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Many researchers have applied text classification techniques to the ontology mapping 

problem. The mapping results in these researches heavily depend on the availability of 

highly relevant text exemplars associated with individual concepts. However, manual 

preparation of exemplars is costly. In this work, we propose to automatically collect text 

exemplars by downloading and processing web pages listed in the search results obtained 

by querying a search engine. Search queries are formed for each concept according to the 

semantic information given in the ontology. We have implemented a prototype system 

and conducted a series of experiments. Given two ontologies, the process from forming 

search queries to calculating conditional probability of two concepts is fully automated. 

We assessed the effectiveness of our approach by comparing the obtained conditional 

probabilities in these experiments with human expectations. Our main contribution is that 

we explored the possibilities of utilizing web information for text classification based 

ontology mapping and made several valuable discoveries on its usefulness for future 

research.
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1. Introduction 

The semantic web is "an extension of the current web” [BLHL01], where information 

is marked up by ontology languages such as RDF and OWL so that it can be better proc-

essed by programs. However, it is not realistic to assume a single ontology shared by 

everyone. Instead, different organizations may have different ontologies for the same 

domain, and different ontology designers may use different terms for the same or similar 

concepts, reflecting their own perceptions and conceptualizations of the domain.  For ex-

ample, a course to teach neural networks may be called “Introduction to Neural Net-

works” in one university’s course ontology and be called “Introduction to Connectionist 

Models” in the other’s. Understanding these two courses actually teaching similar mate-

rials is not a problem to a computer science professor because in the professor’s knowl-

edge base these two terms are very similar, i.e., they have the same or very similar mean-

ing or semantics. However, when programs based on one ontology try to exchange in-

formation with programs based on another, problems will happen. This so-called interop-

erability problem has been known for a long time in software integration, and becomes 

more acute in the semantic web [WR04]. 

One of the approaches to address this interoperability problem is to map concepts de-

fined in one ontology to semantically identical or similar concepts in another ontology. 

Text classification is a very powerful machine learning technique some have suggested 

for this purpose [DMDDH02, SPF02]. However, its success is highly dependent on the 

availability of text documents that are exemplars of individual concepts in the ontologies. 

Manually preparing a good number of highly relevant exemplars for hundreds of con-

cepts requires great efforts and time from domain experts, greatly reducing the attractive-
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ness of this approach, especially when dealing with large ontologies and in applications 

that require quick responses. We propose to automatically retrieve exemplars from the 

web, the largest information source available. An automated prototype system has been 

built based on this idea which allows us to experiment with different parameters and 

methods in each step of this approach. A series of experiments have shown encouraging 

results. 

The rest of the paper is organized as follows. Section 2 provides background and mo-

tives of this work; Section 3 presents the technical details of our approach and the proto-

type system; Section 4 shows the experiments and results; Section 5 discusses some limi-

tations of this approach and issues we have observed; Section 6 compares with related 

works; Section 7 suggests future works; and finally Section 8 gives conclusions of this 

work.   

2. Background and Motivation 

 In this section, we first introduce the concepts of the semantic web and ontology. 

Then we briefly explain the different languages used to develop ontology files and de-

scribe several large ontologies available. After this, we define the ontology mapping 

problem and discuss different approaches to ontology mapping.  At the end of this sec-

tion, we present the hypothesis our research is set to test.  

2.1 The semantic web and ontology 

The Internet has enabled us to do many things more efficiently, for example, finding 

out the show time of a new movie being played at the theater nearest to our house, reserv-

ing a rental car at the lowest price at an airport of another city where we are going the 
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next week, buying a book or a research paper on an interested topic that can be delivered 

in the shortest amount of time, and many other useful things can be done in minutes be-

fore a computer. The web has provided us enough information and applications that make 

all these amazing things possible. However, we, humans, are still the center of these 

tasks. We still need to collect, compare, and analyze most of the information and make 

important decisions during the process. Sometimes, the process can take a long time and 

we are just wondering whether programs can do more and better for us.  

They cannot. The information available on the WWW is meaningful only to us hu-

mans. We understand the relation between a movie and a theater. We understand the rela-

tion between a rental car and an airport. But to a general program, these are just strings 

and it cannot do anything more with these strings if not specifically programmed. The 

solution will be that either we make a lot of complicated specialized programs, each one 

possessing some part of the information and being able to process them intelligently 

enough for some specific purposes, for example, a search engine like Google, or we can 

mark up the information available on the web, defining the relations between “strings”, 

so that every program understanding the markup language can understand the informa-

tion in the same way and being able to process it more easily. We have built so many 

complicated programs, yet they never catch up our needs. So a universally accessible and 

machine-understandable web of information looks the way to go. This is the vision of the 

Semantic Web [BLHL01] and one way to organize and markup information is to use on-

tologies defined in some common languages.    

In computer science, an ontology is a set of concepts each of which can have individ-

ual members, descriptions of its own properties and relations with other concepts in the 
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set. Everybody can develop an ontology to be used by programs and other people. For 

example, Figure 1 shows a simple ontology defined in OWL based on [UM06]. Figure 2 

shows the relations between the concepts of ontology. If a program is able to parse this 

markup language, then from this ontology, the program can have the knowledge that 

Boeing Jet is a kind of commercial jet and Boeing-747 is a kind of Boeing Jet by observ-

ing the SubClassOf property. If we define a “made-in” property that tells us where these 

commercial jets are made, the class Boeing-Jet may have such a relation with another 

class WA. If the ontology also has information or the program can find in some other on-

tologies that WA is the same as Washington State, and it is “a-part-of” USA, then these 

pieces of information can be easily used to answer questions like “Find all types of jets 

that are made in the USA”.  
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Figure 1 Ontology for CommercialJet in OWL 

 

 
Figure 2 Ontology for CommercialJet viewed as a concept tree 
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By defining relations between concepts and organizing our knowledge using ontology 

languages, we effectively build a web of concepts, a huge integrated database, where in-

formation can be easily shared among applications and more complicated reasoning can 

be supported.   

2.2 Ontology languages 

 There are quite a few languages developed to encode our knowledge into ontology 

files, most of which are based on XML. Here we briefly introduce some often used ones. 

2.2.1 RDF and N3 

 RDF (Resource Description Framework) is a framework recommended by W3C to be 

used for metadata description and interchanging. Basically, a RDF file is formed by tri-

ples, which are statements on available resources in subject-predicate-object format. Sub-

ject is some resource, identified by a URI. Predicate is a property of the resource and ob-

ject is the value of the property. N3, or notation 3 is a language designed based on RDF, 

which is more compact and human readable. Specifications about RDF and N3 can be 

found at W3C’s website. 

2.2.2 OWL 

 OWL (Web Ontology Language) is the standard language recommended by W3C to 

publish ontologies on the web. It is derived from DAML+OIL, an early version of ontol-

ogy language based on RDF, description logics and frame languages. OWL provides a 

richer vocabulary, more relations between concepts and supports more complex reason-

ing. For example, restricted cardinality, class equality and intersection can be expressed 

using OWL. OWL has three variations, OWL Lite, OWL DL and OWL Full, in an in-

creasing order of complexity. Specification of OWL can be found at the W3C website. 
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Ontologies used in this thesis are in OWL Lite. If relations between classes defined in an 

ontology file only contain subClassOf, we can view the ontology as a taxonomy and in 

this thesis, we sometimes refer to it as a concept tree. 

2.2.3 KIF 

 KIF (Knowledge Interchange Format) [kif] was originally designed as an interchange 

format, as it is named, to be processed by computers as a representation for first-order 

logic. However, more and more ontology developers use it to author ontology files be-

cause its easiness to be processed. For example, the Food and Agriculture Organization 

of the United Nations organized its knowledge and vocabulary in several agriculture re-

lated domains into ontology files coded in several formats, one of which is KIF. A variant 

of KIF, SUO-KIF is used to write ontology files in SUMO [NP03] 

2.3 Some large ontologies 

 With more and more people agreeing on the importance and inevitability of the se-

mantic web, there are more and more projects started to develop ontologies and tools to 

write, publish, and use ontologies. Here we introduce a few large ontologies, some of 

which we will mention again in the later part of this thesis.  

 OpenCyc [RL02] probably is the largest human knowledge base that has been devel-

oped since the 80s by the Cycorp. The latest version of OpenCyc has 47,000 concepts 

forming an upper ontology covering (almost) all domains of “human consensus reality”. 

There are also 306,000 assertions made about these concepts. Inference engine and 

knowledge base browser are also provided for OpenCyc. The knowledge base is coded in 

a logic programming language called CycL. There are translators from CycL to Lisp and 

C. 

