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Building flexible manufacturing supply chains requires availability of interoperable 

and accurate manufacturing service capability (MSC) information of all supply chain 

participants. Today, MSC information, which is typically published either on the 

supplier’s web site or registered at an e-marketplace portal, has been shown to fall 

short of interoperability and accuracy requirements. The issue of interoperability can 

be addressed by annotating the MSC information using shared ontologies. However, 

this ontology-based approach faces three main challenges: (1) lack of an effective 

way to automatically extract a large volume of MSC instance data hidden in the web 

sites of manufacturers that need to be annotated; (2) difficulties in accurately 

identifying semantics of these extracted data and resolving semantic heterogeneities 

among individual sources of these data while integrating them under shared formal 

ontologies; (3) difficulties in the adoption of ontology-based approaches by the 

supply chain managers and users because of their unfamiliarity with the syntax and 

semantics of formal ontology languages such as web ontology language (OWL).     

      The objective of our research is to address the main challenges of ontology-based 

approaches by developing an innovative approach that is able to extract MSC 

instances from a broad range of manufacturing web sites that may present MSC 

instances in various ways, accurately annotate MSC instances with formal defined 

semantics on a large scale, and integrate these annotated MSC instances into formal 

manufacturing domain ontologies to facilitate the formation of supply chains of 
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manufacturers. To achieve this objective, we propose a semantic resolution 

framework (SRF) that consists of three main components: a MSC instance extractor, a 

MSC Instance annotator and a semantic resolution knowledge base. The instance 

extractor builds a local semantic model that we call instance description model (IDM) 

for each target manufacturer web site. The innovative aspect of the IDM is that it 

captures the intended structure of the target web site and associates each extracted 

MSC instance with a context that describes possible semantics of that instance. The 

instance annotator starts the semantic resolution by identifying the most appropriate 

class from a (or a set of) manufacturing domain ontology (or ontologies) (MDO) to 

annotate each instance based on the mappings established between the context of that 

instance and the vocabularies (i.e., classes and properties) defined in the MDO. The 

primary goal of the semantic resolution knowledge base (SR-KB) is to resolve 

semantic heterogeneity that may occur in the instance annotation process and thus 

improve the accuracy of the annotated MSC instances. The experimental results 

demonstrate that the instance extractor and the instance annotator can effectively 

discover and annotate MSC instances while the SR-KB is able to improve both 

relaxed precision and relaxed recall of annotated instances and reducing human 

involvement along with the evolution of the knowledge base. 

 

Key words: manufacturing supply-chain, interoperability, ontology, data extraction, 

semantic annotation, semantic similarity, semantic resolution 
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Chapter 1.  

                Introduction 
 

 

This dissertation studies the problem of integrating manufacturing service capability 

(MSC) instance1 data from different sources into a formally defined manufacturing 

domain ontology for interoperability among different manufacturers. We propose 

semantic resolution framework (SRF) that is able to extract a large amount of MSC 

instances and relations of these instances from web sites of manufacturers, and 

accurately annotate these instances with vocabulary (i.e., classes and properties) 

defined in a manufacturing domain ontology. This framework also provides an error-

correction mechanism to correct misannotated instances. The level of automation of 

the correction process increases along with the growth and evolution of the 

underlying knowledge-base as more websites are annotated. !

1.1 Motivation  

With the rapid pace of economic globalization, the competitiveness of manufacturers 

is increasingly defined by the combined capabilities of the suppliers that make up the 

manufacturer’s supply chains [1]. Quick formation and optimization of global supply 

chains requires that the manufacturing service capability (MSC) information of each 

partner be accessible, understandable, and processable by all others in the chain in an 

automated way. In other words, such information needs to be machine-

understandable and semantically interoperable. To achieve machine-understandable, 

MSC information of individual suppliers should be accurately annotated with formal 

semantics and without ambiguity. Interoperability deals with the heterogeneity of the 

source data from suppliers in their structures and vocabularies, and it requires that the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!In the rest of this dissertation, whenever we mention instances, we mean manufacturing service 
capability instances.!
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MSC information collected from diverse sources be represented in a way that the 

meanings of data items and their interrelations can be understood correctly by all 

stakeholders (and their machines). In other words, it requires interoperability at the 

semantic level [2, 3]. 

