored and can 

be adjusted by agent iA . 

 

Value of jie  is dependent on many business factors that agent iA  concerns, e.g. 

the supplier reputation and the importance of a product to current commitment. The 
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higher the link strength is, the larger the impact of one commitment failure on the other 

one is. 

 

To large extents, the value of jie  represents the importance of the product, which 

supplier agent jA  promises to deliver, on the accomplishment of the commitment that 

agent iA  currently holds. For example, a laptop assembling factory has high “safety 

stock” on all components except CPU. Then, the accomplishment of the commitment, 

which is made with the retailer agent, who serves as the agent’s direct customer, depends 

more on commitments made by CPU providers than other suppliers. In this case, the 

higher the value jie  is, the more important the products that supplier agent jA  sell is.  

 

Given a group of supplier agents, e.g. jA  and kA , that can provide the same 

product to agent iA , the value of jie  and kie  also reflects their business reputation 

evluated by agent iA . This type of knowledge can be generated by agent iA ’s past 

business experience with jA  and kA  or obtained directly by sending queries to 

informational agents. A direct supplier with better reputation has less value of the link 

strength. For example, if agent iA  concludes supplier jA  has better reputation than kA , 

the value jie  is less than kie . 

 

The value of jie  is also affected by time. For example, in an OFP, agent iA  has 

made two commitments with supplier agent jA . One is reached at initial time when no 
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other suppliers ever made or finished commitments with iA . The other is created later 

when all other suppliers has been finished their commitments with iA . Then, at the 

second time point, the value of jie  should be higher than the early time since at that time, 

commitment failure in jA  can directly cause the commitment held by iA  to fail. 

 

Usually, link strength can be represented as a function ),,( trpfe
jieji =  (p is the 

product importance to current commitment, r represent supplier reputation, t is time.). As 

we discussed above, when it is closer to the finish time, the current commitment held by 

customer is more sensitive to the commitment made by direct suppliers. That is, using the 

notation above, we have, 1),,( →= trpfe
jieji , when 0tt →  ( 0t is the deadline of the 

current commitment in iA ). However, the detailed implementation of this function is 

decided by the owner of the agent iA  and is different from agents to agents. 

 

4.5.3 Further discussion 
 
In 0MASCM , all agents are involved in OFPs triggered by an incoming end order. 

Supplier-customer relationships imply sell-buy connections and vice versa. That is, at any 

time, DSDG is equivalent to SDG. Therefore, DSDG(S) and SDG(S) are directly mapped 

into model 0eBBN , which represents both static and run-time casual relationship 

exhibited in a system. This is an important attribute that distinguishes 0eBBN  from other 

models introduced later.  
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4.6   The model of 1eBBN  
 

In this section, we study an eBBN model, called 1eBBN , for 1MASCM . Agents’ actions 

are not represented directly in this model. Since 0MASCM  is a special case of 1MASCM , 

mode 1eBBN  is built based on 0eBBN . We also show they have similar equations to 

compute probability distribution of commitment failure variables.  

 

4.6.1 The definitions of 1eBBN  

 

One significant difference between 0MASCM s from other 1MASCM s is that in the 

former ones, for a certain product, a customer agent only has one direct supplier agent. 

Another difference is in a 1MASCM , not all agents are involved in the chain activities. 

Thus, when modeling 1MASCM  as 1eBBN , it is necessary to model the consequence of 

agents’ decision on supplier (provider) selection and consider their impacts. That is, 

1eBBN  needs to model dynamically changing casual structures. To capture these changes 

and at the same time keep model representation consistent, we introduce two types of 

nodes. One represents the consequence of agent decisions. Another is used to represent 

the impact of this consequence on supply-demand relationship. The definitions of these 

nodes are as follows. 
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Definition 4.12. Link selection variable jil  is a binary random variable. If jil =1, agent 

iA  is dealing with supplier agent jA  actively. jil =0, agent jA  does not currently get 

involved in agent iA ’s OFPs.  

 

Node jil  is associated with iA  and represents an observable consequence of agent 

iA ’s decisions. These decisions are related to negotiation partner selection or switching. 

In the model, for each pair of commitment failure variables associated with a customer 

agent and one of its direct supplier, there is a link selection variable. In 1MASCM , each 

agent only chooses one direct supplier for certain service it needs at a time. Thus, we 

have following lemma. 

 

Lemma 4.2.  Initially, jil =0, jil ∈ 1eBBN . At any given time, if jil =1 and kil =1, jA , 

kA ∈ s
iA , G( jA )=G( kA ), then kj = . 

 

Proof. The proof is directly from Definition 4.12 and Assumption 4.4. 

 

The node jiy  that describes impact of decisions on casual relationship between 

commitment failure variables associated with a pair of direct connected supplier-

customer agents. The definition is as follows. 
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Definition 4.13. The binary random variable jiy  has two parents, jil  and jx , and one 

child ix . Its conditional probability distribution is below.  

),1|( jjijji xlxyp == = )1|( == jijji lxyp =1; 

),0|0( jjiji xlyp == = )0|0( == jiji lyp =1; 

 

From the Definition 4.13 we can see node jiy  associated with agent iA  and 

represents its observation on whether there sell-buy connection between agent jA and iA . 

It also describes how agents’ beliefs interact with each other if there indeed exists a 

connection. This observation is one transaction (single OFP) based. When jil =1, both 

agent jA  and agent iA  are active (∃ ji AA ⋅ ). Agent jA ’s belief on commitment failure 

affects the one associated with agent iA . Commitment failure variables ix  and jx  are 

causally related; when jil =0, agent jA  is not active and agents’ beliefs are not causally 

related. 

 

From the discussion above, we can say that, to certain degree, the dummy node 

jiy  is a “gate” between two commitment failure variables and is controlled by node jil . 

From the viewpoint of causal node jx , when the gate is open, node jiy  takes its effect 

and become its proxy node; from the perspective of effect node ix , node jiy  is the node 

that causes its probability to update. They should be set between two commitment failure 

variables associated with a direct connected supply-demand agents. In the model, for a 
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pair of commitment failure variables associated with supplier-customre agents, e.g. node 

ix  and jx , we add links < jx , jiy >, < jiy , ix > and < jil , jiy >. 

 

Similar to jic , we use '
jic  to denote the causal connection from a commitment 

failure variable jiy  to ix . If '
jic =1, jiy =1 indeed causes ix =1. Otherwise, jiy = 1 does not 

affect ix . We have following definition, 

 

Definition 4.14. )1|1( ' == jiji ycp = jie .  

 

The relationship among random variables jx , ix , jiy  and jil  is depicted by the following 

graph, 

 

 

 

 

 

Figure 4.2 the relationship among random variables 

 

By adding these new types of nodes and links into 0eBBN , the 1eBBN model for a 

1MASCM  is established. Its definition is given as follows, 

 

jiyjx ix

jil
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Definition 4.15. 1eBBN =( 1V , 1EL ), 1V ={ ix , jil , jiy | ix , jil  and jiy  associates with iA , 

iA ∈S}, 1EL ={ < jx , jiy >, < jiy , ix > , < jil , jiy > | jA , iA ∈S }. 

 

Obviously, in 1eBBN , iπ ={ jiy | ∃ < jiy , ix >}. We define other groups of nodes set 

in 1eBBN  as follows, 

 

Definition 4.16. jiπ ={ jx , jil | ∃< jx , jiy >, < jil , jiy >}, k
iY ={ jiy | jiy ∈ iπ , )( jk AGg = }; 

k
iπ ={ jx | jx ∈ jiπ , )( jk AGg = }, k

iL ={ jil | ∃ < jil , jiy >, jiy ∈ k
iY } 

 

Using the definition above, we have following proposition, 

 

Proposition 4.4. If jiy , kiy ∈ k
iY , at a given time point, and jiy ≠0, kiy ≠0 then ik = . In 

other words, any given time at most one jiy ∈ k
iY  takes non-zero value. 

 

Proof. It is directly from Lemma 4.2 and Definition 4.13.  

 

 

From Proposition 4.4 we know there is an Exclusive-OR relationship among the 

proposition jiy ≠0  ( jiy ∈ k
iY ). We use the symbol ⊕  to denote Exclusive-Or 

relationship. Then we have the following proposition, 
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Proposition 4.5. At given time, kiy , jiy ∈ k
iY , 

)0|1( ' ≠⊕= kiji ycp = jie , if jiy =1;  

 

Proof.   

If  jiy =1, from Lemma 4.2. , we have kiy =0 (∀ jk ≠ ). That is,  

   )0|1( ' ≠⊕= kiji ycp  

= )0,1|1( ' =∧== ≠ kijkjiji yycp   (4.6) 

From the definition of '
jic  and Process Independence (Assumption 4.6), we have, 

)0,1|1( ' =∧== ≠ kijkjiji yycp = )1|1( ' == jiji ycp  = jie . (4.7) 

 

From Equation (4.7), this proposition is proved. 

 

 

Conditional probability of )0|1( ' ≠⊕= kiji ycp  can be seen as the causal strength 

between beliefs in a direct supply agent group (produce the same type of product) and 

belief of their common direct customer agent iA . It expresses, at the given time, the 

performance importance of certain agent group to fulfill the commitment iB  that agent 

iA  currently holds. 

 

4.6.2 Syntax and semantic analysis of model 1eBBN  
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In this section we discuss the syntax and semantic of model 1eBBN . 

 

Theorem 4.3. Mode of 1eBBN  is a reverse tree. 

 

Proof.  From Figure 4.2, we can see that after we introduce new type of nodes and links 

into 0eBBN , there is no cycle created among the nodes. Model of 0eBBN  is a reverse 

tree, so is 1eBBN . 

 

 

Agent belief and system uncertainty can be determined by model 1eBBN  using following 

theorem. 

 

Theorem 4.4. )|1( Exp i = ∏
=

=−−=
1

))|1(1(1
jil

jji Expe , iA ∈VSC(S). 