 - 11 - 11



  WordNet [wn] is a “lexical reference system” only for English words developed at 

Princeton University. It is formed by synonym sets of nouns, verbs, adjective and ad-

verbs. These synonym sets can have relations with one another. According to [NP03], 

“there are 66,054 noun synsets, 17,944 adjective synsets, 3,064 adverb synsets, and 

12,156 verb synsets”.  

 SUMO (Suggested Upper Merged Ontology) [sumo] is developed by Teknowledge 

Corporation using SUO-KIF, a language similar to KIF, to define general-purpose con-

cepts, which will be a foundation for more specific ontologies for different domains. Ac-

cording to [NP03], SUMO “has been proposed as a starter document” for IEEE’s SUO 

(Suggested Upper Ontology) working group. Currently it has ontologies for domains in-

cluding computing services, finance, economy, terrorism, WMD, government, geogra-

phy, and transportation, containing around 1,000 terms and 4,000 assertions. With 

SUMO, Teknowledge Corporation also provides MILO (MId Level Ontology), an ontol-

ogy positioned between SUMO and detailed domain ontologies as a bridge.  

2.4 Ontology mapping 

Since the start of the semantic web effort, many ontologies have been developed by 

many organizations and individuals. For example, according to Swoogle [FD05] a se-

mantic web search and metadata engine, as of July 2006 there are approximately 10,000 

ontology documents in the web. A program that understands one ontology does not nec-

essarily understand web pages whose semantics are specified using concepts defined in 

other ontologies. It is hard to centralize the ontology development effort toward a unified 

ontology for all people, and it is also a fact that people can use different terms for the 

same concept and that people can have different views on knowledge of the same do-
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main, so different ontologies can be created for the same domain and interoperability 

problem can arise [WR04]. For the semantic web to work, it is imperative to relate or 

map concepts between such ontologies.  

2.4.1 Ontology mapping definition 

 The problem we are trying to solve in this thesis is defined as follows: 

 Given an ontology OntoA and another ontology OntoB both defined for the same do-

main (or their domains overlap), we would like to be able to know the relation between 

any given concept Ci in OntoA and any given concept Cj in OntoB. If there are m concepts 

in OntoA and n concepts in OntoB, then we would like to find a function f,  which returns 

a relation r, 

r = f (Ci, Cj) where i=1, …, n and  j=1, …, m; 

r = {equivalent, subClassOf, superClassof, complement, overlapped, other} 

 Completely and neatly solve the ontology mapping problem defined above is diffi-

cult.   In most cases, we just want to know if Cj in OntoB has any equivalent correspond-

ing class Ci defined in OntoA. This is the easiest place to start solving the whole problem, 

and also where most researches, including this one, have put their efforts on. 

2.4.2 Approaches for ontology mapping 

 Different approaches to ontology mapping have been developed. Manual mappings 

between some large ontologies have been tried in recent years. In [RL02], researchers 

from OpenCyc integrated knowledge from resources like SENSUS, FIPS (Federal Infor-

mation Processing Standards), pharmaceutical thesauri, WordNet, MeSH (Medical Sub-

ject Headings), CIA World Factbook, etc. into OpenCyc's knowledge base. Knowledge 

workers, such as those who are trained to develop OpenCyc ontologies, and domain ex-
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perts, people who have expertise knowledge of a given domain, worked together for this 

task. To make the work more efficient, a dialogue based tool was developed to work with 

the domain experts, so that in some cases they could just input knowledge and answer 

questions prompted by the program, without having to know how to convert their input 

into OpenCyc's ontology language. In [NP03], mapping the noun synsets from WordNet 

to SUMO was carried out. Different relations between concepts are marked during the 

mapping process. For example, a noun from SUMO will be added at the end of the corre-

sponding WordNet entry with a prefixed sign. Manual mapping like these is accurate and 

it can be saved for future use.  The problem is that the size of ontologies can be very 

large and ontologies can keep growing, which requests a huge amount of continuous hu-

man efforts. Moreover, this approach is also restricted by the availability of domain ex-

perts’ knowledge and its slow response time. More and more researchers are looking for 

ways to map ontologies semi-automatically or automatically. 

String matching of concept names in two ontologies [Li04] is an effective alternative. 

Large amount of information can be processed very quickly and with some degree of ac-

curacy. For example, in [Li04], the first step is to do a “whole term matching”.  The 

terms used in both ontologies are changed to lowercase and are used for string 

comparison. After the first step, a “word constituent matching” is performed for concepts 

that do not find a match yet. A term, which is a combination of several English words, for 

example, ArtificialIntelligence, ComputerScience, TeachingAssistant, is broken into 

separate words whenever a capital letter is encountered. Stop words like “the”, “a”, “in”, 

etc. are filtered out. The remaining words are processed morphologically and are used as 

inputs to string matching. Terms such as “written-by” and “wrote”, “meetingPlace” and 
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to string matching. Terms such as “written-by” and “wrote”, “meetingPlace” and 

“PlaceOfMeeting” can be matched with one another in this way.  

The next step is “Synset matching”, where WordNet [wn] is used. For each term in an 

ontology file that do not have a match yet, if its constituent words are in WordNet, then 

each of these words must belong to some synsets. Synset index numbers are recorded for 

each term. Two terms from two different ontologies are matched if they have the most 

synset index numbers in common. If by these three steps, a mapping still cannot be found 

for a term and this term has synsets in WordNet, corresponding SUMO mapping of its 

synset is searched. Using this SUMO mapping as a bridge, possible mapping to terms in 

the target ontology can be found. This requires the target term also has associated syn-

sets, which has mappings in SUMO. Approaches like this usually involve complicated 

lexical analysis and a complete dictionary such as WordNet has to be consulted to make a 

correct mapping.  Also, there are some situations that the string matching approach will 

not work at all, because one word can have different semantic meanings or word senses 

which are represented by different classes, possibly in different ontologies. For example, 

the word notebook can either be a kind of computer or be a kind of office supplies. A tool 

based on the string matching approach would map these two different classes as equiva-

lent to one another. 

 Many researchers choose machine learning methods to solve the problem, especially 

text classification techniques [MG01, DMDDH02, SPF02], because the semantic mean-

ing of a concept is contained in an exemplar that uses the concept in a desired context. 

Usually, such text exemplars for each concept or class in a given ontology (OntoA) are 

manually prepared. Then a text classifier is trained using these data. To map a concept C 
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defined in another ontology (OntoB) to some concept in OntoA, exemplars for C need to 

be collected and classified into the classifier of OntoA, which itself was built from exem-

plars of its concept. Based on the initial classification results, algorithms such as [LG01] 

and [DMDDH02] can be used to carry out the further steps of ontology mapping. Text 

classification based ontology mapping is more efficient than manual mapping, and more 

powerful than string matching, because semantic meanings of apparently different strings 

can be analyzed by processing information contained in the provided exemplars. Here, 

the existence of exemplars for each concept and their relevancy to the concept they repre-

sent are the key factors to the effectiveness of this approach. However, finding sufficient 

quantity of high quality exemplars manually is time-consuming, and is thus the limiting 

factor of this approach.  

2.5 Our proposal 

The WWW is the richest information resource available anywhere in the world. There 

are tens of billions of web pages available on the WWW. There must be a sufficient 

number of documents on the WWW that explain a concept, describe the usage of a con-

cept, or use the desired semantic meaning of a concept in some context. If there is a way 

to find such documents automatically and quickly, the limiting factor of the text classifi-

cation based approach will be gone and we will be in a better position to solve the ontol-

ogy mapping problem.  

To achieve this goal, we can choose to use a search engine as part of the solution. A 

search engine is a killer application of the Internet. It indexes tens of billions of web 

pages accessible on the web and provides links of the most relevant ones to a query sub-

mitted by a user. Of course, a search engine would never know whether a document is 
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relevant or not regarding a search query, only a human user can judge that. A search en-

gine can only make its best guesses based on some very complicated algorithms. How-

ever, a good search engine would offer us the best combination of speed and search 

qualities verified by hundreds of millions human users, with the most relevant documents 

to a search query often appearing in the first few pages of its search results. Based on vir-

tually unlimited text information offered by the Internet and the matured services pro-

vided by modern search engines, we propose the following hypothesis:  

By using a concept defined in an ontology to form a search query and collecting web 

documents related to the concept from the WWW, we can get a good quantity of useable 

text exemplars.  

To prove this hypothesis, we designed a tool to retrieve documents from the web with 

the help of a search engine and tried a number of different ways to process the documents 

downloaded before using them for text classification. We tested our tool by actually per-

forming some preliminary ontology mapping experiments with small scale ontologies. 