      Today, MSC information is typically either registered at an e-marketplace portal 

or published on a supplier’s web site. Commercial e-marketplace portals, such as 

mfg.com2, thomasnet.com3, globalspec.com4, require the users to enter their MSC 

information in a uniform format according to the portal’s proprietary capability 

information models. This gives potential for interoperability to users within a portal, 

but not between portals. For ease of use, most e-marketplaces use relatively simple 

capability information models. These simple models are typically only able to model 

a small portion of the whole manufacturing domain and not expressive enough to 

represent the intended meaning of the user’s capability information. Compared with 

entries at e-marketplace portals, websites of suppliers are resources more suitable for 

acquiring manufacturing capability information. For one thing, these websites are 

freely accessible. For another, information published on webpages is typically much 

richer and detailed than that registered at e-marketplace portals. However, webpages 

are primarily for visualizing information for human consumption. MSC information 

published on web pages is typically not understandable by machines. Information 

extraction and natural language techniques may help extract machine-understandable 

information from web pages. However, they do not offer a solution to integrate 

extracted information from diverse sources.  

      The advances in semantic web technologies, including its canonical data model 

RDF5 and logic-based web ontology language OWL6, have led to extensive research 

in the development of ontology-based approaches to integrating information from 

heterogeneous sources for semantic interoperability. These traditional ontology-based 

information integration approaches typically require individual sources to develop 

their own local ontologies or reuse well-known existing ontologies (e.g., Dublin Core, 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 http://www.mfg.com/ 
3 http://www.thomasnet.com/ 
4 http://www.globalspec.com/!
5!http://www.w3.org/RDF/!
6 http://www.w3.org/TR/owl-ref/ 
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SIOC and GoodRelation7) to annotate their legacy data and store these annotated data 

in the canonical RDF data model. Then, individual RDF datasets are integrated under 

a common ontology that all local ontologies are mapped onto. Such a requirement 

imposes severe barriers to the adoption of these ontology-based information 

integration by the business world in that (1) the syntax and semantics of formal 

ontology languages such as OWL and RDF are not familiar to the users (i.e., 

suppliers or manufacturers), causing a steep learning curve; (2) as a newly emerging 

technique, tools friendly for inexperienced users are not yet sufficiently mature and 

widely available; and (3) there is no clear tangible business incentive for suppliers to 

invest resources into making their data publicly accessible and compatible with the 

semantic web of the future [4, 5, 6]. 

      To address those problems and others, we propose an innovative approach to 

integrate MSC information. Similar to traditional ontology-based information 

integration approaches, our approach integrates MSC information of different 

(heterogeneous) sources based on a common ontology. However, the important 

difference is that our approach builds local semantic models for web sites of 

individual suppliers (i.e, manufacturers). These local semantic models capture the 

structure and other semantic relations of MSC information published on these web 

sites. Based on these local semantic models, our approach automatically annotates 

extracted MSC instances rather than ask suppliers to open and annotate their data. We 

also offer a semantic resolution knowledge base (SR-KB) that iteratively improves 

the quality of annotated MSC instances by correcting errors that may occur in the 

annotation process. It evolves itself along with the accumulation of the validated 

MSC instances during the MSC instance integration process. This evolution of SR-

KB helps improving the accuracy of integrated MSC information while at the same 

time reduces human intervention. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7!http://www.heppnetz.de/projects/goodrelations/!
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1.2 Dissertation Statement and Contributions 

In this dissertation, we present a semantic resolution framework (SRF) that aims at 

efficiently extracting a large volume of manufacturing service capability instances 

from the web, accurately annotating these instances with semantics and integrating 

these instances under a formally defined manufacturing domain ontology as a 

manufacturing knowledge base. The development of the semantic resolution 

framework makes several important contributions to the field of ontology-based 

information integration.  

      Our SRF offers an instance extractor that is able to deal with diverse ways in 

which MSC instances are presented in web pages and a local semantic model called 

instance description model (IDM) that organizes MSC instances extracted from web 

sites in a structural way. Having this local semantic model at hand, we can leverage 

ontology mapping techniques to establish mappings between components of IDM and 

those of MDO. Then, the instance integration is performed based on these mappings 

rather than directly applying MDO to web pages, which is neither efficient nor 

accurate.  