Proof.  For any agent iA ∈VSC(S), we can categorize agent iA ’s the direct supply set s
iA  

into different groups, each of which provides one product that iA  needs to fulfill the 

commitment it made to the customer agent. Each agent group is written as k
iA . If we treat 

k
iA  as a super direct supplier agent of agent iA , a system consisting of 

( iA , 1
iA ,..., k

iA ,…, l
iA ) (k≤ l) (we assume agent iA  needs l different types of product to 

finish its own commitment to the customer) can be viewed as a 0MASCM . 
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Thus, for node ix  associate with agent iA ∈VSC(S), we do the following reduction. We 

define pseudo-node k
qX  associates with agent group k

iA , which contains the node set 

k
iL ∪ k

iY ∪ k
iπ ; if k

qX =1, service kg  fails to deliver, if k
qX =0, service kg  has no 

influences on current commitment that agent iA  holds. From here we can see that 

pseudo-node k
qX  and ix  are causal related. We draw a pseudo link directed from k

qX  to 

ix . That is, random variable set ( k
jji XXx ,...,, 1 ,…, l

jX ) and corresponding links defines an 

eBBN model for system ( iA , 1
iA ,..., k

iA ,…, l
iA ). This model is 0eBBN . According to 

Assumption 4.5 and 4.6, we also know iA  independently evaluate the performance for 

each group. Therefore, if pseudo-link strength of link < k
qX , ix > is defined as k

qiE , based 

on Theorem 4.2, the following equation holds,  

 )|1( Exp i = ∏
=

=−−=
l

k

k
j

k
qi EXpE

1

))|1(1(1  (4.8) 

 

From the Assumption 4.6, when agent jA  is active, we have following equation, 

 

 k
jX =1 ≡  ( 1=jx )∧( 1=jil )∧( )jji xy = , jiy ∈ k

iY , jx ∈ jiπ  jil ∈ k
iL  (4.9) 

 

Therefore, 

 )|1( EXp k
j = = )|,1,1( Exylxp jjijij ===   

 

 )|1( EXp k
j = = )1,1|( === jijjji lxxyp )1( =jilp )|1( Exp j =  (4.10) 
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From Definition 4.13, Equation (4.10) can be written as following equation, 

 

 )|1( EXp k
j = = )|1( Exp j =  (4.11) 

 

The value of k
qiE  describes one group agent performance to the commitment failure that 

iA  holds to its customer. It semantically equals to )0|1( ' ≠⊕= kiji ycp  ( jiy ∈ k
iY ). When 

jA  is active, 1=jil , according to Proposition (4.5), we have,  

 k
qiE = )0|1( ' ≠⊕= kiji ycp = jie  (4.12) 

 

Thus, from Equation (4.11) and (4.12), Equation (4.8) can be rewritten as follows, 

 

   )|1( Exp i = ∏
=

=−−=
1

))|1(1(1
jil

jji Expe  (4.13) 

Or we have, 

 )1( =ixBEL ∏
=

=−−=
1

))1(1(1
jil

jji xBELe  (4.14) 

 

 

Similar to Equation (4.14), we have following equation to determine system uncertainty, 

 

 )(SUNC = )1( 1 =xBEL ∏
=

=−−=
1

11
1

))1(1(1
jl

j xBELe . 
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4.6.3 Further discussion on 1eBBN  

 

1eBBN  model can represent and infer dynamic casual relationships through introduction 

of dummy node jiy  for each supplier agent jA  that affects agent iA ’s belief. If supplier 

agent jA  is involved an OFP triggered by agent iA , node jiy  becomes invisible between 

node jx  and ix . Two agent beliefs are thus causally connected. However, at the time 

when agent jA  is not active, node jiy  blocks the uncertainty propagation between these 

two nodes. In this way dummy node jiy  represents the random event related to the 

consequence of agent’s supplier selection on supply-deman relationship. This allows 

model of 1eBBN  is maximally compatible with probability theory, and allow agents to 

make reasoning over causal structure changes with uncertainty. 

 

4.7   The model of 2eBBN  
 

In previous sections, we discuss how to use eBBN to model a 1MASCM  without 

explicitly representing agents’ actions. However, actions are important sources to change 

the dynamics in the system. An action changes agent’s belief and causes other agents’ 

beliefs to update through business connections. It is necessary for an eBBN model to 

direct represent and dertermine inference rules on agent actions. In this section, we 

discuss our methodology to introduce actions into eBBN model. This model extends 

1eBBN  and is called 2eBBN . Firstly, we give a literate review on related works; secondly 

we define action nodes, links and related probability calculation rules for eBBN model; 
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thirdly we study the syntax and semantic of 2eBBN ; lastly, we discuss the relationship 

among three eBBN models we define. 

 

4.7.1 Previous works 
 

In principle, actions are not part of standard probability theory. They represent perturb 

that disturbs casual relationship captured by the theory. In order to study the intervention 

of actions to a planning system such as STRIP and BURIDAN, a school of researchers 

[53] describe a “delta rule.” The rule says each actions is the combination of a fixed set of 

atomic actions, denoted as do(p). do(p) is an independent elementary impulse that take 

effect on an observation variable p so that it will be changed from p¬  to p in case the 

current state satisfies p¬ . In addition, one atomic action only takes effect in one 

observation variable but leaves everything else unchanged. The variants of this approach 

are embedded in STRIPS as well as other probabilistic planning systems. The problem of 

this rule is that they do not take into account the indirect ramification of actions. To 

handle such a problem, a causal theory of the domain, that specifies which event chains 

are likely to be triggered by a given action and how these chains interact when several 

actions concurrently occur in the system, needs to be constructed. The work of Dean and 

Wellman [54] shows the problem can be solved effectively using the language of causal 

graphs. 

 

The semantics behind causal graphs and their relations to actions have been 

discussed in [55][56]. In [49], it gives several sound rules to inference the interventions 
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of actions when the causal graph is not fully parameterized. In [51] a symbolic causal 

network, called action network that formalizes reasoning over actions under uncertain 

conditions is discussed. The network consists of controllable nodes and persistent nodes, 

which describe actions and its effect respectively. The direct effect of controllable nodes 

on persistent nodes follows “delta rule.” The micro-theory encodes the domain 

constraints and is used to solve the ramification and concurrency problem. The work [51] 

is a theoretical tool to support a planning system simulation.  

 

The previous research works can be summarized as follows: actions are treated as 

direct cause of an observation variable with no pre-conditions. They are outside stimuli 

that cause beliefs in the system to update by adding new assertions. The indirect effect of 

actions propagates in the way that is similar to the propagation of a proved fact and 

passive observation or following special domain constraints. (See the below figure).  

 

 

 

 

Figure 4.3 Actions and belief update 

 

Since all of previous work listed above tries to embed actions into the planning systems, 

when these concepts are applied to the eBBN model for MASCM, they have several 

limitations. First, the domains are different. MASCM is a system that consists of multiple 

agents that do business on behalf of their owners. An action is triggered by agents’ 

decision with internal business logic and usually occurs in certain order. Moreover, 

Belief related to 
observations 
 

Action 
New assertions (a random 
variable is instantiated or a 
proposition variable 
becomes true) Update belief.
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within a very short time period or at a certain time point, many agents may take actions. 

These actions might contain conflict goals. Thus, the eBBN model needs to specify rules 

on how to observe action consequences and solve the concurrent problem occurring in an 

open market system.  

 

Second, actions that can change causal structure are not clearly studied. However, this 

type of actions is important to MASCM uncertainty analysis. The reason is the instance 

of sell-buy connection does not last forever. When one supplier fails to fulfill its 

commitment, the customer agent will find an alternative one. That is, the actual causal 

relationship between agents’ belief on commitment failure changes over time. 

 

4.7.2 Introduce actions into 1eBBN  

 
In this section we introduce actions into 1eBBN . We first discuss the basic issues on how 

to define and observe agents’ actions. Then, we introduce action nodes and action links 

into eBBN model. Lastly, we define conditional probability distributions for action nodes 

and its children nodes. Since an action is caused by agent’s decision, in the rest of this 

dissertation, these two terms are interchangeable.  

 

4.7.2.1 Action concepts 
 
Based on the delta rule, one key idea of introducing action into causal graphs is to 

organize causal network into a few basic mechanisms, each involving a relatively small 

number of variables, and each disturbed by a certain group of actions. One group of 
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actions only overrules one mechanism while leaving others unaltered. The impact of this 

group of actions on the whole system can be computed from the constraints between the 

directly affected mechanism and remaining ones [49]. In a 1MASCM , an agent is the 

natural and basic mechanism to study the disturbance from a group of actions. The 

impact of these actions propagates through links in the model 1eBBN . We clarify issues 

of action identification, description, ramification and concurrency based on this setting. 

 
Action identification 
 

According to their impacts to the causal relationship related agents’ beliefs, we identify 

two types of actions. One type of actions is to set or change the relationship between 

agents belief on commitment failure; the other type of actions is to set agents’ belief as 

accepted facts. In a 1MASCM , the example of the former type of actions is that a 

customer agent takes an action to switch the business partner during the negotiation 

process. In that situation, the current instance of sell-buy connection between two agents 

has been removed and a new one is established. The example of the latter case can be 

found when agents decide to finish the commitment, e.g. a customer agent cancels the 

previous order.  

 

Action descriptions  

 

Since “action” is a transitive concept, it only can be described through the consequence 

that made to a variable in the basic mechanism. This observable consequence is usually 

called an action’s intervention (to a causal system). 



101 

 

 

To a causal network, an action’s atomic and direct intervention is to add a new 

fact to the basic mechanism. It is equivalent to one or more propositions presented in the 

model being proved. That is, one or more nodes in 1eBBN  that associate with certain 

agents have been instantiated. Therefore, interventions of an action can be denoted as 

follows, “set( bui = )),” which says a random variable iu  is instantiated as b ; or it could 

be “idle,” which represent zero intervention or no-intervention to the model. We say an 

action is in an “idle” (or “set( bui = )”) state if the intervention “idle” (or “set( bui = )”) of 

this action is observed.  

 

Action ramification 

 

Action consequence ramification describes how to deduce the indirect effects of actions. 

It is similar to solving the frame problem by deriving frame axioms from the 

completeness assumption of effect axioms [51]. To solve the ramification problem using 

domain constraints has been proved no more difficult than infer the effect from causal 

structure directly [51]. Therefore, similar to the work in [51], while modeling 1MASCM  

as an eBBN, we use domain constraints to infer action indirect effects. In the MASCM, 

these domain constraints are more easily to implement as a social conventions that all 

agents agree to conform to. The constraints imposed on the action intervention 

ramification in eBBN model are as follows.  
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First, any actions that imposed on variables that associate with a customer agent will 

cause at least one group of variables that associated with one of its direct suppliers to 

reset.  

• When a customer agent takes an action to give up the commitment to its own 

customer, all variables associated with its upper stream agents have to be reset.  

• When a customer agent switch to a new product provider, variables that associates 

with the previous one have to be reset. 

• When a customer agent cancels the order to one of its direct supplier, variables 

that associate with this supplier have to be reset. 

• The reset will propagate from the lowest tier agent up to all agents currently in 

VSC till the raw material provider. 

 

Second, the propagation of action effects to variables associated with an agent’s 

downstream is in the same way as a proved proposition (related to this agent) does. This 

constraint is the direct application of Judea Pearl’s inference rule over actions [49]. 

 

Intervention measurement and concurrency  

 

Another issue related to actions’ intervention is how we measure the impact of actions. In 

other words, at what time point, the action can take back from “set” state to “idle” state. 

In addition, how do we measure the consecutive actions occurring within a small time 

interval? In [52], new variables (nodes) are added to the network to represent a node’s 

different values at different time point. This approach makes the causal network 
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representation not consistent over time. To solve this problem, instead of updating model 

structure time by time, we post constraints on action observation. We assume, first, an 

action’s intervention will “immediately” take effect. In other words, there is no 

measurable time points between the one when an action occurs and the one the node has 

been instantiated. Second, an agent’s action returns to “idle” states when all nodes in the 

same mechanism (associated with the same agent) has updated their posterior probability 

according to the new fact discovery. If it happens in the same or different mechanism 

after the previous one is back to “idle” state, the action can be independently measured. 

Otherwise, its intervention is recognized but the consequence is though to be caused by 

the previous action. This action is thought to return back “idle” state as the same time 

point as the previous one does. Third, if there are concurrent actions in the system, their 

interventions are recognizable when they follow the domain constraints. That is, they can 

be combined together and treat as a single action. Otherwise, system is in an invalid 

states.  