3. System Design 

 When describing the components of the system, we use OntoA to refer to the ontology 

in which we seek a mapping for a foreign concept and use OntoB to refer to the ontology 

which provides the semantic definition of the foreign concept. The system has the follow-

ing main components: 

1. A parser to parse ontology files in OWL format to form search queries. 

2. A retriever to drive a web search engine with the queries generated by the parser 

and to retrieve a specified number of web pages based on the search results. 

 - 17 - 17



3. A processor to process the raw HTML documents obtained from the retriever to 

construct text files as exemplars for concepts in the ontologies. 

4. A model builder to build a probabilistic model from the processed text files asso-

ciated with OntoA by calling a text classification software. 

5. A calculator to feed the text files produced by the processor for concepts in On-

toB to the text classifier built for OntoA, collects classification outputs and calcu-

lates initial mapping results as conditional probabilities. 

We chose Google as our search engine and Rainbow [MC96] for our text classifica-

tion. The structure of the system is shown below. Figure 3 shows the process from gener-

ating queries to obtaining text exemplars. Figure 4 shows the process from building a 

probabilistic feature model to calculating conditional probabilities for ontology mapping. 

Details of different components are explained in later sections.  

Ontology A

Parser

Processor

Search Engine

HTML Docs

Queries

Text Files

Links to Web Pages

WWW

Retriever

Retriever

 

Figure 3 System components overview Part I 
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Ontology A Ontology BModel Builder

Mapping Results

Text Files (B)

CalculatorFeature Model

Text Files (A)

Rainbow

Rainbow

 

Figure 4 System components overview Part II 

3.1. The parser 

 Given an ontology file, we parse the file to generate search queries for Google. To 

obtain better results, the query should contain more semantic information than just a class 

name. Because a word may have multiple senses or meanings, a query consisting of only 

the words of a concept’s name may return web pages based on a more popular meaning 

of the word, which sometimes is not the particular meaning intended for the concept in 

the ontology. For example, in an ontology for food with a root class called “food”, we 

may have a concept “apple”, which is a subclass of “fruit”. If we only use “apple” as the 

keyword, documents showing how to make an apple pie and documents showing how to 

use an iPod may both be returned with more documents for iPod due to its popularity on 

the web. Apparently, the documents using apple for its meaning in computer and enter-
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tainment fields are irrelevant to a subclass of fruit. To avoid this, when forming a query, 

we use all the terms on the path from root class to the class in question together as a 

query to send to the search engine. In the apple example, the query would be 

“food+fruit+apple” instead of “apple” itself alone. By doing so, the number of irrelevant 

documents returned can be greatly reduced. This kind of “word sense disambiguation” by 

adding additional semantically relevant terms into the search queries can be further ex-

tended to include the concept’s properties, its subclasses, instances, and other semanti-

cally related items available in the ontology definition file. For our experiments we de-

veloped a simple LIVING_THINGS ontology for the biology domain. Figure 5 is the on-

tology in OWL format. The concept tree in Figure 6 shows relations between the con-

cepts and Table 1 lists the queries generated for each class defined in the LIV-

ING_THINGS ontology.  
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Figure 5 Living_Things ontology in OWL format 
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Figure 6 Structure of LIVING_THINGS ontology 

 

Concepts Queries 
liv-

ing+things living+things 

Animal living+things+animal 

Plant living+things+plant 

Cat living+things+animal+cat 

Human living+things+animal+human 

Man living+things+animal+human+man 

woman living+things+animal+human+woman 

Tree living+things+plant+tree 

Grass living+things+plant+grass 

Frutex living+things+plant+tree+Frutex 

Arbor living+things+plant+tree+arbor 

Table 1 A set of queries generated from LIVING_THIGNS ontology 
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It needs to be noted that, as shown in some of our experiments, queries that include too 

many terms of high specificity (e.g., some concepts in zoology or botany) may lead to 

very few or even empty search results. 

3.2. The retriever 

 There are tens of billions documents available on the web. For a text classification 

problem, usually only a few dozens to a few hundreds exemplars for each concept are 

needed. For most of the experiments, we retrieved documents with the help of Google, 

because it is the easiest one to be integrated into our system and it is generally considered 

the best by human users, which makes us believe that its results are possibly the most 

relevant to the query among publicly available search engines. Although Google pro-

vided a programming API to download web pages listed in search results, we still de-

cided to develop our own retriever program. This gives us the flexibility to experiment 

with search engines other than Google (for example, Clusty.com, a search engine which 

also clusters the search results [cl]) in some of our experiments. 

 The retriever takes a file containing queries generated by the parser, initiates a con-

nection with a search engine, and sends a query in. Then it goes through the result pages 

one by one and extracts URLs of web pages listed as search results on each page. URLs 

of web pages listed as the search results can be identified by their special HTML coding 

patterns, so advertisements and other URLs on each page that are not search results can 

be escaped. After it collects a pre-specified number of URLs, it tries to download web 

pages at these URLs. In the current prototype implementation, only URLs starting with 

http:// and ending with .html, .htm or / are extracted because other file types, for example, 

doc or pdf will be difficult for our current processor to process. Sometimes, the retriever 
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cannot download a web page due to connection timeout or the web page being deleted 

but still cached by the search engine. All the HTML files obtained through a query for a 

particular class are saved in a directory using the query as the directory name and will be 

used by the processor to generate exemplars for that class.  

3.3. The processor 

 Documents collected by the retriever are HTML files. They contain HTML tags, im-

ages, texts and script programs etc. These raw data have to be processed before being fed 

into a text classifier. The processor will remove all HTML tags, image files, script pro-

grams, etc. Also removed are hyperlinks, which may contain some useful semantic in-

formation. For example, for the query “living+things+animal”, the document ranked 

highest by Google is at http://www.fi.edu/tfi/units/life/classify/classify.html. Many ani-

mal names are represented using hyperlinks in this page. But more often a webpage will 

contain a certain amount of links to other irrelevant pages and websites, for example, 

online advertisements, other services and information provided by the hosting website 

which are not related to the topic of the current page, etc. Since the retriever can easily 

retrieve a huge amount of relevant documents from the web, we can afford to be more 

selective in the process and do not have to worry about losing a very small amount of po-

tentially useful information when removing hyperlinks.   

 After the above steps, what we have are a large number of pure text files for each 

concept, contained in one directory per concept. The processor now has a optional step 

for these files: keeping only the sentences where a word in the query appears and delete 

all other sentences. Since not every part of the text file is necessarily relevant to the class 

in question, this step may help remove irrelevant information and keep only the most 
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closely relevant texts. Text files processed with and without this option are both used in 

our experiments and the results are compared. The processor can also choose to keep 

paragraphs, rather than sentences in which query words appear. 

3.4. Bayes rule and the naïve Bayes text classifier 

 There are quite a few text classification algorithms available for ontology mapping, 

for example, naïve bayes, TF-IDF, and support vector machines, etc. We choose to use 

naïve bayes text classification in our research because it is a simple algorithm and it 

shows good performance in many evaluations [Mi97]. We also thought that it would give 

an accurate value for the conditional probability for each class used to train the classifier, 

given text exemplars of a new class.  

3.4.2 Bayes rule 

A naïve Bayes classifier is based on Bayes rule. Suppose we have event A and B in 

our event space E, Bayes rule tells us that 

P(A | B) * P(B) = P(B | A) * P(A) = P(A, B) 
 

Where  
• P(A) is the prior or marginal probability. It describes our belief that event A will 

happen.  

• P(B) is the prior probability of even B. 

• P(A|B) is the conditional probability of A, given B. It describes our belief that if 

event B happens, event A will happen.   

• P(B|A) is the conditional probability of B, given A.  

• P(A, B) is the joint probability of event A and event B. It describes our belief that 

both event A and event B happen at the same time.     
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Bayes rule explains the relations between prior probability, conditional probability and 

joint probability. It is a powerful tool for probability reasoning. Especially when P(A | B) 

is useful, but unknown and hard to obtain directly, we can use 

P(A | B) = P(B | A) * P(A) / P(B) 
 

to calculate P(A | B), the posterior probability of A, given B if other variables in Bayes 

rule are available, which is precisely the situation of a text classification problem. 

3.4.2 Naïve Bayes text classifier 

 In a text classification problem, we need to decide among a set of mutually exclusive 

categories or events C1, C2, … Cn, to which category a new document d should belong. 

This can be determined by which category has the greatest posterior probability, given d, 

i.e., maxi(P(Ci | d)| i = 1, …, n).  