      When integrating instances from the distributed and diverse web, it is unavoidable 

to make mistakes in annotating some of the MSC instances because of semantic 

heterogeneities [7, 8, 9, 10]. Resolving domain-specific semantic heterogeneities, 

thereby more accurately annotating instances, require domain expertise. However, 

domain experts are not necessarily familiar with OWL-based ontologies. Tools that 

can assist users with little knowledge on ontology in examining the correctness of 

annotated instances are needed. To this end, we developed a tool called Instance 

Validation Platform (IVP) that enables domain experts to examine all the annotated 

instances through a user-friendly interface and make corrections if necessary. Putting 

human in the loop of validating the correctness of annotated instances is tedious work. 

To address this issue, we developed a manufacturing concepts mapping repository 

and a Naïve Bayes-based annotation corrector that are able to gradually reduce 

human interventions while improving the accuracy of annotated instances.  

      The manufacturing concept mapping repository (MCMR) helps the instance 

annotator more accurately map contexts of instances to classes defined in the 
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manufacturing domain ontology by resolving terminological heterogeneity, thereby 

improving the accuracy of annotated instances. The Naïve Bayes-based annotation 

corrector (NBAC), on the other hand, aims to correct misannotated instances (i.e., 

assigned with wrong or inaccurate class labels) mainly by resolving conceptual 

heterogeneity. It is trained by annotated instances validated by domain experts with 

the assistance of IVP. The MCMR, NBAC and IVP together form the semantic 

resolution knowledge base (SR-KB) that is a core component of our semantic 

resolution framework. The experimental result demonstrates that the SR-KB not only 

helps the instance annotator improve the accuracy of annotated instances but also 

gradually reduces human intervention during the instance annotation process. 

      Practically, this framework can be adopted by commercial e-marketplace portals 

to improve the structure of manufacturing data registered by manufacturers and thus 

increase the accuracy of the customer-manufacturer matching results. It can also be 

applied independently to extract manufacturing service capability data from 

manufacturing web sites. Extracted manufacturing data can be published to the 

Linked Open Data (LOD). To the best of our knowledge, no single data set related to 

manufacturing domain is available in the LOD cloud. Therefore, publishing 

manufacturing service capability data to LOD cloud would be a great contribution to 

both manufacturing and Linked Data community.  

1.3 Dissertation Outline 

The rest of the dissertation is organized as follows. Chapter 2 describes background 

and related work. Chapter 3 provides an overview of the proposed semantic 

resolution framework. Chapter 4 defines the similarity measures and mapping 

functions that will be used in this dissertation. From Chapter 5 to Chapter 7, we 

discuss our proposed approaches in detail. Specifically, Chapter 5 explains how the 

instance description model (IDM) is constructed. Chapter 6 elaborates how instances 

and relations of the IDM are automatically annotated with classes and properties 

defined in the manufacturing domain ontology. Chapter 7 presents the semantic 

resolution knowledge base (SR-KB). The experimental results that demonstrate the 

effectiveness of the SR-KB in improving the overall performance of the instance 
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annotator are also presented in Chapter 7. Finally, Chapter 8 concludes and gives 

directions for future research. To help the reader, a list of abbreviations is provided at 

the end of the dissertation.  
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Chapter 2.   

!
Background and Related Work!

 

 

In this chapter, we introduce the Semantic Web technologies that we adopt as the 

basis for our semantic resolution framework and survey related research. The first 

section provides a high level description of the core components of Semantic Web 

technologies. The second section surveys research closely related to our work of 

developing the semantic resolution framework. 

2.1 Background 

In this section we first introduce the basic concepts of the Semantic Web and then the 

core components that compose Semantic Web technologies. The Linked Data, a 

pragmatic approach that aims at achieving the vision of Semantic Web, is briefly 

described at the end of this section.  

2.1.1 Semantic Web 

The broad vision of Semantic Web is to extend current web of documents and create 

additional layer of data above it. This web of data is not merely about data. It is about 

linked data that have rich semantics such that it can be easily explored and consumed 

by both human and machines. A more ambitious vision of Semantic Web is that it 

would facilitate integration of data from heterogeneous sources such that intelligent 

applications or systems can be developed to perform tasks that can only be done with 

human intelligence.  

      A major shift from the traditional relational databases to Semantic Web is the 

mindset of modeling the world. Compared to Closed World Assumption (CWA) 

taken by traditional relational databases, Semantic Web adopts the Open World 

Assumption (OWA) [15, 16] that possesses the following main points: 
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• Lack of a given fact does not imply it to be false. It is simply not known. 

• Everything is permitted until it is prohibited. 