  

In some scenarios, several actions occur in a synchronized and ordered way. They 

consist of an action sequence or an agent’s plan. For example, after an agent takes action 

to cancel the commitment to its customer, it will go ahead to stop any business activities 

with its direct suppliers inspired by that commitment. Usually, there is business logic 

behind the scene. To study the intervention of an action sequence from one agent, the 

action sequence is treat as a single action. That is, all of them will occur at the same time. 

And they will instantiate several nodes in the system simultaneously.   
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After we define how to measure an action (actions) intervention to the system, it 

can be seen that actions are thought to happen only when all others in “idle” state.  When 

there is action a occurring that really changes system uncertainty, agent iA ’s belief 

update on commitment failure before another action occurs is written as )|1( Exp ia = . 

(Probability )|1( Exp i =  represents agent iA ’s belief without any interference of actions 

or the belief in 1eBBN ). 

4.7.2.2 Action nodes and links 
 

Based on the discussion in last section, we define actions nodes, links to describe agent’s 

actions and their causal relationship with agent’s belief.  

 

Definition 4.17. Action node iz  is a special type of random variables defined in the 

causal network for the MASCM. The node maps one of agent iA ’s actions a. This node 

does not have any parents and only impact one non-action node iu  associated with iA . It 

takes action a’s intervention “idle” and “set( bui = )” as its value and only directly causes 

node iu  to change value. < iz , iu > is called action link. 

 

Action nodes are used to describe agents’ autonomous actions. To some degree, 

they are higher-level abstraction of agents themselves. Thus, they can have arbitrary prior 

distribution and do not have any parent nodes. If an action takes non-idle interventions, 

its direct child node will be instantiated, which will further blocks any propagation 

between nodes in the direct child’s parent set and its children set. Following rules in [49], 
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for any descendents of a direct affected non-action node in the same basic mechanism, 

the effect of an action is equal to the passive observation of its instantiation; for the 

ascendancy nodes associated with the same agent, we define that the effect of an action is 

to reset them back to the initial statuses. 

 

According to the intervention to causal relationship as we discuss in last section, 

action nodes are further categorized into two types. They are defined as follows, 

 

Definition 4.18. Supplier selection decision variable jiv  only entails and direct disturb 

node jil . It takes one of action interventions set( 1=jil ), set( 0=jil ) and idle as values. If 

jiv = set( 1=jil ), there are chain activities between agent jA and agent iA . If jiv = 

set( 0=jil ), there is no sell-buy connection is to be setup between agent jA  and agent iA .  

 

The following figure shows the how to add node jiv  and related action link into 1eBBN , 

 

 

 

 

 

 

 

jiyjx ix

jil

jiv



106 

 

Figure 4.4 how to add node jiv and its related action link into BBN 

The semantic difference between node jiv  and node jil  is that the formal 

represents the actual action source that causes certain observation occurred while the 

latter represents possible action consequence that an agent can observe.  

 

Definition 4.19. Commitment fulfillment decision variable iv  only entails and directly 

disturbs node ix . It can take one of action post-interventions set( 1=ix ), set( 0=ix ) and 

idle as its value. If iv = set( 1=ix ), agent iA  decides to give up the commitment it 

currently holds. If iv = set( 0=ix ), agent iA  has accomplished the commitment or 

guarantee its completeness to its customer agent.  

 

The following figure shows the how to add node iv  and related action link into eBBN 

graph, 

 

 

 

 

 

 

Figure 4.5 how to add iv node and its related action link to BBN 
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When we consider the decision procedures related to chain activities or OFP 

between a pair of directly linked supplier and customer agents, we could find that an 

action to finish a commitment successfully or unsuccessfully is automatically followed 

by an action to change the status of existing demand-supply relationship but not vice-

verse. For example, after an agent gives up current commitment to its customer, the next 

action is to cancel all orders to its customer. However, it can switch to better supplier 

without really finishing its commitment to the customer. According to this observation, 

any actions to finish a commitment will create an action sequence, which consists of 

action to finish a commitment and actions to remove all buy-sell connections with direct 

suppliers. The corresponding operation on actions nodes is whenever node iv  takes non-

idle values, node jiv  ( jA  ∈ s
iA ) take set( 0=jil ) as its value.  

 

4.7.2.3 Probability distributions  
 

In this section, we specify conditional probability distribution of nodes after action is 

introduced into the causal network. For nodes that do not have action nodes in their direct 

parent set, they have the same conditional probability distribution as in 1eBBN . We use 

symbol a to represent actions that disturbs agents’ belief. This convention is through the 

rest of dissertation. 

 

We have following definition. 
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The conditional probability table of node jil  after action nodes and links are added into 

the model is as follows, 

 

Definition 4.20.  

 

)|1( jijia vlp = = )1( =jilp , if jiv = “idle”; 

)|1( jijia vlp = =1, if jiv = )1( =jilset ; 

)|1( jijia vlp = =0, otherwise; 

 

The conditional probability table of node ix  after action nodes and links are added into 

the model is as follows, 

 

Definition 4.21.  

 

),|1( iiia vxp π= = )|1( iixp π= , if iv = “idle”; 

),|1( iiia vxp π= =1, if iv = )1( =ixset ; 

),|1( iiia vxp π= =0, otherwise. 

 

After action nodes, action links and the related conditional probability distribution 

computation rules have added 1eBBN , we have extended the representation and inference 

capability of the network. The extended 1eBBN  model is called 2eBBN . Its formal 

definition is as follows, 
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Definition 4.22. 2eBBN =( 2V , 2EL ), 2V = 1V ∪{ jiv , iv | jiv  and iv  associates iA ∈S, 

jA ∈ s
iA }, 2EL = 1EL ∪{< jiv , jil >, < iv , ix >| iA ∈S}. 

 

In the next section, we study 2eBBN  semantic and syntax. 

 

4.7.3 Syntax and semantic analysis of model 2eBBN  

 

From the discussion in last section, we can see, when we remove action nodes, action 

links and related attributes, 2eBBN  is identical to 1eBBN . Since each action node does 

not have parents and only directly entails one node, action links does not create any circle 

to the graph. Thus, for the syntax of 2eBBN , we have following theorem, 

 

Theorem 4.5 2eBBN  is a reverse tree. 

Proof.  The proof is directly from Theorem 4.4 and Definition 4.23. 

 

 

After we define the model 2eBBN , at any given time, agent belief and uncertainty in 

system 1MASCM  can be determined using following theorem. 

 

Theorem 4.6. )|1( Exp ia = = ∏
=

=−−=
1

))|1(1(1
jil

jji Expe , iA ∈VSC(S). 
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Proof.  At certain time point, model of 2eBBN  is in one of the following situations, 

 

Case1, 

At the time point, all of the action nodes in 2eBBN take “idle” as its value. No actions 

affect the system belief. Obviously, model 2eBBN  is reduced to model 1eBBN . Thus, we 

have,  

 

  )|1( Exp ia = = )|1( Exp i = ∏
=

=−−=
1

))|1(1(1
jil

jji Expe  (4.15) 

Thus, at this moment, the theorem holds. 

 

Case2, 

At one moment, node jiv  takes non-idle intervention as its value. According to the 

discussion in Section 4.7.2.1, it only directly affects links between commitment failure 

variable jx  and ix . Any other nodes kx ∈ 2eBBN  ( ik ≠ ) are indirectly affected following 

the ramification rules listed in Section 4.7.2.1 and their probability distributions can be 

determined by using the same equation in 1eBBN . That is, for any node kx ∈ 2eBBN  

( ik ≠ ), kA ∈VSC(S), we have,  

 )|1( Exp ka = ∏
=

=−−=
1

))|1(1(1
jkl

kjk Expe  (4.16) 

Considering node ix  and the ones with its direct supplier set, we do the similar reduction 

as we did in Theorem 4.2. Let pseudo-node k
qX  contains the node k

iL ∪ k
jiV ∪ k

iY ∪ k
iπ , 

similar to the proving process before, we can have, 
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 )|1( Exp ia = ∏
=

=−−=
l

k

k
ja

l
qi EXpE

1

))|1(1(1  (4.17) 

The k
qiE  represents the strength of pseudo link from k

qX  to ix . Thus the value of it is the 

same as we defined in the process when we prove Theorem 4.4. When this action causes 

the node jil  to be instantiated as 1, based on Definition 4.20, it can be seen that 

)|1( EXp k
qa = = )|1( EXp k

q = = )|1( Exp j = . Then, from Equation (4.17), we have, 

 )|1( Exp ia = ∏
=

=−−=
1

))|1(1(1
jil

jji Expe  (4.18) 

When node jil  is instantiated as 0, the belief of agent jA  has no impact of iA ’s belief. 

Equation (4.18) still holds. From Equation (4.16) and (4.18) shows, in case 2, theorem is 

proved. 

 

Case3, 

Assume at one moment, node iv  takes a non-idle intervention as its value. Similar to 

Case 2, we have,  

 ∀ kx ∈ 2eBBN  ( ik ≠ , kA ∈VSC(S)) 

 )|1( Exp ka = ∏
=

=−−=
1

))|1(1(1
jkl

jjk Expe  (4.19) 

For the relationship between node ix and ones associated with iA ’s direct supplier set, we 

have, (at this moment we also have 0=jiv , for jA ∈ s
iA ) 

 )|1( Exp ia = =1, if iv = )1( =ixset ; (4.20) 

 )|1( Exp ia = =0, if iv = )0( =ixset . (4.21) 
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Equation (4.20) and (4.21) are a special case of Equation (4.19). Based on (4.19), (4.20) 

and (4.21), we say in case 3 the theorem is proved. 

 

The proof of Case 1, 2 and 3 shows Theorem 4.6 holds. 

 

 

Based on the above discussion, in 2eBBN , agents’ belief on commitment failure can be 

determined by using the similar equation to the one in Noisy-Or networks.  

4.7.4 Further discussion on model 2eBBN  

 
From the discussion in last section we can see that intervention from an action only 

affects the syntax of the agent chain or DSDG. The supplier and customer relationship 

keeps intact. In other words, model of 2eBBN  is a direct mapping of a set of DSDGs for a 

1MASCM . However, it is an implicit mapping of SDG. Compared 1eBBN  with 2eBBN , 

it is obvious that the former case is a time slice of latter one. That is, in principle, model 

of 2eBBN  has much more representation power than 1eBBN . Model 0eBBN  describes a 

special 1MASCM  ( 0MASCM ), which is a mapping of a set of DSDG that always equals 

to SDG. It is a special case of model. Put the discussion in Section 4.3.4, Section 4.4.3 

together, we use following figure described the relationship of these three models 

according to their representation and inference power. 

 

 

  
0eBBN  

1eBBN  
2eBBN  
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Figure 4.6 Relationships among models for 
1MASCM  

 

4.8   Summary 
 

In this chapter, we formalize agents’ interaction in an uncertain environment as a causal 

network. We define three eBBN model, 0eBBN , 1eBBN  and 2eBBN  for a 1MASCM , 

which have increasing representation and inference power. We also prove three model 

have similar syntax and semantics. 
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Chapter 5   Problem-solving Using eBBN Model  
 

 

When an eBBN model is established for a MASCM, the model can be used as the basis to 

design algorithms that help agents deal with uncertainty. We identify the following three 

problems as examples for our discussion. 