 P(Ci | d) is hard to calculate directly, so we apply Bayes’ rule here, 

P(Ci | d) = P(d | Ci) * P(Ci) / P(d) 

Since P(d), the prior probability of d, also called a normalizing constant, is the same for 

every Ci, the classification is thus determined by  

maxi(P(d | Ci) * P(Ci)),                                                                                         (1) 

because what we are interested here is not the absolute values of the posteriors but their 

ranking among all categories. Here P(Ci), the prior probability of category i, can be esti-

mated by the ratio of the number of exemplars for category Ci and the number of exem-

plars of all categories (if these exemplars are randomly drawn samples) or some other 

methods [Mi97].  

 Probability P(d | Ci)  is more difficult to estimate. Naïve Bayes classification does it 

based on word frequencies in each category for a predetermined set of words. Let d con-
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tain m distinct words d = {w1, …, wm}, assuming that whether a word appears in a cate-

gory is independent of other words in that category, then we have  

                                                          (2) )|()|,...,()|( 11 ij
m
jimi CwPCwwPCdP =Π==

 Probabilities P(wj | Ci) for all categories Ci and all words wj form the probabilistic 

feature model for these categories, and they can be easily learned from exemplars associ-

ated with each Ci. Then the classifier, which combines the decision rule of (1) and the 

model (2), is given as 

  .                                                                              (3) ))|()((max 1 ij
m
jii CwPCP =Π

If needed, the actual posterior probability P(Ci | d) can then be computed by normal-

izing P(Ci , d) = P(d | Ci) * P(Ci) where P(d | Ci) is given by (2):  

 ∑
=

j jj

ii
i CPCdP

CPCdPdCP
)()|(

)()|()|(                                                                              (4) 

Note that the independence assumption in naïve Bayes classifier does not hold in gen-

eral. Despite of this, good performance is still achieved. Figure 7 taken from [Mi97] 

shows the general algorithm of a naïve Bayes text classifier. Details of naïve Bayes clas-

sifiers can be found in [Mi97] 
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Figure 7 General Algorithm for a naïve Bayes classifier 

 

 We chose Rainbow as our text classifier. It is robust, fast and it implements naïve 

Bayes text classification algorithm.  However, because of the conditional independence 

assumption, Rainbow and other naïve Bayes text classifiers tend to produce extreme val-

ues (0 and 1) for the conditional probabilities according to (4). The classifier will assign 

1 or a value very close to 1 to a category that it a clear winner for the new document and 

assign 0 or a value very close to 0 to other categories. This is certainly good enough if 

 - 28 - 28



one only wants to get a right classification result. However, our purpose is to use the clas-

sifier to obtain the conditional probability of a concept in OntoA, given a new concept in 

OntoB, and hope to use this value as a basis to measure the semantic similarity between 

these two concepts. In other words, what we want are more accurate posteriors, not those 

that are distorted by the independence assumption of naïve Bayes. For this purpose we 

developed a calculator, given in Subsection 3.6 shortly, which uses Rainbow to calculate 

this conditional probability (which can be any value between 0 and 1).  

3.5. The model builder 

 A naïve Bayes classifier requires the predefined categories C1, C2, …, Cn to be ex-

haustive regarding to the domain and mutually exclusive to one another, so that the prob-

ability results can be correctly sum to 1. In our system, classification categories are 

closely related to ontology concept classes. Our model builder allows one to select con-

cept classes in different ways when forming these classification categories.  

 For simplicity, this work only considers OWL ontology files that can be viewed as a 

concept tree based on the subClassOf property. The leaf classes in such a tree are as-

sumed to be mutually exclusive to one another and exhaustive regarding to the root class. 

By leaf classes, we mean those classes that do not have a subclass.   

The default behavior of the model builder is to use all leaf classes in an ontology as 

the classification categories, and each of which is associated with a set of text exemplars 

generated from the processor module. Then the model builder calls Rainbow to build a 

probabilistic feature model for these categories. This model will then be used by the cal-

culator to calculate the conditional probability of each leaf class, given exemplars of a 

foreign class.  
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  Besides the default behavior, the model builder has an option to build a model for 

each class in OntoA except the root. Two exhaustive and mutually exclusive categories 

A+ and A- are created by the model builder for class A in OntoA. A+ is associated with ex-

emplars for that class, and A- is associated with exemplars for the complement of that 

class, which are taken from classes that are not A, not A’s ancestors nor A’s successors in 

the ontology tree. The model builder then uses these two categories to build a model. 

This option is not applicable to the root class, because the root does not have a comple-

ment in the context. For example, consider the class “CAT” in the LIVING_THINGS 

ontology tree shown again in Figure 8. The exemplars for its complement “not CAT” 

would include exemplars found for all classes except “CAT” and except its ancestors 

“ANIMAL” and “LIVING_THINGS”, which are classes in shadow. The model builder 

can also restrict the scope of complement in order to control the number of exemplars 

when there are too many such shadowed classes. For example, we can restrict the com-

plement to be only with respect to the parent of the class in question. Then the category 

of “not-CAT” can only has exemplars found for “HUMAN” and its descendents, shown 

in Figure 8 as the shadowed classes in a circle. Alternatively, exemplars for these two 

categories can be retrieved directly using two queires (e.g., “living+things+animal+cat” 

and “living+things+animal+-cat” in the “CAT” example). 
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Figure 8 Using exemplars from complement classes to build model 

 

3.6. The calculator 

 The tasks for the calculator are to (1) feed exemplars of a concept C of OntoB one by 

one to Rainbow, which performs classification using the model of OntoA, which has al-

ready been built by Rainbow, (2) keep record of the classification results for each exem-

plar, (3) calculate average results grouped by categories in the model as the conditional 

probabilities, and (4) write a summary report. It can also perform some additional calcu-

lations like estimating mapping results for non-leaf classes. 

 One way to obtain conditional probabilities is to concatenate all the exemplars of a 

foreign concept into one piece and feed this to Rainbow. As we have discussed, because 

of the naïve conditional independence assumption, Rainbow and text classifiers alike 

tend to output extreme values such as 0 and 1. Such values are not true conditional prob-
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abilities that would be useful in advanced mapping algorithms such as the one in research 

of [DPP05] and [DPPY05]. To avoid such extreme values, we treat each exemplar as a 

sample of a foreign concept and feed the exemplars one by one to Rainbow and average 

the results to obtain conditional probabilities. Here is an example to illustrate the way 

how an average classification result as a conditional probability for a class is calculated. 

For example, APC (Armored Personnel Carrier) is a class in WeaponsB.n3, an ontology 

file describing some knowledge in the weapons domain.  For the simplicity of our exam-

ple, suppose WeaponsA.n3, another ontology file for the same domain, has three classes 

which do not have subclasses. They are TANK-VEHICLE, AIR-DEFENSE-GUN, and 

SAUDI-NAVAL-MISSILE-CRAFT. We build a model using these three classes as clas-

sification categories. To calculate the conditional probabilities given class APC, we clas-

sify each exemplar of APC against the model. Table 2 below gives the classification re-

sults with 200 exemplars of APC. 

Categories in  
WeaponsA.n3 

Num. of exemplars falling 
in each category 

TANK-VEHICLE 170 

AIR-DEFENSE-GUN 20 

SAUDI-NAVAL-MISSILE-CRAFT 10 

Table 2 Example classification results 

 

Then by taking the average, the conditional probability P(TANK-VEHICLE | APC) = 

170 /200= 0.85, and similarly, 0.1 and 0.05 for the other two classes. Table 3 shows an 

actual report that the calculator generated for one of the experiments with the WEAPONS 

ontology when the classifier is trained with 63 leaf classes from WeaponsA.n3 and the 
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foreign class is APC coming from WeaponsB.n3. Each class contains averagely 100 

exemplars.  