• Ontologies can be developed and matured incrementally; later versions are an 

enhancement and not a replacement for prior ontologies. 

• Information at various levels is incomplete and only partially known. 

      This OWA suits well the heterogeneous, distributed and ever-increasing nature of 

the web of data. To facilitate the adoption of OWA and the construction of Semantic 

Web, the development of the pieces comprising the Semantic Web layered 

architecture has been continuing since the original Scientific American article on 

Semantic Web appeared in 2001 [17]. Figure 2.1 shows the Semantic Web Layer 

Cake.  

 

 
Figure 2.1 Semantic web layer cake 

     

      In the next two subsections, we will introduce the core components of Semantic 

Web, including RDF, RDFS, OWL and Ontology. Linked data, a pragmatic approach 

to achieve the Semantic Web, will be introduced in section 2.1.4. 

2.1.2 RDF, RDFS, OWL 

RDF (Resource Description Framework) serves as the foundation of Semantic Web 

and is essentially a data model that provides an abstract and conceptual framework 
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for defining and using both data and metadata. It represents both data and metadata in 

the form of triples, which relate data entities in a subject-predicate-object pattern. 

Subject is the thing we are talking about; predicates and their corresponding objects 

describe features of this thing. One major benefit of this triple representation is the 

ease to aggregate and integrate heterogeneous data. This is because a triple in RDF is 

essentially a directed graph with the subject and object as vertices and the predicate as 

the edge between them. Hence, any number of triples can be easily added up to form 

another directed graph.  

      Although RDF can describe basic facts about things (e.g., one thing is a type of 

another thing), it has very limited expressive power and thus provides limited support 

for logical reasoning. For example, it has no range or domain constraints and no 

ability to organize things in taxonomical structure. RDFS (RDF Schema) enriches 

RDF data model with more expressive power by adding the subclass and subproperty 

declarations and adding domain and range to properties. OWL (Web Ontology 

Language) is a combination of RDF data model and a form of description logic [18]. 

The primary advantage of RDF is that it can easily describe things in an “entity-

relation” like schema using “subject-predicate-object” triples and thus it facilitates the 

information integration of heterogeneous sources. The description logic and its well-

defined formal semantics allow one to perform logical reasoning over the ontology 

and its instances. OWL thus provides a formal framework with sufficient constructs 

for modeling data of complex relations, describing that data through controlled 

vocabularies, and interoperating that data through logical reasoning. 

2.1.3 Ontology 

An ontology can be seen as a framework for representing knowledge of a certain 

domain. It defines concepts and relationships between these concepts in the domain 

of interest, and encodes them in a machine-understandable form to make it available 

to information systems. Many versions of definitions of what an ontology is exist, the 

most dominating one defines an ontology as: “a formal, explicit specification of a 

shared conceptualization” [19]. The “formal, explicit specification of a 

conceptualization” means that a conceptualization that is typically in the mind of 
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people should be modeled accurately and clearly in a way that it can be understood by 

machines or information systems. The word “shared” indicates that in order for an 

ontology to support a certain degree of interoperability, ontology stakeholders should 

reach certain agreements on concepts and/or relationships used in the ontology, i.e., 

they are sharing a common conceptualization of the domain.  

      Within the Semantic Web community, ontologies are typically written in OWL 

(Web Ontology Language), or its various species (e.g., OWL DL/Full/Light, OWL 

RL and OWL QL). The graphic nature of RDF combined with the expressive power 

and reasoning ability provided by OWL offer ontologies significant advantages over 

traditional schema such as XML schema, relational database schema and taxonomies. 

Here, we list its most appealing advantages. There are likely many others [20, 21, 22]. 

• Flexible Representation of Data: The graph-based data model of OWL (inherited 

from RDF) is able to represent data of various types, including unstructured (e.g., 

free text), semi-structured (i.e, XML or web pages) and structured (i.e., traditional 

relational database). This characteristic is crucial in transforming and integrating 

data from different (heterogeneous) sources.  

• Facilitate Information Integration: instance data from difference sources can be 

easily linked together by using properties of OWL such as owl:sameAs. Classes 

and properties from different (heterogeneous) ontologies can be directly mapped 

by using OWL built-in properties (e.g., owl:subClassOf, owl:subPropertyOf and 

owl:equivalentClass), logical axioms or properties from other upper ontologies 

that aim at integrating ontologies. 