 
• Evaluate the impact of outside uncertain factors and take a corresponding action 

to commitment processing; 

• Select or switch to a promising direct supplier. 

• Search for the most critical or fragile suppliers in a Virtual Supply Chain (VSC). 
 

In the first two problems, information stored or retrieved from the eBBN model is 

used in functional agent decision-making procedures. In the last case, eBBN is used for 

informational agents to identify the weakness link in a formed VSC. 

 

To simplify the study, we assume the underlying framework is a 1MASCM , and 

its 2eBBN  model is constructed. This chapter is organized as follows: firstly, we briefly 

review the Order Fulfillment Process (OFP) and the corresponding 2eBBN  operations; 

then, for each problem we present our algorithms. 

 

5.1   OFP and its corresponding 2eBBN  Operations 
 



115 

 

Business activities between two (functional) agents are Order Fulfillment Process (OFP) 

as mentioned in Chapter 2. In this section, we briefly re-state this process, and then 

discuss corresponding 2eBBN  operations. 

 

5.1.1 A review of Order Fulfillment Processes (OFP) 
 

General speaking, an OFP can be logically divided into a sequence of steps. First, based 

on the commitment made to its own customers, a customer agent generates an order to 

each selected suppliers. An OFP starts. Since the fulfillment of a commitment usually 

relies on more than one material, in each OFP, the customer agent may generate more 

than one order.  

 

Then, after negotiating with a desired supplier, one order is temporally solved if there is a 

commitment being reached between the customer agent and one of its suppliers. If the 

product is delivered to the customer agent, the order is eventually solved. If an order does 

not have a temporal solution (no commitment is made between the agent and its desired 

direct supplier) or the order is not eventually solved (commitment is aborted by its 

supplier or cancelled by customer agent), the customer agent has to find the alternative 

supplier to finish the task or has given up the commitment it holds. If it is the customer 

agent that actively de-commits previous agreement, the supplier agent has to cancel all 

orders that have been generated but are not eventually solved so far. A pair of customer 

and supplier agents notify each other the newly development related to the commitment 

all the times 
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Finally, when direct suppliers provide all the material the customer agent needs, the 

commitment held by the customer agent is resolved successfully. Otherwise, the 

commitment is resolved unsuccessfully. In either case, the commitment held by this 

customer agent has reached a stable status. We say the OFP initialized by the customer 

agent is completed. 

 

A virtual chain in the MASCM constitute of functional agents involved in 

multiple inter-connected OFPs triggered by the end customer internal needs, which 

represent as the end order to the system. The complete VSP is a solution to this particular 

end order. 

 

The following figure shows the OFP between an agent iA  and its direct suppliers 

jA , kA  and gA (G ( kA )=G ( jA )) at different time points till the commitment iB  held in 

agent iA  has been resolved completely. (All symbols used here follow conventions 

mentioned in Chapter 4; iA , jA , kA  and gA  ∈ 1MASCM ). 
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Figure 5.1 An example of OFP triggered by agent iA . 

5.1.2 Operate mode of 2eBBN  

 

In the following sections we discuss how the model 2eBBN  evolves as the underneath 

system 1MASCM  is running. 

 

5.1.2.1 Operate 2eBBN  units  

 

Each functional agent operates the basic mechanism of 2eBBN  defined in Chapter 4. That 

is, each functional agent iA  in 1MASCM  independently manages local network 

consisting of nodes ix , jiy , jil , iv , jiv , links among them and their (conditional) 

probability distribution, e.g., link strength jie  ( 1≥j ) and agent initial belief on 

commitment failure, )1( =ixBEL . In this section, we discuss how a functional agent iA  

operates 2eBBN  unit when it is involved in an OFP.  

 

At time point 0t , agent iA  generates a commitment 1
ib  to its customer. An OFP starts between 

this agent and its direct suppliers. In order to accomplish this commitment, it generates orders to 
its supplier agents jA  and gA  at 1t . Both of suppliers make commitments with iA  at 2t . 

However, the commitment 
1
jb  held in jA  fail at time 3t . Agent iA  sent another order to its 

supplier kA  that can provide the same product as agent jA . At 4t , agent kA  made a 

commitment with agent iA  at the same time, agent gA  complete the commitment. At  5t , agent 

kA  finishes its commitment, so does agent iA . The OFP is solvable. Agent iA , kA  and gA  are 

part of an evolving VSC. 
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In the network, initially (or at any time system is reset), jil , jiv  are instantiated as 

0 and “idle” respectively. All other nodes are un-instantiated. If possible, functional agent 

iA  updates its local knowledge about the outside, e.g. the value of jie and )1( =ixBEL or 

)|1( Exp i =  (E is an empty set during updating period).  

 

When functional agent iA  generates an order to its direct supplier agent jA , an 

OFP starts. Correspondingly, the node jiv  is instantiated as “set ( jil =1)” and instantly, jil  

is instantiated as 1. Within a certain small time interval, after other nodes associated with 

iA  update their posterior probability, jiv  is back to “idle” state. The direct effect of node 

jil ’s instantiation is that the probability distribution of dummy node jiy  is equal to node 

jx ’s distribution till the negotiation fails or the commitment has been resolved. During 

this period, both agent iA  and agent jA  may exchange information and update their 

beliefs. The message from agent jA  to iA  describes agent jA  performance estimation on 

commitment made with iA . The message from agent iA  to jA  indicates agent iA ’s desire 

for agent’s performance. Rules for agent jA ( iA ) to update their units are in next section.  

 

When negotiation fails or functional agent jA  gives up the commitment, agent iA  

instantiates node jiv  as “set ( jil =0)” so that both node jil  and node jiy  is re-instantiated 

as 0 again. At the same time, mechanisms that associated with agent jA  and its upper 

stream agents ( u
jA ) will reset. However, if agent iA  decides to give up its commitment to 
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the customer, it instantiates node iv  as “set( ix =1)” and node jiv  as “set ( jil =0).” (This is 

an action sequence). Correspondingly, nodes ix  and jil  are instantiated as 1 and 0, 

respectively. These instantiations will cause nodes associated with u
iA  to reset and they 

will propagate to nodes associated with d
iA .  

 

When all of agent iA ’s suppliers successfully resolve the commitments to iA  (if 

there indeed has one between them), the OFP initialized by agent iA  completes. Agent iA  

instantiates node ix  as 0 and propagate it to nodes associated agents in d
iA . When an end 

order has been eventually solved, the complete VSP consists of agent iA  that associates 

with the node ix =0.  

 

The following figure shows the iA 's operation on (part of) 2eBBN  according to the 

example in Section 5.1.1. 
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Figure 5.2 An example of local operation of 2eBBN in agent iA . 

5.1.2.2 Update an 2eBBN  unit with probability propagation 

 

In last section, we can see while there is an agent interaction in OFP, there exists 

functional agent belief propagation and probability update in corresponding 2eBBN  units. 

In the last chapter, we have proved that model of 2eBBN  has a reverse tree structure 

(Theorem 4.5) and can be seen as a Noisy-Or network that consists of units 

independently operated by individual agents (Theorem 4.6). Therefore, rules on agents’ 

belief update and propagation are similar to ones in a singly connected Noisy-Or network 

(see Chapter 2). In following paragraphs, we only explain how to apply belief update and 

propagation rules in 2eBBN . In this context )|1( Exp i =  ( )|0( Exp i = ) has the same 

idlev ji =

0=ix
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meaning as )1( =ixBEL  ( )0( =ixBEL ), which represents a functional agent iA ’s belief 

on a commitment failure (success). 

 

First, if functional agent jA  is one of functional agent iA ’s suppliers, we use the symbol 

jiΠ  and ijλ  to represent the propagation message from the unit that contains node jx  to 

the one contains ix  through jiy  (from a parent x type node to a child x type node) and 

reverse direction respectively. The content of propagation message agents generate 

follows the standard the type of Π (λ ) message format. That is, the type of Π message 

from the unit operated by agent iA  to the one operated by agent jA  is the current 

probability distribution of node jx . It is denoted as follows, 

 

 jiΠ  =[ )|1( Exp j = , )|0( Exp j = ]. (5.1) 

 

Since )|1( Exp i = + )|0( Exp i = =1, only one of these values is necessary to 

propagate. We usually set jiΠ = )|1( Exp i = = )1( =ixBEL  as the message content that 

propagates from a parent node to its child node. 

 

The type of λ  message in the reversed direction is denoted as ] ,[ 01 λλλ =ij . 

Followed the discussion in [41][40], it can be determined using following equations,  

 

If node ix  is not instantiated,  
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  11 =λ , 10 =λ . (5.2) 

 

If node ix  is instantiated as 0, 

 ∏
≠

Π−−=
jk

jikiji ee )1()1(1λ , ∏
≠

Π−=
jk

jikie )1( 0λ . (5.3) 

  

If node ix  is instantiated as 1, 

 ∏
≠

Π−−−=
jk

jikiji ee )1()1(11λ , ∏
≠

Π−=
jk

jikie )1(-1 0λ . (5.4) 

 

Second, when agent iA  receives a jiπ  message, it updates probability distribution of 

node ix  through the following equation, 

 ∏
=

Π−−⋅==
1

1 ))1(1()|1(
jil

jijii eExp σλ . (5.5) 

 

 ∏
=

Π−−−⋅==
1

0 )))1(1(1()|0(
jil

jijii eExp σλ . (5.6) 

 

Third, after agent iA  updates its belief, if no actions, probability distribution of other 

nodes in the same unit is not changed and agent iA  propagates the belief to the unit 

operated by its directed customer agent. At the same time, it generates and sends jiλ  to 

its direct supplier agent jA . If actions happen, certain nodes are instantiated. These 

instantiations propagate to units controlled by downstream agents; however, they will 

cause all units operated by its direct suppliers to reset as we discussed in Section 5.1.2.1. 
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Thus, no λ messages would be generated and broadcast in 2eBBN . The agent belief 

updated described in equation (5.5) and (5.6) can be further rewritten as follows, 

 

 ∏
=

Π−−==
1

))1(1()|1(
jil

jijii eExp ; (5.7)  

 

 ∏
=

Π−−−==
1

)))1(1(1()|0(
jil

jijii eExp  (5.8) 

 

In the model, we require a message, 'λ  (in this case '
jiλ ), which follows Equation 

(5.3), is generated and propagated one tier up to the units that are associated with supply 

agent s
iA , whenever distribution of node ix  changes and provided it is not instantiated by 

agent actions. This information is used model the process that direct supplier agent jA  

evaluate agent iA ’s requirements. This information helps supplier agent understand 

customer needs so that a high quality service can be provided. In addition, if a supplier 

agent feels the customer request more than it can afford, it proactively terminates the 

service and put its service capability to other orders. The detailed discussion is in section 

5.2. It also can be noticed that, when actions are not concerned in agent belief analysis, 

Equation (5.1) through (5.6) is applied. They are used for informational agents to 

generate public service for functional agents. The details are in Section 5.4. 