APC  
SELF-PROPELLED-ARTILLERY 0.357180681 
TANK-VEHICLE 0.277139274 
ICBM 0.10423636 
MRBM 0.080615147 
TOWED-ARTILLERY 0.054724102 
SUPPORT-VESSEL 0.023265054 
PATROL-CRAFT 0.019570325 
MOLOTOV-COCKTAIL 0.015032411 
TORPEDO-CRAFT 0.013677696 
SUPER-ETENDARD 0.009856519 
MORTAR 0.00772997 
AIR-DEFENSE-GUN 0.002997109 
PATROL-COMBATANT 0.002846281 
TORPEDO 0.002687264 
TORNADO 0.002641316 
HY-4-C-201-MISSILE 0.001898627 
ANTI-RADAR-MISSILE 0.001868698 
AIR-TO-AIR-MISSILE 0.00175536 
MINE-WARFARE-VESSEL 0.001714463 
TORPEDO-CRAFT 0.001589625 
SS-N-22-SUNBURN-LCM 0.001560581 
SILKWORM-MISSILE 0.001317753 
SURFACE-TO-AIR-MISSILE 0.001144551 
AIR-TO-SURFACE-MISSILE 0.000887746 
NODONG-2-MISSILE 0.000882243 
M-9-MISSILE 0.000863944 
CSS2-MISSILE 0.000830065 
AIRCRAFT-CARRIER 0.000721183 
AMPHIBIOUS-VESSEL 0.000605727 
MINE-WARFARE-VESSEL 0.000579844 
CORVETTE 0.000521464 
SMALL-ARMS 0.000520033 
CHEMICAL-WEAPON 0.000518254 
NUCLEAR-WEAPON 0.000495419 
BIOLOGICAL-WEAPON 0.000493164 
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CRUISER 0.000456558 
AL-HUSSEIN-MISSILE 0.000453844 
FRIGATE 0.000419076 
SAUDI-NAVAL-MISSILE-CRAFT 0.000413961 
AL-FATTAH-MISSILE 0.000384428 
SCARAB-MISSILE 0.000347386 
NODONG-1-MISSILE 0.000335111 
ARTILLERY-SHELL 0.000309594 
SILKWORM-MISSILE-MOD 0.000274119 
AS-11-KILTER-ALCM 0.000268002 
PRINCIPAL-SURFACE-COMBATANT 0.00021418 
MACHINE-GUN 0.000211772 
MOLOTOV-COCKTAIL 0.000187578 
TRUCK-BOMB 0.000171675 
AS-9-KYLE-ALCM 0.000156403 
ARABIL-100-MISSILE 0.000111953 
AL-HIJARAH-MISSILE 7.65E-05 
OGHAB-MISSILE 7.12E-05 
BADAR-2000 4.28E-05 
YJ-2-C-802-LCM 3.86E-05 
SCUDB-MISSILE 2.21E-05 
SAQR-2000 2.17E-05 
CSS8-MISSILE 1.69E-05 
RGM-84A-HARPOON-SLCM 1.37E-05 
SCUDC-MISSILE 1.11E-05 
MUSHAK120-MISSILE 5.10E-07 
TAMMOUZ1-MISSILE 5.10E-07 
ZELZAL2-MISSILE 5.10E-07 

Table 3 Conditional probability given APC calculated by the calculator 

4. Experiments and results 

 A several ontologies of different sizes have been used in many of our experiments. To 

be concise, we only report here some representative experiments which involved two sets 

of ontologies. The first set of experiments uses a small ontology whose structure is shown 
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in Figure 6. We performed text classification between classes within this ontology and 

also with some foreign concepts.  

The second set of experiments uses two ontologies WeaponsA.n3 and WeaponsB.n3 

taken from I3Con2004 [i3c]. Each of these two ontologies contains over 80 classes,  not 

large to be included in this thesis. Their complete descriptions can be found in [i3c]. 

 The system was implemented on a Linux system. The retriever is coded in Java and 

the other components are done by Perl. Different components are glued together by shell 

scripts. The entire process from parsing, generating queries, to collecting exemplars, 

building models and calculating results is fully automated. The runtime of this process 

depends on how many text files are to be processed. Usually the retriever takes most of 

the time. It could take nearly 3 minutes to download 50 documents. However, this can be 

improved by using advanced programming techniques such as multithreading and setting 

the timeout for connections shorter. Processing documents, building model and calculat-

ing conditional probabilities is comparatively a lot faster. For a process involving 100 

documents, it usually only takes a few seconds for the processor, the model builder and 

the calculator to finish their jobs. Some utility tools, written in Perl, have also been de-

veloped for monitoring the process and post-processing the results, including sorting, 

formatting for EXCEL, and updating the conditional probability of non-leaf classes in 

OntoA based on the conditional probabilities of its leaf classes given a foreign concept, 

etc.  

4.1. Results for weapons ontologies 

 When generating a query for a class in the default mode, the parser will use all the 

classes from root class to the class in question. For weapons ontologies, because of their 
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high specificity, we decided to let the parser generate shorter queries, using only the 

names of the class itself and its parent class. This allows the search engine to return more 

results instead of none or very few for some of the full-path queries. 

 OntoA, WeaponsA.n3 has more than 60 leaf classes. The model builder would run in 

default mode, which would build a model using these leaf classes as classification cate-

gories. The retriever collected on average 100 exemplars for each class. The processor 

was executed in two different ways for comparison as discussed earlier: one is to use the 

default mode to obtain pure text exemplars; the other is to only keep sentences in which 

any of the search keywords appear as exemplars. 

 There are 9 classes in WeaponsB.n3 that do not appear in WeaponsA.n3. We try to 

find a mapping for each of them in WeaponsA.n3. The relations between these 9 classes 

are shown in Figure 9 and Figure 10. The shadowed blocks are these classes that need to 

be mapped.  

WEAPON

CONVENTIONAL-
WEAPON

ARMORED-
COMBAT-VEHICLE 

APCTANK-VEHICLE AIRCRAFT-CARRIER

MODERN-
NAVAL-SHIP

LIGHT-TANK LIGHT-
AIRCRAFT-CARRIER

 

Figure 9 Classes in WeaponsB.n3 that are not in WeaponsA.n3 (I) 

 

 - 36 - 36



WEAPON

CONVENTIONAL-
WEAPON

MODERN-
NAVAL-SHIP

PATROL-
WARTERCRAFT

PATROL-BOATPATROL-BOAT-RIVER
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FIGTHER-PLANE

FIGHTER-
ATTACK-PLANE

SUPER-
ETENDARD-FIGHTER

 

Figure 10 Classes in WeaponsB.n3 that are not in WeaponsA.n3 (II) 

 

 
 These 9 classes and their manually selected desired mapping leaf classes in Weap-

onsA.n3 are listed in Table 4. 

Classes from WeaponsB.n3 Desired leaf class mappings 

LIGHT-AIRCRAFT-CARRIER AIRCRAFT-CARRIER 

APC TANK-VEHICLE 

SUPER-ETENDARD-FIGHTER SUPER-ETENDARD 

FIGHTER-ATTACK-PLANE SUPER-ETENDARD 

PATROL-WATERCRAFT PATROL-CRAFT 

PATROL-BOAT-RIVER PATROL-CRAFT 

PATROL-BOAT PATROL-CRAFT 

LIGHT-TANK TANK-VEHICLE 

FIGHTER-PLANE SUPER-ETENDARD 

 Table 4 Classes and their desired mappings 
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 The conditional probabilities obtained are given in Table 5. Totally 9 times of map-

ping were performed for the 9 classes. For space limitation, here for each time of the 

mapping, we only list the class that has the highest probability obtained instead of the 

complete results for over 60 leaf classes. The first column contains classes from Weap-

onsB.n3, which we are seeking a mapping for. The second and the third columns are the 

classes in WeaponsA.n3 with the highest conditional probability obtained by using a 

whole file as an exemplar. The last two columns are results obtained by using only sen-

tences containing keywords as an exemplar. MRBM in column 4 stands for “Medium-

Range Ballistic Missiles”. 

  

  

  

 

   

New Classes Whole file Prob
Sentences with 
Keywords Prob 

LIGHT-AIRCRAFT-
CARRIER 

AIRCRAFT-
CARRIER 0.65 

AIRCRAFT-
CARRIER 0.57 

APC 
SILKWORM-
MISSILE-MOD 0.46 

SELF-
PROPELLED-
ARTILLERY 0.36 

SUPER-ETENDARD-
FIGHTER 

SILKWORM-
MISSILE-MOD 0.66 

(BALLISTIC-
MISSILE) 
MRBM 0.51 

FIGHTER-ATTACK-
PLANE 

SILKWORM-
MISSILE-MOD 0.83 

(BALLISTIC-
MISSILE) 
MRBM 0.38 

PATROL-WATERCRAFT 
SILKWORM-
MISSILE-MOD 0.28 

PATROL-
CRAFT 0.52 

PATROL-BOAT-RIVER 
SILKWORM-
MISSILE-MOD 0.65 

PATROL-
CRAFT 0.54 

PATROL-BOAT SILKWORM- 0.51 PATROL- 0.66 
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MISSILE-MOD CRAFT 

LIGHT-TANK 
SILKWORM-
MISSILE-MOD 0.56 

TANK-
VEHICLE 0.3 

FIGHTER-PLANE 
AIRCRAFT-
CARRIER 0.49 MRBM 0.38 

Table 5 Results comparison by showing classes with highest conditional probability 

 
If we simply judge the accuracy of the mapping by looking at the class that has the high-

est conditional probability, it is easy to see that when using a whole processed web 

document as an exemplar, only LIGHT-AIRCRAFT-CARRIER is correctly mapped. The 

accuracy is 11%. However, when using only sentences containing keywords, the results 

are improved significantly. The accuracy is 56% in this case. There are four classes, 

APC, FIGHTER-PLANE, FIGHTER-ATTACK-PLANE, and SUPER-ETENDARD-

FIHTER, whose desired mapping classes does not have the highest conditional probabil-

ity.   