 

The following algorithm summarizes agent iA ’s local operation on 2eBBN  when 

it deals with its direct supplier agent jA , 
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Algorithm 5.1:  
 Agent-Operations-on-Local-Network ( ix , jiy , jil , jiv , iv , jA )  

1. if iv == “set( iv =0)” 
2.             then instantiate ix  as 0; 

3.                      reset nodes associated with u
iA ; 

4.                      propagate )1( =ixBEL  to c
iA ; 

5.                      return; 
6. if iv == “set( iv =1))”   
7.             then instantiate ix as 1; 
8.                      jiv = “set( jil =0)”; 

9.                       propagate )1( =ixBEL  to c
iA ; 

10. if jiv == “set( jil =0)” 

11.              then instantiate jil  as 0; 

12.                      instantiate jiy as 1; 

13.                      reset nodes associated with u
jA ; 

14.                      return; 
15. if jiv == “set( jil =1)” 

16.              then instantiate jil  as 1; 

17.                      jiy = jx ; 

18. if jil ==1 and there is a Π message 

19.              then based on Equation (5.1), update )1( =ixBEL ; 

20.                       propagate )1( =ixBEL  to c
iA ; 

21.                       if Π message is not from jiy                                         
22.                               then  Based on Equation (5.4), generate and 

send '
jiλ  type of message to jA . 

 

Algorithm 5.1 shows how an agent generates, retrieves and infers uncertainty 

information from 2eBBN . This information can be used in an agent’s decision-making 

processes, which is discussed in following sections. 
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5.2   Problem 1: decision on commitment cancellation with uncertainty 
 
In this section, we study how agents utilize uncertain information from local 2eBBN  

network unit to make decision on Commitment Cancellation. We first describe the 

scenario, and then present our algorithms.  

 

5.2.1 Commitment Cancellation with uncertainty 
 

In the business environment unexpected events happen at a high frequency. A company 

has to face this challenge and adjust strategies accordingly. Since the commitment is the 

vital connection in the transaction between companies, one crucial decision the manager 

has to make is to see whether or not to cancel the commitment when the situation 

changes. Consider the supply-demand relationship between Personal Computer (PC) 

manufacturer and CPU chip provider, e.g. the relationship between DELL and Intel. 

When Intel announces that a new type of mobile chip will be available in the market 

shortly, DELL decides to use it in its laptop product line. After several rounds of 

negotiations, DELL and Intel sign a contract. But in the fourteenth day before the 

delivery date, a piece of information from Intel says the new chip may delay ten days in 

the market. In other words, the contract (the written commitment) might have certain 

chance to fail. Now, the managers in DELL have to use this information to make its next 

move, to stick with contract or just cancel the order. At this moment, it has to evaluate the 

possible losses and gains from uncertain factors. When facing the challenge of 

uncertainty, the decision about commitment processing, which is similar to managers in 

DELL have to make, is called Commitment Cancellation. Since currently no existing 

methods can quantitatively measure information accompanied with uncertain factors, this 
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type of decisions is based on the managers’ experience and estimation. The result usually 

is inaccurate and unconvincing. In next two sections, we present two algorithms based on 

2eBBN  model for agents’ Commitement Cancellation. In the first algorithm, we design 

an Expected Utility Function of Commitment (EUFC). In the second approach, agents 

directly use the information sent from its customer ( '
jiλ ) to make decisions. 

5.2.2 Commitment Cancellation with expected utility 
 

When detailed information that describe current environment is available, there are many 

approaches that can help managers in a company to make decisions. Within them, in 

recently years, Multi-Value Utility Function (MVUF) has won wide popularity [1]. This 

approach gives a reference to next-step actions over multiple concerned parameters in 

different practical business settings through the utility value calculation [1]. Studies 

shows now 80% of general managers in Fortune 500 companies are implicitly or 

explicitly use MVUF as their on-hand quantitative analysis tool to make decisions [57]. 

In this context, we assume the MVUF is the approach used for agent automatic decision-

making. That is, each functional agent contains a set of internal utility functions. Agents 

use these functions and their calculated value as the only references to take actions. In 

this section we show when there are only uncertain information available, how to 

transform a MVUF to an Expected Multi-Value Utility Function (EMVUF) based on the 

agent beliefs propagated in model 2eBBN . To carry on our study, we assume each agent 

iA  has a Utility Function of Commitment (UFC) iu . It can compute utility (gain and loss) 

according to the commitment that an agent current holds (to its customer). This utility is 

used for agents to make decision on Commitment Cancellation.  
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5.2.2.1 Utility Function of Commitment (UFC) iu   

 

How to design a MVUF is beyond the scope of this dissertation. In this section the UFC 

we use is over four factors, the selling price, the manufacturing and transportation cost, 

inventory management expenses and the benefits from the improvement of customer 

satisfaction. This function iu , associated with agent iA , could be expressed in the 

following equation,  

 iiiii SICPu +−−=  (5.9) 

 

In this equation, symbol iP  stands for the first factor, the negotiated price of the 

service agent iA  provides to its customer; symbol iC  stands for the second factor, the 

manufacturing and transportation costs when agent iA  produces the product; symbol iI  

stands for the third factor, the inventory expense. It is the management charge for agent 

iA  as it reserves certain lever manufacturing power and materials for the quick response 

to the customer order; symbol iS  stands for the last factor, the estimation of future 

benefits when agent iA  successfully resolves the commitment made with its customer 

agent. In other words, iS  represents the potential benefits such as positive image 

establishment, market competition enhancement and so on when customer agent satisfies 

its service. The utility of this equation represents the profit that an agent can earn from 

fulfillment of a commitment (to its customer agent), which is measured by unit of certain 

currency, e.g. U.S dollar. In the equation, factors iC  and iI  represent an agent’s expenses 

in the OFP. When these amounts increase, the profit will decrease. Thus, there are “–” 



130 

 

before these two symbols. On the contrary, the plus (+) symbol are put before iS  and iP . 

When the agent knows loss and gain from the individual product it purchases from the 

suppliers, the equation can be further rewritten as follows,  

 0SSICPu
s
ik

s
ik AA

i
AA

kiii ++−−= ∑∑
∈∈

 (5.10) 

In equation (5.10) symbol 0S  stands for the gain from the current customer 

satisfaction reach, for example, the benefit for setting up the long-term business 

relationship between these two agents. 

 

Both Equation (5.9) and (5.10) are composed of the basic elements that may be 

concerned when an agent computes the utility related to the commitment made to its 

customer agent. Each agent might emphasize on different factors through adding a weight 

value for each of them. In addition, both functions are examples that can be used in agent 

Commitment Cancellation process. Human owners can design and implementation 

different ones for their agents.  

 

5.2.2.2 Expected Utility Function of Commitment (EUFC) )( iuE  

 

In this section we discuss how to transform UFC to Expected Utility Function of 

Commitment (EUFC) that can utilize information propagated in 2eBBN  for Commitment 

Cancellation in an uncertain environment. 
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As we discuss in Section 5.1, both of the supply and demand sides locally operate 

the 2eBBN  units. They propagate the commitment process failure probability down to its 

direct connected nodes through sending Π type of messages. If agent iA  receives a Π 

type of message, it will update probability distribution of node ix  using Equation (5.7) 

and (5.8) respectively. The updated agent belief can be used as an estimation of the gain 

or loss of current deal made with the customer. For instance, the production of 

)|0( Exp i =  ( )0( =ixBEL ) and the negotiated price iP  is a good metric to measure the 

possible gross income from this deal. Moreover, the commitment processing information 

from the parent nodes (supplier agent’s belief) can be directly used to compute the utility 

change. For example, through agent belief propagation, agent iA  knows its direct 

supplier kA  has the possibility of )|0( Exp k =  (this value can not be the real agent belief 

of agent kA . It might be changed by agent kA  to protect its privacy) to finish the 

commitment. With the condition that if this material indeed arrives on time, the inventory 

management cost is kI , the estimation of expense could be measured by the product of 

)|0( Exp k =  and kI . Similarly, the expected gain from the manufacturing power 

reserving to improve the quick response for customer order can be calculated by the 

product of )|0( Exp k =  and kS . The estimation of direct gain from the successful 

accomplishment of the commitment to the customer can be estimated by the production 

of )|0( Exp k =  and 0S . As we combinate them all together, a UFC becomes an 

Expected Utility Function of Commitment (EUFC). The following equation summarizes 

above discussion.  
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(5.11) 

 

5.2.2.3 Commitment Cancellation decision with EUFC 
 

The computed result of EUFC is called the Expected Utility of Commitment (EUC). It 

can be used in an agent’s Commitment Cancellation. To complete the procedure, an 

internal Commitment Threshold (CT) is needed, which describes an agent’s the bottom 

line of minimum gain (utility) from the current commitment. When EUC is less than CT, 

the agent can go ahead to give up its own commitment to the customer and cancel the 

order to all its suppliers. This decision procedure could help agents to avoid further loss 

when there is a sign from the supplier side that indicates the commitment has high failure 

possibility. The procedure on Commitment Cancellation can be described as the 

following algorithm, 

 
Algorithm 5.2:  
 Agent-Commitment-Cancellation-With-EUFC  
                   ( 2eBBN  unit associated with iA , )( iuE , CT)  

1. Update the distribution of ix  and update jie  if necessary 

2. Compute EU of )( iuE  
3. if CTEU <  
4.                  then iv =“set( iv =1))”; 
5.                           Agent-Operations-on-Local-Network  
                                ( ix , jiy , jil , jiv , iv , c

iA ); 

6.                            for  jA  in s
iA  

7.                                    jiv  =“set( jil =0)”; 
8.                                    Agent-Operations-on-Local-Network 
                                         ( ix , jiy , jil , jiv , iv , jA ); 
9.                          return  
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10.  else go to 1. 
 
 

Even though Algorithm 5.2 only describes agent decision procedure on 

Commitment Cancellation. However, by providing different EMVUFs and threshold 

values, algorithms for other types of decisions in an uncertain environment can be 

similarly constructed. 

 

5.2.3 Commitment Cancellation with customer requirement evaluation 
 
In last section, we show how an agent uses the information from upstream agents to make 

decision on Commitment Cancellation. In this section we show an agent also can utilize 

information retrieved from network associated with down stream agents to make similar 

decision with uncertainty. 

 

In a traditional singly connected BBN, the message from a node to a parent node 

is generated only when there is new evidence observed by the descendent nodes. In 

model 2eBBN  new evidence discovery (a x type node is instantiated) is equal to 

commitment accomplishment (a commitment is resolved). In other words, the uncertainty 

in the partial system consisting of this agent and its upstream is no longer important for 

the end order fulfillment. It is the reason that a system level reset signal takes places of 

the λ  type messages.  

 

However, that there are no λ  type messages in the model does not mean the 

customer agent does not initialize interaction with its suppliers. In fact, both of two types 
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of information flows defined in Chapter 2 can initiate from a customer agent. In 

information flows, a customer notifies the direct supplier the attitude regarding to its 

current performance. This information is important for an agent decision-making in OFP 

under uncertainty. At the negotiation stage, it allows the supplier agent could evaluate 

customer agent requirements and move forward to sign the contract; at the commitment 

process monitoring stage, the supplier agent can use this information to improve its 

performance, e.g. organize more much facilities to finish the order considering the 

customer urgent situation. The supplier agent relies on this information to estimate 

customer requirement about the commitment. 

 

In the 2eBBN , a 'λ  type message is defined by Equation (5.3) and is generated 

and sent to its ascendant unit when the customer agent’s belief is updated. It can be 

explained as the performance expectation from the customer agent to a direct supplier 

agent when customer agent’s belief changes. It models information flows started by 

customer agents. A supplier agent can direct use this information to make decision on 

Commitment Cancellation when it finds the customer desire is beyond it can afford. In 

this way, the diagnosis inference capability of a causal model has been used. In next 

sections, we present an algorithm that uses 'λ  type message for agents to cancel the 

commitment made with its customer. 

 

5.2.3.1 Customer Desired Belief 
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Similar to the equation that is used to update parent node probability in a Noisy-Or 

network [41], when agent jA  receives a message '
jiλ , instead to update the new 

distribution of node jx , it update the Customer Desired Belief (CDB) using the following 

equation,  

 

 CDB= )))0())1(( )),1())1()1((( =Π−=Π−− ∏∏
≠≠

j
jk

jikij
jk

jikiji xBELexBELee αα (5.12) 

 (α  is the normalization parameter.) 

 

We usually denote ))1())1()1(( =Π−− ∏
≠

j
jk

jikiji xBELeeα  as 1CDB  and 2CDB  for 

))0())1(( =Π−∏
≠

j
jk

jiki xBELeα . Thus, CDB can be easily written as a non-order set as 

( 1CDB , 2CDB ). The value 1CDB  and 2CDB  are the supplier performance improvement 

that the customer agent desires. By knowing either 1CDB  or 2CDB , the other one can be 

determined. Usually, we use 1CDB  to represent agent’s requirements.  

 

5.2.3.2 Commitment Cancellation with CDB 
 

The value 1CDB  implies the quality of the service that the customer agent wants supplier 

agent to provide. The percentage of its change over a unit time period indirectly reflexes 

the customer need that a supplier agent can afford. The following algorithm shows how 

this percentage can be used in agent decision on Commitment Cancellation. 
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Algorithm 5.3:  
 Agent-Commitment-Cancellation-With-CDB 
                   ( kiλ , kA ∈ c

iA , 1CDB , s
iA , β)  

1. update 1CDB  to '1CDB  when receives kiλ  from kA ; 

2. if  | '1CDB - 1CDB |/ '1CDB <β  
3.           then iv  =“set( ix =1)”; 
4.           Agent-Operations-on-Local-Network 
                 ( ix , kiy , kil , kiv , kv , kA ); 

5.           for  jA  in s
iA   

6.                    jiv  =“set( jil =0)”;  
7.                   Agent-Operations-on-Local-Network 
                       ( ix , jiy , jil , jiv , jv , jA );       

8. else 1CDB = '1CDB ; 
9. return.  

  

In Algorithm 5.3, the constant β  is to use as a threshold for the functional agent to 

decide whether is the time to stop the transaction with customer agent. Its value is in the 

range between 0 and 1 and is set before the OFP begins.  

 

5.3   Problem 2, supplier selection and switch 
 

In this section we discuss another problem-solving scenario: a functional agent selects 

and switches direct suppliers. In a 1MASCM , each agent may have more than one 

supplier agent that can provide the same product. Therefore, when an agent wants to 

generate an order to suppliers, it needs to choose the one that could best serve its 

interests. To select a reliable supplier lowers the chance of commitment failure. In 

addition, through the interaction with its suppliers, an agent might find its initial selection 

is not good enough. In this case, agents would like to compare supplier performance 

again and switch to a “promising” supplier. In this section we discuss two algorithms that 
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use an agent’s beliefs in eBBN model to make decision. One is used before the functional 

agent starts the negotiation; the other one is used either during the negotiation period or 

agents’ chain performance monitoring stage. 

5.3.1 Select a promising supplier before negotiation 
 

In the business environment, a company needs to consider the supplier’s reputation, 

evaluate the time constraints and refer to its past experience before the real negotiation 

starts. This review procedure protects a company from profit loss. Software agents follow 

the same rules. That is, before an agent generates an order, it has to spend some time to 

investigate the business record of a direct supplier agent. A functional agent iA  stores 

this type of knowledge about direct supplier jA  in link strength jie . )1( =jxBEL  

received in previous transaction represents agent iA ’s past experience with jA . In 

addition, following the discussion in Chapter 4, we can see that the production of jie  and 

)1( =jxBEL  can be explained as agent iA ’s estimation of agent jA  performance. The 

smaller of this production is, the more likely that the agent jA  will keep its promise after 

it signs a contract. Therefore, before agent iA  starts negotiating process with an agent 

group for certain product, it can first do local computation for all the suppliers in this 

group to determine production value. Then it chooses the direct supplier with the 

minimum value as its negotiation partner (a potential supplier). The following algorithm 

gives a summarization of the discussion above, 

 

Algorithm 5.4:  
 Agent-Select-Supplier-Before-Negotiation   
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                    ( kg , { jie }, { )1( =jxBEL }, s
iA )  

1. min=∞ , k=-1; 
2. for each jx that associates with agents in the set { jA | 

kg =G( jA ), jA ∈ s
iA } 

3.                if (min > jie ∗ )1( =jxBEL ) 

4.                      min= jie ∗ )1( =jxBEL  
5.                      k=j; 
6. kiv  =“set( kil =1)”; 
7. Agent-Operations-on-Local-Network 
      ( ix , kiy , kil , kiv , kv , kA ); 

8. for  jA  in s
iA  and kj ≠  

9.          Agent-Operations-on-Local-Network 
               ( ix , jiy , jil , jiv , jv , jA );       
10. return  

 

5.3.2 Switch supplier dynamically  
 

A more advanced 2eBBN  application in agent provider selection is that it can guild the 

agent to switch to a supplier with better performance dynamically after two agents have 

begun the negotiation but before the agreement has been resolved.  

 

Let’s first reconsider the example discussed in Section 5. When both Intel and 

AMD claim there will be a new type of chip at speed of 2G available in the market in one 

month, based on utility analysis, managers in DELL thinks embedding Intel chips into 

their new developing laptop will bring more profits than using AMD chips does. After 

several rounds of negotiation, DELL and Intel sign a contract. But in the fourteenth day 

before the delivery date, a piece of information from Intel says the new chip might be 

delay ten days to the market. In other words, the contract (the written commitment) might 

have certain chance to fail. Now, the managers in DELL have to use this information to 
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make its next move. The decision can be either to stick with Intel (because there are still 

chances for Intel to deliver the chip on time) or just cancel pervious order to Intel then 

turns to AMD. If their choice is still with Intel, this new type of laptops may delay to 

market and the company might lose some of its old customers. The delay can cause 

inventory to increase as well. However, if they choose to switch to AMD, they have to re-

negotiate with it and re-design the product line. This lead to extra operation costs for 

DELL. How to decide that which supplier is most suitable to deal with when there is a 

piece of uncertain information is critical for agents to make profits.  

 

At the beginning of this chapter, we describe how an agent locally operates 

2eBBN  units. It can be seen that if there is a negotiation process going on between two 

agents (supplier and customer), agents’ beliefs have already been propagated up and 

down among nodes associated with these two agents. From the customer agent’ 

perspective, the updated information contains supplier’s own estimation on commitment 

processing. To some degree, it reflects supplier current ability and attitude of service 

providing. It is much fresher and convincing than the one that is initially stored in 

customer agent. Then, the customer agent can calculate the new production of link 

strength and incoming agent’s belief so that a better service provider may be found. This 

procedure adjusts agent local view through interactions. For example, if the current 

supplier, say agent kA ’s current estimation on commitment processing is not met agent 

iA  expectation, e.g. the new value of updated kie  and )1( =kxBEL  is larger than 

production value of gie  and )1( =gxBEL . Agent iA  can switch to agent gA . The 

following algorithm describes the approach, 
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Algorithm 5.5:  
 Agent-Switch-Supplier-After-Negotiation 
                   ( kg , { jie }, { )1( =jxBEL }, s

iA , k )  

1. Update jie  and )1( =jxBEL  for all the agents in the set  

     { jA | kg =G( jA ), jA ∈ s
iA }; 

2. min= kie ∗ )1( =kxBEL ; 
3. for each jx that associates with agents in the set { jA | 

kg =G( jA ), jA ∈ s
iA } 

4.                if (min > jie ∗ )1( =jxBEL ) 

5.                      min= jie ∗ )1( =jxBEL ; 
6.                      k=j; 
7. kiv  =“set( kil =1)”; 
8. Agent-Operations-on-Local-Network 
      ( ix , kiy , kil , kiv , kv , kA ); 

9. for  jA  in s
iA  and kj ≠  

10.          Agent-Operations-on-Local-Network 
              ( ix , jiy , jil , jiv , jv , jA );       
11. return 

 

It has been noticed that, first, when this algorithm is used, the customer agent has 

to send out a 'λ  type message to the supplier. The whole set of CDBs associated with 

upper stream network will be updated, which increases the computation complexity and 

extends additonal time to finish the end order. Second, even though the current supplier 

agent has worse performance than customer agent originally expected, because of time 

constraints and other considerations, without knowing the other agent’s the newly 

computed production value of link strength and belief, the customer might not easily give 

up the current supplier. Because of these two concerns, to avoid high computation cost 

with a little performance improvement, agents may choose to use Algorithm 5.5 with low 

frequency.  
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5.4   Problem 3: weak link discovery 
 

2eBBN  model can not only be used to design algorithms for functional agents to make 

reasoning over uncertainty, but also can be used for informational agents to generate 

information to improve system level performance.  

 

In a MASCM, if knowledge about which agent is most likely to fail in OFPs 

during a VSP formation process, the system can notify its direct supplier and customer 

agents so that they can find another robust alternative to avoid performance loss in future 

transactions. The agent that had worse performance, called the weak link of a VSC, is 

also pushed to improve their service quality in order to survive in the system. In this 

section, we discuss 1MASCM  performance optimization through informational agents 

using 2eBBN  to generate public information related to weak links. First, we formally 

define MASCM performance. A new type of informational agent used to generate system 

information is also introduced. Second, we design the algorithm to look for a “critical” 

agent in the system. Third, we give an algorithm to search for a “fragile” direct supplier 

for end customer agent. 

 

5.4.1 System performance and Statistical Agent (SA) 
 
For a MASCM, the improvement of end customer satisfaction can establish a positive 

reputation for the whole system. The increasing number of end orders eventually benefits 

agents at all tiers in the system Therefore, even though different agents could have 
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conflicting targets, the goal to complete end orders is commonly shared, which can be 

used to measure the system performance that is formally defined as follows.  

 

Definition 5.1. The system performance of a MASCM is defined by ratio of end orders 

successfully completed to all orders that arrive at the system. The ratio is also called 

system efficiency. MASCM A performs better than MASCM B if and only if system 

efficiency of MASCM A is higher than MASCM B. 

 

One critical problem related to MASCM performance is to answer the question 

“given an end order, which agent is most likely to let the end order incomplete because it 

fails to resolve the commitment.” The answer to the question can optimize the system 

performance through the broadcasting this statistical outcome to all functional agents. 