 However, for class APC, its desired mapping class TANK-VEHICLE has the second 

highest conditional probability, which is 0.28, very close to the highest one, SELF-

PROPELLED-ARTILLERY, which is also very related to TANK and APC.  The fact 

that SELF-PROPELLED-ARTILLERY is matched with APC on one hand shows us that 

the exemplars collected and processed by the system preserve the semantic meaning of a 

concept quite well. On the other hand it also shows us that though text classification 

method and conditional probability can tell how related two concepts are, they cannot 

necessarily tell if they are equivalent. Because that two concepts are closely related does 

not mean that they are semantically identical or similar. This is a hard problem for our 

future research. 
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 For class SUPER-ETENDARD-FIGHTER, its desired mapping class SUPER-

ETENDARD also has the second highest conditional probability, which is 0.21. For the 

other two FIGHTER classes, the results are not good. We think one reason is SUPER-

ETENDARD is the only leaf node in WeaponsA.n3 that represents a plane (violation of 

exhaustive assumption for categories). It is possible that it is indeed not a good mapping 

for some of the plane classes from WeaponsB.n3. For testing, we added a class WAR-

PLANE-OTHER under the class WARPLANE in WeaponsA.n3, containing exemplars 

retrieved with a search query “WARPLANE+-SUPER+-ETENDARD” and performed 

the classification process again. This time class FIGHTER-PLANE is mapped to its de-

sired class WARPLANE-OTHER with the highest conditional probability of 0.41. This 

shows that adding a complement class sometimes helps when the given ontology is not a 

complete model of the domain knowledge. Moreover, in this case, FIGHTER-PLANE is 

a super class of the other two classes (FIGHTER-ATTACK-PLANE and SUPER-

ETENDARD-FIGHTER). The fact that a super class can be correctly mapped will make 

the mapping of its sub classes easier.   
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Figure 11 Comparison of different processing methods 

 

Figure 11 shows a further comparison of the two methods for the processor module. 

The x-axis lists the classes from WeaponsB.n3 (the 1st column in Table 4). The y-axis 

represents the conditional probability of a desired mapping class in WeaponsA.n3 (the 

2nd column in Table 4). Except class APC, FIGHTER-PLANE and FIGHTER-ATTACK-

PLANE, all desired mappings are correctly identified by only keeping sentences 

containing keywords in an exemplar. This processing method filters out noisy 

information, which results in a better classification. 

 In the search results returned by a search engine, the most relevant documents to a 

query are always listed first. So the first 50 documents listed in the search results should 
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be more relevant to the queries than the first 100. To verify this, we changed the number 

of exemplars the system use for each class and did some comparison experiments. Table 

6 is a comparison of results obtained from the system by using the first 50 exemplars and 

the first 100 exemplars for each concept. These exemplars are obtained by processing 

search results downloaded in that order with the processor in default mode. Table 7 

shows the same comparison but the exemplars are processed at a sentence level. 

New Classes 
Group-whole-
50 Prob Group-whole-100 Prob 

LIGHT-AIRCRAFT-
CARRIER 

SILKWORM-
MISSILE-
MOD 0.60

AIRCRAFT-
CARRIER 0.65 

APC 

SILKWORM-
MISSILE-
MOD 0.65

SILKWORM-
MISSILE-MOD 0.46 

SUPER-ETENDARD-
FIGHTER 

SILKWORM-
MISSILE-
MOD 0.74

SILKWORM-
MISSILE-MOD 0.66 

FIGHTER-ATTACK-
PLANE 

SILKWORM-
MISSILE-
MOD 0.83

SILKWORM-
MISSILE-MOD 0.83 

PATROL-WATERCRAFT 

SILKWORM-
MISSILE-
MOD 0.64

SILKWORM-
MISSILE-MOD 0.28 

PATROL-BOAT-RIVER 

SILKWORM-
MISSILE-
MOD 0.89

SILKWORM-
MISSILE-MOD 0.65 

PATROL-BOAT 

SILKWORM-
MISSILE-
MOD 0.64

SILKWORM-
MISSILE-MOD 0.51 

LIGHT-TANK 

SILKWORM-
MISSILE-
MOD 0.62

SILKWORM-
MISSILE-MOD 0.56 

FIGHTER-PLANE 

SILKWORM-
MISSILE-
MOD  0.80

AIRCRAFT-
CARRIER 0.49 

 Table 6 Comparison between different numbers of exemplars (whole) 
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New Classes 
Group-
sentence-50 Prob

Group-
sentence-100 Prob 

LIGHT-AIRCRAFT-
CARRIER 

AIRCRAFT-
CARRIER 0.44

AIRCRAFT-
CARRIER 0.57

APC 
TANK-
VEHICLE 0.54

SELF-
PROPELLED-
ARTILLERY 0.36

SUPER-ETENDARD-
FIGHTER 

HY-4-C-201-
MISSILE 0.4 MRBM 0.51

FIGHTER-ATTACK-
PLANE ICBM 0.19 MRBM 0.38

PATROL-WATERCRAFT 
PATROL-
CRAFT 0.49

PATROL-
CRAFT 0.52

PATROL-BOAT-RIVER 
PATROL-
CRAFT 0.36

PATROL-
CRAFT 0.54

PATROL-BOAT 
PATROL-
CRAFT 0.37

PATROL-
CRAFT 0.66

LIGHT-TANK 
TANK-
VEHICLE 0.59

TANK-
VEHICLE 0.3

FIGHTER-PLANE MRBM 0.38 MRBM 0.38

Table 7  Comparison between different numbers of exemplars (keyword sentence) 

 

Here we use Group-whole-50 to refer to the group of experiments using a whole docu-

ment as an exemplar and only using the first 50 for each concept, and use Group-

sentence-50 to refer to the group of experiments using a document processed at a sen-

tence level as an exemplar and only using the first 50 for each concept. Group-whole-100 

and Group-sentence-100 have similar meanings but different in number. The accuracy 

comparison of the mappings of these four groups is shown in table 8. 
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Groups of experiments 

Mapping accuracy  
judged by  
desired class mapped 

Group-whole-50 0% 

Group-whole-100 11% 

Group-sentence-50 67% 

Group-sentence-100 56% 

Table 8 Comparison of mapping accuracy of different groups of experiments 

 

From the results, we can see that experiments using the first 50 exemplars for each class 

have better results when the exemplars are processed at a sentence level. Class APC is 

correctly mapped in Group-sentence-50 but not in Group-sentence-100. However, the 

conditional probabilities obtained in Group-sentence-50 are averagely a lot lower than 

those obtained in Group-sentence-100, which may have a negative effect on the further 

calculations based on these conditional probabilities. So using less exemplars may not 

always be a good choice. 

4.2. Results for LIVING_THINGS ontology 

 To gain further insights of this approach, we conducted the following additional ex-

periments using the LIVING_THINGS ontology shown in Figure 5. 

(1) Obtain P(MAN | HUMAN) and P(WOMAN | HUMAN). We expect both posteriors 

to be around 0.5 
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(2) Given a new, foreign concept GIRL, build a model with classes ANIMAL and 

PLANT as the set of mutually exclusive and exhaustive classification categories, and 

perform classification. If class GIRL is mapped to class ANIMAL, then build a model 

with Class HUMAN and CAT as the categories, and using GIRL exemplars classified 

into ANIMAL class to perform the classification. Finally repeat the process at the 

third level with class MAN and WOMAN to see how well GIRL can be mapped to 

WOMAN. This process is shown in Figure 12. 

LIVING_THINGS

ANIMAL PLANT

HUMAN

MAN

CAT

WOMAN

TREE

ARBOR

GRASS

FRUTEX

GIRL

Level1

Level2

Level3

 

Figure 12 Experiment (2) with LIVING_THINGS ontology 

 

 The system performed these experiments automatically. Extensive experiments were 

done with varying parameters of the system. For example, changing the number of 

documents to be downloaded, adding different class properties to generate more informed 
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queries, and using different modes of the processor module, etc. Table 9 shows results 

comparison for experiment (1) with different numbers of exemplars used. The exemplars 

are processed at a sentence level.  

  

Conditional Probability 

Using  
first 50 
exemplars 

Using  
first 100 
exemplars 

Using  
first 200 
exem-
plars 

P(MAN | HUMAN) 0.75 0.58 0.62 

P(WOMAN | HUMAN) 0.24 0.41 0.38 

Table 9 Results of experiment (1) 

 

Our expectation is that both P(MAN | HUMAN) and P(WOMAN | HUMAN) are to 

be 0.5. The results show that using 100 exemplars performs the best among the three 

groups. Also considering the experiments with WEAPONS ontology, we can see using 

fewer exemplars (these are also ranked the highest) sometimes achieves good results, 

sometimes not. We should not always depend on this single parameter. Table 10 shows 

results for experiment (2) using 200 exemplars processed at a sentence level. 

P(ANIMAL | GIRL) 0.76 

P(PLANT | GIRL) 0.23 

P(HUMAN | GIRL) 0.70 

P(CAT | GIRL) 0.30 

P(MAN | GIRL) 0 

P(WOMAN | GIRL) 1 

  Table 10 Results of Experiment (2) with 200 exemplars 
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 What is disturbing is that Class CAT has a comparatively high conditional probability 

given GIRL (P (CAT | GIRL) = 0.3). One reason for this anomaly is that words like hu-

man, man, woman and girl often appear in web pages associated with class CAT because 

cats have such close relations with human beings (sometimes cat is even used to describe 

a human). Manually inspecting the exemplars confirms this reason.  

The “cat” problem shows that even though the parser generates an informed query and 

the processor is able to further process exemplars at a sentence level, the exemplars may 

still be far from perfect. This problem was further confirmed by an additional experiment 

in which DOG (another domesticated animal) and PYCNOGONID (a kind of sea spider) 

were added into the ontology as subclasses of ANIMAL. Most of the exemplars of GIRL 

went to Dog, and none to PYCNOGONID as shown in Table 11. 

P(DOG | GIRL) 0.56 

P(CAT | GIRL) 0.01 

P(HUMAN | GIRL) 0.43 

P(PYCNOGONID | GIRL) 0 

 Table 11 Results with additional classes (200 exemplars each class) 

 

We conjecture that, although all exemplars for CAT or DOG taken as a whole are 

closely related to GIRL, it is different at the level of individual exemplars, some are close 

but others are not. The “cat and dog” problem can then be solved if we can separate ex-

emplars that truly reflect the intended semantics of CAT or DOG from those that are not. 

As a first step, we have tried to perform clustering on exemplars of each class in the hope 

that one of the clusters would contain those truly relevant exemplars.  
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We have tried to replace Google as the retriever’s search engine by a clustering search 

engine Clusty.com which automatically clusters search results based on some text clus-

tering algorithm. Then the largest cluster for each class returned by Clusty.com is used as 

exemplars. Even though the exemplars are not processed at a sentence level, results are a 

lot better regarding to P(CAT | GIRL) as shown in Table 12.  

     

P(ANIMAL | GIRL) 0.83 

P(PLANT | GIRL) 0.17 

P(HUMAN | GIRL) 0.92 

P(CAT | GIRL) 0.08 

P(WOMAN | GIRL) 0.63 

P(MAN | GIRL) 0.37 

Table 12 Results by applying clustering on exemplars 

 

We also tried to cluster exemplars obtained by Google with clustering package in 

WEKA [weka]. When calculating P(HUMAN | GIRL ) and P (CAT | GIRL), we build a 

model with one cluster from HUMAN class and one cluster from CAT class, and use one 

cluster from GIRL class for the classification. Class HUMAN has 5 clusters, class CAT 

has 3 and Class GIRL has 3, so totally the above process is performed 45 times and the 

results show that one cluster from class CAT will give a desired result when used with 

clusters from other class. But this cluster is not the largest among the three clusters in 

CAT. Taking the largest cluster does not yield good results this time. These limited ex-

periments indicate that clustering of text exemplars seems promising in resolving the “cat 

and dog” problem, provided we find a way to identify the right clusters. 
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   Other experiments we carried out include adjusting the number of exemplars used 

and adding descriptive property of a class into a search query when collecting exemplars. 

Table 13 is a comparison of results obtained by specifying different numbers of exem-

plars used by the system. These exemplars are processed at a sentence level. 

 

 

 

Conditional Probability 

Using  
first 50 
exem-
plars 

Using  
first 100 
exem-
plars 

Using  
first 200 
exem-
plars 

P(ANIMAL | GIRL) 0.66 0.53 0.77 

P(PLANT | GIRL) 0.34 0.47 0.23 

P(HUMAN | GIRL) 0.86 0.56 0.43 

P(CAT | GIRL) 0.01 0.15 0.01 

P(DOG | GIRL) 0.13 0.29 0.56 

P(PYCNOGONID | GIRL) 0 0 0 

P(MAN | GIRL) 0.02 0.03 0 

P(WOMAN | GIRL) 0.98 0.97 1 

 Table 13  Comparison between different numbers of exemplars (keyword sentence) 

 

With 200 exemplars for each concept, the system gives the best result for LEVEL1 

(ANIMAL and PLANT) and Level 3 (MAN and WOMAN), but not LEVEL2. With 50 

exemplars, the system gives the best result for LEVEL2 but not the others. Using 50 or 

100 exemplars the system also gives a correct overall mapping. Considering other ex-

periments, using the first 50 or 100 exemplars processed at a sentence level seems to be a 

safe setting for the system.  
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We also tried queries augmented with class properties of each concept to find out 

whether this would give good results. Table 14 shows these queries. We let the system 

collect 100 exemplars for each concept based on the augmented queries and perform the 

same mapping process as described in Experiment (1) and (2). The results of these ex-

periments are shown in Table 15 and 16. Different processing methods are compared. 

  

  

Concepts Queries 

liv-
ing+things Living+things 

animal Living+things+animal+Animalia 

plant Living+things+plant+Plantae 

cat Living+things+animal+Animalia+cat+Felidae 

human Living+things+animal+Animalia+human+intelligent 

man Living+things+animal+Animalia+human+intelligent+man+male 

woman 
Liv-
ing+things+animal+Animalia+human+intelligent+woman+female 

tree Living+things+plant+Plantae+tree 

grass Living+things+plant+Plantae+grass 

frutex Living+things+plant+Plantae+tree+Frutex 

arbor Living+things+plant+Plantae+tree+arbor 

Table 14 Queries augmented with class properties 

 

Conditional Probability Whole 
Keyword 
Sentences 

P(MAN | HUMAN) 0.91 0.93 

P(WOMAN | HUMAN) 0.09 0.07 

Table 15 Experiment (2) Queries augmented with class properties 
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Conditional Probability Whole 
Keyword 
Sentences 

P(ANIMAL | GIRL) 0.9 0.83 

P(PLANT | GIRL) 0.1 0.17 

P(HUMAN | GIRL) 0.78 0.83 

P(CAT | GIRL) 0.22 0.17 

P(MAN | GIRL) 0.14 0.16 

P(WOMAN | GIRL) 0.86 0.84 

 Table 16 Experiment (2) Queries augmented with class properties 

 

From the results, we can see that the method of using augmented queries misses expec-

tations for Experiment (1) totally, but gives very good results for Experiment (2). Even 

using the whole processed document as an exemplar, the results were still very good. We 

would like to believe including class properties into queries is helpful. But the reason 

why sometimes this method does not give good results should be further researched.  

Based on all these experiment results, we can see using 50 or 100 exemplars processed 

at a sentence level is generally a good setting for our mapping system. Text clustering on 

the exemplars will definitely further improve the exemplars’ quality. Using queries aug-

mented with class properties should help too.  

5. Discussions 

 Our approach for ontology mapping employs naïve Bayes text classification method 

to calculate the conditional probability of one concept in OntoA given another concept in 
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OntoB, which is used as an initial evidence of similarity and can be used in further proc-

ess of the mapping [DPP05 and DPPY05].  The text exemplars used in this approach are 

obtained by search the web using semantic information found in the ontology definition 

file. Our experiment on the one hand produced positive supporting evidence for this ap-

proach, and at the same time have also revealed several limitations of this approach as 

well as issues that need to be further studied. 

5.1 A web page is not a sample of a concept 

 When calculating a conditional probability, for example, P(MAN | HUMAN), sam-

ples of HUMAN in a given sample space should be collected and the conditional prob-

ability will be the ratio of MAN samples among HUMAN samples. When using a text 

classifier to calculate conditional probability of such two concepts, we can never get an 

individual sample of MAN or HUMAN, we can at the best get some strings that describe 

such a sample. Then conditional probability is estimated by counting words frequency 

and applying Bayes rule. This is totally different from the original definition of condi-

tional probability of two concepts. Though sometimes we can find effective methods to 

make a better estimation, but that can never be accurate. 