One direct result is to allow suppliers and customers that connect to the weak link pay 

more attention when they deal with it. For example, give that agent relatively longer time 

to resolve the commitment. To some degree, this broadcasting action indirectly fixes the 

easy-broken link in a virtual supply chain and causes the end order failure possibility to 

decrease. Analyzing existing solutions to different end orders can generate this type of 

information. If one agent always performs poorly, e.g. always has the highest possibility 

to fail in a complete VSC, it can be thought as the weak link. 

 

To setup weak link discovery mechanism, we introduce a new type of 

informational agent, called Statistical Agent (SA). This agent knows the system structure. 

It will collect information about a complete VSC for each end order. After analyzing the 
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data, it also takes charge of the system level information broadcasting. However, SA is 

not involved in any OFPs. Like all other informational agents such as broker, Name 

Server and so on, it is altruistic and neutral to any parties in the system.  

 

For a system of 1MASCM , SA knows the corresponding 2eBBN  model structure 

as well. Of course, the detailed knowledge that SA keeps may be out of date and 

inaccurate if some agents reluctant to post their information to the outside. However, the 

information provide by SA is a good reference for agents to determine weak links. In the 

following sections, we discuss alogritms used by SA for weak link discovery based on 

2eBBN  model. 

 

5.4.2 Critical agent detection 
 

To the end customer agent, other agents in the system are its direct or indirect suppliers. 

One failure in these agents might lead to its end-order processing failure. The critical 

agent is defined as the agent in the system that is most likely cause the end order to fail in 

an existing solution. The formal definition is as follows, 

 

Definition 5.2. A critical agent iA  in a complete VSC is the one associate with node ix  

that ∀ jx ∈ 2eBBN  and ij ≠ , )1|1( 1 == jxxp ≤ )1|1( 1 == ixxp . 

 

SA can search for the “most” critical agent in the system using the following algorithm, 
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Algorithm 5.6:  
 Critical-Agent-Detection ([ kn ], { iVSC }, 0A )  

1. for each kn  in [ kn ] 
2.                 0=kn ; 
3. for each iVSC  in { iVSC } 
4.                max=0; k=-1; 
5.                for each jA  in iVSC   

6.                               jx =1 
7.                               Based on Equation (5.1) -(5.6) generate Π(λ) messages                               
8.                               Update the probability distribution of nodes in iVSC  
9.                               Compute )1( 1 =xBEL  
10.                               if ( )1( 1 =xBEL >max) 
11.                                   max= )1( 1 =xBEL ; 
12.                                   k=j; 
13.                               reset iVSC ; 
14.                1+= kk nn ; 
15. search maximum kn   
16. return kA  

 

In the algorithm, no agent actions are involved. The model of 2eBBN  that SA 

uses to analyze the data is equivalent to the model of 1eBBN . The probability propagation 

follows Equation (5.1) till (5.6).  

 

The size of array [ kn ] is equal to the number of agents in the system. The set  

{ iVSC } is used to store the solutions to different end orders coming to the system. Since 

we only compare the effect from one supplier to the end customer agent, during the 

whole procedure only the type of Π messages are necessary to be generated and sent to 

the others. If there are m functional agents in the system, time complexity of the first loop 

is )(mO ; the second loop is )( 2nmO  considering that there are n different solution SA 

calculate and it takes )(mO  to update the probability distribution in the most inner loop 
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(a complete iVSC  can be represented as a tree followed Proposition 4.3); the search 

procedure time complexity is )(mO  using any standard searching algorithm. Thus, the 

time complexity of Algorithm 5.6 is )( 2nmO . The space complexity is ),( nmO . 

 

5.4.3 Fragile agent detection 
 

Algorithm 5.6 discussed in last section give the answer of the weak link to end customer 

in a top-down manner (from supplier to customer). The question can be solved in a 

reversed way, that is, if the customer order fails, which agent should be responsible for 

that. Or in the model 2eBBN , when child node probability changes, which one of its 

ancestor has the largest failure possibility? We define the fragile agent in a complete VSC 

is the agent that has maximum belief on commitment failure when the end customer 

agent cancels its order (node 1x  is instantiated as 1). The formal definition is given as 

follows, 

 

Definition 5.3. A fragile agent iA  in a complete VSC is the one associate with node ix  

that ∀ jx ∈ 2eBBN  and ij ≠ , )1|1( 1 == xxp j ≤ )1|1( == ii xxp . 

 

The SA can use following algorithm to determine the most fragile agent among a group 

of existing solutions. 

 

Algorithm 5.7: 



146 

 

                   Fragile-Agent-Detection (([ kn ], { iVSC }, 0A ) 
1.   for each iVSC  in { iVSC } 
2.                   max=0; k=-1; 
3.                   0x =1; 
4.                   Based on Equation (5.1)- (5.6) generate Π(λ) 

messages;                              
5.                   Update the probability distribution of nodes in 

iVSC ; 
6.                  for each jA  in iVSC   

7.                              if ( )1( =jxBEL >max) 

8.                              max= )1( =jxBEL ; 
9.                              k=j; 
10.                              reset iVSC ; 
11. 1+= kk nn ; 
12. search maximum kn   
13. return kA  

 

Similar to Algorithm 5.6, in the system it is only necessary to generate and 

propagate the type of λ  messages since we only consider the decision affection from the 

customer to suppliers. Algorithm 5.7 has the time and space complexity as the algorithm 

5.4. However, given the same set of complete VSCs they can return different results to 

SA. 

5.5   An example  
 

In this section, we show two consecutive states of a small 1MASCM , which consists of 

eight functional agents. Agents use algorithms that we discussed above to retrieve, 

broadcast and reason the impact of uncertain events.  
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In the sample system, corresponding to each steps of OFP, each agent implements 

Algorithm 5.1 to Algorithm 5.7 to deal with uncertainty. In other words, it follows 

Algorithm 5.4 to select a direct supplier when it starts an OFP; After its negotiation 

process, it will follows Algorithm 5.5 to switch suppliers; it uses Algorithm 5.2 and 5.3 to 

decide whether it needs to cancel the commitment to the customer when it retrievers 

information from 2eBBN  units associated with upstream and downstream respectively.  

 

In the example, we simplify the EUFC as the production of expected profit and 

agent’s belief on commitment success. In the system, 'λ (Π) messages just contain a 

single (pair of) real number. This number is directly used Equation (5.7), (5.8) and (5.12) 

without further modification.  

 

We use two figures similar to SDG defined in last chapter to describe the agent 

system states. An agent and 2eBBN  unit associated with it are represented as a node in 

the graph. The directed link represents the supplier-customer relationship. In a node, we 

list the basic attributes of an agent and corresponding 2eBBN  components. For attributes 

that change over time, different labels are attached as timestamps. The label (C) indicates 

the value is current; (E) indicates the attribute has initial value. An agent sets the value 

according to its estimation; (N) indicates the value is reached at the negotiation period; (/) 

indicates the value is not available at the given time point. In order to show the value 

change, a directed link is directed from the old one to the current one. 
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In the first graph, there is an evolving VSC in the system. It consists of agent 1A , 

2A , 4A , 5A , 7A  and 8A . None of these agents have completed their on-hold 

commitments so far. In the second graph, it shows the system state change and 2eBBN  

update when agent 8A  observed an unexpected event. The graph shows changes in the 

decision procedure as well as ones in corresponding 2eBBN  model. 
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5.6   Advantages of using eBBN approach in algorithm design 
 

In this section, we discuss the advantage to use eBBN approach to design algorithms 

related to agent uncertain management. 

 

First, 2eBBN  provides a quantitative approach to design algorithms that agent can use to 

make reasoning over uncertainty, e.g. measure the impact of uncertain factors on the 

internal commitment processing. Using eBBN approach lets algorithm design have an 

objective and scientific basis instead of subjective human being’s experience. It also 

makes the software agent become less dependent on the human interaction. 

 

Second, eBBN model only requires local computation and message content are simple, so 

that algorithms design require less global knowledge. For example, from algorithm 5.5 

we can see that each agent only uses locally stored information such as link strength and 

initial agent belief to calculate its belief update. The propagated message Π( 'λ ) can be as 

simple as )|1( Exp i = . This feature let 2eBBN  become a feasible solution to implement 

uncertainty mechanism for individual functional agent with different owners. 

 

Furthermore, eBBN is an asynchronized and distributed model Thus, algorithm design 

based on this approach do not enforce when functional agents have to generate and 

propagate the information, and no central coordinators are required. These mechanisms 

match MASCM distributed features and marketplace properties. 
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5.7   Summary 
 
In this chapter, we discuss how to use eBBN model to design algorithms for individual 

agents to deal with uncertainty. We identify three problems as examples. For each 

problem, algorithms that utilize information retrieved or stored in the eBBN are 

presented. An example system, in which each functional agent uses the algorithm we 

design, is given. We also discuss the advantage of using eBBN approach in uncertainty 

management design. 
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Chapter 6   Experiment 
 

 

eBBN model not only can be used as a theoretical basis to design algorithm for agent 

uncertainty management, but also can serve as an analytical platform to study the 

relationship between these mechanisms and overall system performance. In this chapter, 

we discuss the experiment we made on a small 1MASCM . First, we discuss the 

simulation design and implementation. Then, we present the experiment result and 

analysis. 

 

6.1   Simulation design and implementation 
 
The goal of our experiment is to study the relationship between individual agent 

uncertain mechanisms and overall system performance. We compare system performance 

when agents implement two different sets of rules to update agent beliefs. In one setting, 

each agent will update its belief exactly follow rules related on 2eBBN  operations 

discussed in Section 5.1. That is, agents immediately update their belief when they 

observe an unexpected event; in the other setting, agents only update beliefs when 

commitments are close to resolve. To allow the experiment results are comprisable, two 

sets of rules are tested in the same 1MASCM . 

 

6.1.1 Simulated MASCM and its eBBN model 
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The 1MASCM  that we simulate is the one discussed in Section 5.5. The system consists 

of eight different functional agents. They sit at three different tiers. At tier 0, there is only 

one end customer agent. At tier 1, there are three functional agents. They are suppliers of 

the end customer agents. At tier 2, there are four agents. All of them are raw materials 

providers. The agents at tier two are their direct customers. No informational agents are 

in the system. All agents have known their direct customer and suppliers at system design 

time. When there is an end order arrives in the system, the inter-connected OFP will be 

triggered and an evolving VSC emerges. The overall system performance is defined as 

the Definition 5.1. 

 

An 2eBBN  model is established for this 1MASCM  following our discussion in 

Chapter 4. In the model, agents’ strategic behaviors that de-commit their previous 

agreements or choose different suppliers are two specified sources that instantiate random 

variables according to rules we discuss in Section 4.7. Other unexpected internal or 

external events are treat as random stimuli that cause probability distribution of 

commitment failure variables to change. 

 
Each agent iA  controls a basic unit of 1MASCM  defined in Section 5.1. Their 

chain related behaviors exactly follow the definition of OFP in Chapter 2. 

 

6.1.2 Implementation details 
 

The simulated system is implemented in Java 1.3SE. Each agent has similar architecture 

(see Section 5.5), and is implemented as an object. All agents run in the same Java virtual 



155 

 

machine. Their initial parameters, for example, suppliers and customers are stored in the 

property files.  

 

In the system if an agent is not a raw material provider, its behaviors can be 

described as following procedure. 

 

Procedure 6.1.  

1. Randomly adjust its internal parameters including CT, EUFC and β  

2. If receiving an order from the its customer,  

3.   Then make a commitment to it. 

4. Select direct suppliers using Algorithm 5.4 for all products it needs 

5.   Send an order to each of selected agents 

6. Wait for the commitment processing message from its direct suppliers for all 

ongoing OFPs 

7.   If receiving a Π message 

8.    Then 

9.    Make decision on Commitment Cancellation using Algorithm 5.2; 

10.    Make decision on Supplier Switch using Algorithm 5.5; 

11.    Operate local unit of 2eBBN  using Algorithm 5.1; 

12.   If receiving a λ message 

13.    Then 

14.    Make decision on Commitment Cancellation using Algorithm 5.3; 
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In the simulated system unexpected events occur in raw material providers. It is 

represented as a random variable between 0 and 1 (Interval (0,1)). If the event happens to 

an active raw material agent, the value is recorded for updating agent’s belief on 

commitment failure. This update may affect the whole system performance through sell-

buy connections. We define two different sets of rules for raw material agents to update 

its beliefs. They are listed as below. 

 

Rule set 1. 

If there is unexpected event occurring in an active raw material agent, it will update its 

agent belief immediately and propagate down to direct customers. 

 

Rule set 2. 

If there is an unexpected event occurring in an active raw material agent, the possible 

change of agent belief on commitment failure is temporally stored. When it is the time to 

resolve the commitment, if this agent is still active, it uses a specific procedure to 

calculate the accumulated impacts of uncertain events on its agent belief then propagate it 

down to direct customers. 

 

It is obvious Rule 1 exactly follows our discussion on 2eBBN  unit operations 

discussed in Section 5.1. Two things need to notice related to Rule 2. First, when Rule 2 

is used for raw material agent to generate and propagate information, the agent actually 

sends out its final guess. Thus other agents in the system only have limited times to select 

a direct supplier for a group of agents that provide the same product following Algorithm 
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5.5 (Procedure 6.1 line 8). In other words, if these agents choose agent A at its direct 

supplier at the beginning then switch to agent B, it can not reselect agent A again later. 

Second, each agent has a special procedure to calculate the total impacts of unexpected 

events in an active agent. It is as follows. 

 

Procedure 6.2. 

Unexpected Event is denoted as UE, which represented as a random number as we 

discuss before. Agent temporal belief is denoted as ATB, which represents the trend of 

commitment processing when an unexpected event occurs. If UE is larger than ATB, raw 

material providers will guess the commitment is likely to failure than before. If UE is 

smaller than ATB, they will guess the commitment has more chance to resolve. 

1. UE>ATB, 

2.   n=0; 

3.   while ((ATB+UE/ n2 )>1) 

4.    UE=UE/ n2 ; 

5.    n=n +1; 

6.   ATB = ATB+UE; 

7. UE<ATB, 

8.   n=0; 

9.   while ((ATB-UE/ n2 )<0) 

10.    UE=UE/ n2 ; 

11.    n=n +1; 

12.   ATB = ATB-UE; 
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Followed the discussion above, raw material agents’ behaviors are described as follows, 

Procedure 6.3. 

1. Randomly adjust its internal parameters including CT, EUFC and β  

2. If receiving an order from the its customer,  

3.   Then make a commitment to it. 

4. If it is active and there is unexpected event occurring in it 

5.   Then 

6.   Update agents beliefs follow Rule 1 or Rule2 (Procedure 6.2) 

7.    Make decision on Commitment Cancellation using Algorithm 5.2; 

8.    Operate local unit of 2eBBN  using Algorithm 5.1; 

9.   If receiving a λ message 

10.    Then 

11.    Make decision on Commitment Cancellation using Algorithm 5.3; 

 

At initial time, all agents in system are inactive. When an end order arrives, it 

causes the end customer agent become active and generates orders to selected direct 

suppliers. These agents become active. An evolving VSC emerges. During end order 

solving process, certain numbers of unexpected events occur in raw material agents. The 

effects of these unexpected events propagate through sell-buy connections, which may or 

may not eventually cause the end customer agent to flip from active to inactive. If, after 

these unexpected events happen, the end customer agent remains active status, we say the 

end order is solved successfully. If it is become inactive, the system fails to find a 
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solution to this end order. No matter in which case, the system is reset to initial state. The 

end customer agent becomes inactive. An end order is continuously generated to the 

system whenever the end customer agent is inactive. 

 

The following table summarizes the difference between two settings of simulation. 

 

 Simulation Setting 1 Simulation Setting 2 

Uncertainty mechanism 

used in raw material 

providers 

Rule set 1; exactly 

following discussion in 

Section 5.1 

Rule set 2; Procedure 6.2. 

Uncertainty mechanism 

used in other agents 

Unlimited times to select 

direct suppliers from a 

group of agents that provide 

the same product. 

Limited times to select direct 

suppliers from a group of 

agents that provide the same 

product. 

Table 6.1 The difference between two simulation settings 

 

6.2   Experiment result and analysis 
 
In this section we present experiment result and analysis. In our experiment, for each 

simulation setting, we continuously generate certain number of end orders to the system. 

During each end order resolving process, certain unexpected events randomly occur to 

raw material providers. We compare their system performance. 

 

We have tested cases when there are 200, 500, 800,1000, 1600,2200 and 3000 

continuous end orders to the system, and during each end order solving process there are 

3 to 15 times of unexpected events occurring in raw material providers. Each of the 
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following figures shows an indivdual testing result with different numbers of end orders. 

Each data point represents ratio of the number of successful completed end orders to the 

various number of end orders (Y axis) under different number of uncertain events (X 

axis).   
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System performance comparison with 500 end orders
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System performance with 800 end orders
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System performance with 1000 end orders
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System performance comparison with 1600 end orders
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System performance comparison with 2200 end orders
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System performance comparison with 3000 end orders
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Figure 6.1 Experiment result  

(Note: series1 is the experiment under simulation setting 1; on the contrary, seriers2 is the experiment under simulation setting2.) 

 

Form the Figure 6.1 we can see if other conditions keep same, system has more 

stable performance in simulation setting 1 than in simulation setting 2. It can be 

explained that in setting 1, when an unexpected event occurs in an active raw material 

provider, the components of an evolving VSC are automatically update according to this 

change. The impact of this event has been clean up right away if possible. Therefore, 

although when uncertain events occur in a high frequency, the system performance 

changes little. On the contrary in setting 2, the impact of uncertainty is, to some degree, 

accumulated, which has more chance to move agent beliefs toward the direction that 

eventually causes the agent or its downstream agents to cancel commitments. In addition, 

since in setting two agents only have limited times to choose a direct supplier from a 

group of agent that provides the same products, which further restricts the adjustment 

capability of an evolving VSC facing to unexpected challenges. Thus, when uncertain 

events appear often, the system performance goes down dramatically. 

6.3   Summary 
 

In this Chapter we discuss the experiment we made on a small MASCM. In the 

experiment, eBBN is used as an analytic platform to study the relationship between 

uncertainty mechanism and overall system performance in two different setting. We find 

when agent use the uncertainty mechanism that exactly follows our discussion in Chapter 

5 has more stable performance than the competitor.  
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Chapter 7   Conclusion and future research directions 
 

 

In this chapter we summarize this dissertation research and discuss future research 

directions. 

7.1   Achievements 
 

In this dissertation we presented a theoretical model, called extended Bayesian Belief 

Network (eBBN), to formalize functional agent interaction in the uncertain environment. 

The impact of an observed unexpected event is formalized as agent’s belief on 

commitment failure; the causal relationship related to the agent’s belief exhibiting in the 

system is model as links; agents’ effort to share information and knowledge related to 

uncertainty is generalized as agents’ belief update and propagation over links.  

 

eBBN model extends the representation and inference capability of traditional 

Bayesian Belief networks (BBNs). It innovatively introduces both Y type and L type 

nodes to catch the change of demand-supply relationship so that, unlike other BBNs, it 

can describe the dynamically updated causal relationship in a complex agent system with 

the evolvement of a VSC. Based on this representation a set of equations used for agents 

to reason over uncertain factors are deduced. These equations are easily used in agent 

decision procedures. Through properly extending previous works and defining the 

concept of actions, eBBN can study the effect of agents’ strategic behaviors on other 

agents’ belief change. 
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We specifically study a serial eBBN models, 0eBBN , 1eBBN  and 2eBBN  for a 

simple MASCM, called 1MASCM . The model of 2eBBN  is further used as a basis to 

design algorithms for uncertainty management of an individual functional agent, 

including Commitment Cancellation and Supplier Selection and Switch. In the system, if 

there exists a type of informational agent, called Statistical Agents (SA), this type of 

agents can use this model to generate public information on Weak Link Discovery, which 

can help improve overall system performance. 

 

We use an 2eBBN  model as an analytical platform to study the relationship 

between uncertainty mechanisms of individual agents and overall system performance. 

We find that when agents exactly follow algorithms of uncertainty management and 

operations on the local unit of the model that we present, the overall system performance 

is stable. 

 

7.2   Model limitations and future study 
 

In this dissertation, we do not present a general model for any MASCM. The most 

sophisticated eBBN model we developed is 2eBBN , which only formalizes interaction 

between functional agents when each of them holds one customer commitment at one 

time. But in many practical scenarios, agent behaviors might not follow this assumption. 

For example, a customer agent might make two different orders at the same time. This 

requires that we further extend 2eBBN  model. 
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When we limit the number of commitments a functional agent holds, 2eBBN  

actually models one slice of multi-threaded activities occurring among functional agents. 

Each of these slices can be thought as a 1MASCM . Thus, one solution to studying agent 

interactions in complex MASCM is to represent its states as multiple but connected 

DSDC graphs, each of which corresponds to a 2eBBN  graph. For example if involved in 

two OFPs triggered by its direct customers, functional agent iA  manipulates two sets of 

nodes, each of which is part of individual 2eBBN  model. Agent iA  uses internal business 

logics to control the connection between these different sets of variables. In other words, 

we use two or more 2eBBN  graphs to formalize agent interactions in a complex 

MASCM. The solution is feasible and does not require more on theoretical exploration. 

But it requires designing an additional mechanism for agent to coordinate multiple 

2eBBN  models.  

 

The other possible solution is to extend the definition of node (hype-node) and 

link (hype-link). Each of them can have complicated internal structures. In other words, a 

hype-node is not equal to a random variable anymore but consists of connected variables 

with the same type, e.g. two commitment failure variables. A hype-link represents the 

causal relationship between two hype-nodes rather than the one between two random 

variables. In this way, a MASCM can be still represented as a single 2eBBN  graph. 

Agents follow the simple operations defined in Chapter 5. But agent interactions may 

cause a relatively complex change of hype-nodes. This solution shifts the difficulty from 
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the agent design to BBN concept clarification. It needs more elaboration and fundamental 

research. 

 

Based on the discussion above, we hope that the progress achieved in this research will 

provide a substantial understanding of agent interactions in an uncertain environment and 

will serve as the fundation for studying the relationship between local decisions and 

global performance. 
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