5.2 Popularity does not equal relevancy 

 In principle, we want to search for web pages that are highly relevant to the concept 

in question. However, relevancy is quite a subjective word. When we say a document is 

relevant to a search query, what do we exactly mean? We know the main algorithm 

Google uses for ranking the retuned pages is PageRank™ [gl]. Simply speaking, when 

page A has a link to page B, that link will be counted as a vote for page B. If A is an “im-

portant” page considered by Google, the vote will worth more. Although there are other 
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sophisticated text matching algorithms combined to calculate the rank of a page, if many 

“important” pages have links to page B, page B will certainly has more possibility to 

show up in the first a few pages of search result. So if a web page has more links to it, it 

is possible that it get ranked higher. This may make sense to a human user sometimes but 

not necessarily good for our purpose. For example, the first result returned by Google 

recently for query “living+things+animal+human+woman” is an article in a blog. The 

article is about animal rights, it has little to do with the concept woman. But it is ranked 

the highest in the search result, just because the blog is called “woman to woman”, and 

probably a popular blog on the web. To a human user, this popular blog might be what 

she or he wants, but the text information contained in this document and quite a few oth-

ers obtained like this are not very helpful to a text classification. They are ranked higher 

by Google according to Google’s algorithm. However, even though a search engine is our 

best choice available, a search engine’s algorithm is never perfect and does not always 

work well with our approach.  

One possible solution to this problem is to use a large amount of exemplars, hoping 

the irrelevant documents ranked by the search engine such as the above would only be a 

small fraction. We believe text clustering may help in solving or lessening this problem. 

5.3 Weight cannot be specified for words in a search query 

 To form a search query, the parser usually concatenates several words together to get 

better results as explained in previous sections. However, current web search technolo-

gies do not allow us to assign weights to different words in a search query, even though, 

in most cases, what we care most is the last one or two words in the query. For example, 

in the first ten search results returned by Google recently for the search query “living + 
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things + animal + human “, only one of which has the desired text information to be used 

as exemplars for the LIVING_THINGS ontology, which explains HUMAN in a zoology 

context. All the others are general categorical information about animals, where the word 

“human” appears one or a few times. The first result returned is a Yahoo! directory page 

which listed links to animal related sites, for example, photos, categorical information to 

different animal sites etc. For posting a search query like “living + things + animal + hu-

man “, what we really look for are web pages about “human” while the other words such 

as living things and animal in the query provide a context for “human”, we are not really 

interested in pages which are generally about “animal” or about “living things”. In other 

words, we would like the search to be conducted with emphasis on “human” or to be 

weighted heavily on “human”. Unfortunately, there is no ways available currently to let a 

search engine understand such a request. The only advanced query available is with or 

without a string, or a phrase. How to improve a search engine or find a better way to use 

existing engines to accommodate a request like ours is an interesting topic to research 

and should be in our future work.  

5.4 Relevancy does not equal to similarity 

 A search engine will return documents related to a query. What we are looking for are 

documents that explain or use the concept in a proper context, which is only a subset of 

the related documents returned as shown in Figure 13.  
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Figure 13 Relation of desired exemplars with different parts of search results 

 

As a result, even though the returned search results very closely related to a query, it is 

still very difficult to correctly identify good exemplars. For example, web pages listed in 

Google’s search results for query “WARPLANE+FIGHTER+PLANE” contain many text 

information for MISSILE. To be quantitative, 91,000 results are returned by Google re-

cently for “WARPLANE+FIGHTER+PLANE”, among which 40,400, nearly 45%, con-

tain information for MISSILE. This agrees with our common sense, because a fighter 

plane has a close relation with missiles, for example, most fighter planes carry missiles 

and they can also be destroyed by missiles. However, in our experiments with WEAP-

ONS ontology, this information causes our automated system to map FIGHTER-PLANE 

to MRBM, which is a class for medium-range missiles.   

Neither search engine nor text classifier can differentiate these two types of informa-

tion: one type is information about the concept in question and the other is information 

about things related to the concept. This makes it difficult to avoid wrong mappings in 
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the results we obtained in WEAPONS ontology and explains further why we have the 

“cat” and “dog” problem with LIVING_THINGS ontology. Correctly selecting the de-

sired exemplars out will improve the mapping results a lot. We believe that text cluster-

ing is a promising approach to achieve this goal and will find how to identify the right 

cluster in search results in our further research.  

6. Related Work 

 Many people have used text classification methods to solve ontology mapping prob-

lem, but none has tried to automatically retrieve exemplars from the web for this purpose. 

Our work is motivated by OntoMapper [SPF02], a semi-automated ontology mapping 

tool, which is based on the text classification approach and also employs Rainbow as the 

classifier. Before mapping, exemplars for each concept need to be manually collected. 

The authors pointed out that the quality of mapping is greatly depended on the quality 

and quantity of exemplars. 

 CAIMEN [LG01] was developed to facilitate document retrieval and exchange 

among members of Community of Interests by mapping a user’s local ontology to the 

central document ontology shared by the community. The authors also used Rainbow for 

text classification. The exemplars are the documents provided by human users. A feature 

vector is calculated for each concept and a simple cosine similarity measure is applied on 

the feature vectors of a pair of concepts. A pre-selected threshold is used to decide a 

mapping. Like OntoMapper, CAIMEN is also only applicable if the users can supply ex-

emplar documents. 
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 To decide whether one concept A in OntoA is semantically identical or similar to an-

other concept B in OntoB, one has to have a similarity measure. GLUE [DMDDH02] uses 

the Jaccard coefficient [Ri79] similarity function, which is 

    

 

So if A and B are identical, Similarity (A, B) should be 1 and if A and B are completely 

different, Similarity (A, B) should be 0 according to this measure. To train a classifier 

and perform classification, different learning techniques are used, one of which is a naïve 

Bayes text classifier. The exemplars and the full name of the classes are used to produce 

initial results. A full name is formed by names of every node on the path from the root 

class to the concept, which is similar to how our parser forms search queries. A meta-

learner is developed to assign weights to results from different learners and calculate a 

final result as an input to the similarity function. Again, this system assumes the exem-

plars have been given and each text exemplar represents an individual instance of a class. 

 Some researchers in other applications also treat the WWW as a big sampling pool. 

For example, in [WPC05], the authors also use Google search results to estimate condi-

tional probabilities. For a simple example, P(MAN | HUMAN) would be calculated as 

the ratio of the number of search results returned for keyword “man” and the number of 

search results for keyword “human”, which is 0.81 (1.83 billion divided by 2.25 billion 

found by Google recently). As we discussed in Section 5.4, conditional probabilities ob-

tained in this way are in general very coarse.  

7. Future Work 
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 As mentioned in our discussion, if we were able to specify weights to search key-

words, the quality of the exemplars obtained would be further improved. In other words, 

if we were able to search exemplars within some contexts, we would achieve better re-

sults. Actually, our current method creates some search context by augmenting the search 

query with ancestors of a concept, which is shown to be not very effective. For example, 

to search exemplars for class HUMAN in a LIVING_THINGS and ANIMAL context, we 

used query “living+things+animal+human”, which gave us unexpectedly many docu-

ments about animal only with the word “human” appeared. If we cannot create such 

search context successfully, there may be ways to differentiate exemplars in different 

context afterwards, which can be done by text clustering. Text clustering will also help to 

identify the right group of exemplars shown in Figure 11 from the generally related 

documents effectively. Though we performed some preliminary text clustering experi-

ments, yet we are still lack of a reasonable method to select the proper clusters, which 

leaves us some interesting future work. 

 Another direction for future research is to find a reasonable similarity measure.  We 

are using conditional probability as a simple similarity measure to judge mapping per-

formance, which is not always accurate, especially when applied to non-leaf classes. Be-

cause conditional probability measures how related two events are and two related events 

are not always necessarily identical. For example in one of our experiments with 

WEAPONS ontology, we have P(SELF-PROPELLED-ARTILLERY | APC) as the high-

est among the leaf classes of WeaponsA.n3 given APC. From a probability theory point 

of view, this is reasonable considering the close relation these two classes share. A good 

similarity measure will help produce more accurate mappings.         
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8. Conclusion 

 We proposed to automatically retrieve exemplars from the web for text classification 

based ontology mapping. We designed and implemented a fully automated system to col-

lect exemplars and calculate conditional probability of two concepts as an initial similar-

ity mapping. The tool can be very useful for ontology mapping tools and frameworks like 

[LG01, DMDDH02, SPF02, DPP05, and DPPY05] and other researches using such a 

conditional probability [WPC05]. 

 Although the experiment results are mixed, they are in general encouraging and shed 

lights to the insight of this approach and further work. Two factors probably are most re-

sponsible for the less than ideal results. The first is the noise in the search results. Many 

keyword based search results are not really semantically relevant to the keywords. The 

second is that a search result is not really a random sampling of the web because all 

search engines return results according to their own ranking algorithms. How to address 

these problems and how to best utilize the imperfect exemplars in ontology mapping are 

some of the directions for future research.  
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