• Logic-based Reasoning: An ontology expressed in a knowledge representation 

language based on the ground of formal logic such as OWL enables an information 

system to derive implicit knowledge from explicit knowledge and facts by means 

of logical reasoning. Moreover, the reasoning can be performed across 

heterogeneous ontologies, if certain mappings have been established between these 

ontologies. For example, if a Service class from one ontology is mapped to a 

Capability class from the other by using owl:equivalentClass property of OWL, we 

can infer that instances of the Service class are also instances of the Capability 

class. 
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      These and other advantages of OWL-based ontology make it very attractive for 

collecting and integrating information from different sources. However, its 

terminology and underlying inference mechanism, especially those from description 

logic, may be unfamiliar to many non-technical participants; the conceptualization 

(classes and inter-class relations) expressed in an OWL ontology are likely to be 

different from the one that users have in their mind.  

2.1.4 Linked Data  

Linked Data is coined by Tim Berners-Lee [23] as a pragmatic approach to 

accomplish the vision of Semantic Web where data is semantically annotated and 

connected based on shared ontologies. To help reach such vision, Linked Data 

approach offers a set of best practices and technological principles for publishing and 

connecting machine-processable data on the web open to use by governments, 

organizations, businesses and individuals.  

      One of the challenges facing Linked Data is how to transform unstructured data 

from various sources into semantic-rich linked data. Linked Open Data8 is a project 

that aims at addressing this challenge by identifying existing data sets available under 

open licenses, converting these data to RDF and linking these data according to the 

Linked Data principles, and finally publishing them on the web. Founded in 2007, 

LOD has been gaining great popularity these years. Its nucleus dataset, DBpedia9, 

alone consists of approximately 3 billion RDF triples. Currently, LOD covers 295 

data sets and more than 31 billion RDF triples10 from different domains such as 

Media, Geographic, Government, Economy, Energy, Life sciences, Commerce, etc. 

The three biggest producers and consumers of LOD are Geographic, Life Science and 

Government. Figure 2.2 depicts the current view of Linked Open Data cloud. It is 

believed that more and more industries will perceive LOD as a cost-efficient way to 

integrate and consume data.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8!http://linkeddata.org/!
9!http://dbpedia.org/About 
10 http://lod-cloud.net/state/!
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Figure 2.2 Linked Open Data cloud     

     

     LOD has achieved significant success in noncommercial sectors, however, its 

uptake in commercial sectors is slow. Particularly, to the best of our knowledge, no 

single data set related to manufacturing domain is available in the LOD cloud. 

Therefore, publishing linked data sets of manufacturing domain to LOD cloud would 

be a great contribution to both manufacturing and Linked Data community. The 

manufacturing knowledge base, the output of our semantic resolution framework, 

could serve as the basis for that purpose. 

2.2 Related Work 

This section briefly surveys existing research related to ontology-based information 

integration. We first introduce the three ontology-based Information Integration 

paradigms, their advantages and disadvantages as well as the challenges they are 

facing. Then, we present state of the art Information Extraction (IE) methods and 

systems in two subsections, for traditional IE and ontology-based IE, respectively. 

We include traditional IE for the sake of completeness. The ontology-based IE, on the 
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other hand, deals with extracting ontology instances and is thus closely related to 

Ontology Population, the topic of this dissertation. Finally, the related works on the 

ontology mapping are reviewed in the last subsection. 

2.2.1 Ontology-Based Information Integration 

Ontology-based Information Integration can be categorized from different 

perspectives using different terms. By summarizing several discussions [24, 25, 26] 

on the topic of ontology-based Information Integration, we group the ontology-based 

Information Integration approaches into three categories: bottom-up, top-down and 

hybrid. Figure 2.3 depicts the high level view of the three categories. 

 

 
Figure 2.3 High level view of three ontology-based information integration 

categories 
!
     Top-down Approach.  The top-down approach requires all individual data 

sources refer to one global ontology to describe their data. This approach can be 

applied to information integration system where all data sources to be integrated share 

nearly the same view on a domain and represent their views in the same way. In such 

a system, semantic interoperability is easy to achieve since all participants share the 

same view. However, for domains that enjoy vast diversity, developing one global 

ontology that is agreed upon by all individual data sources is extremely difficult. For 

this reason, the top-down approach is considered impractical in communities where it 

is hard to achieve common ground.  

      Bottom-up Approach.  In bottom-up approach, individual data source is 

annotated by its own ontology. Then, these annotated data of individual 
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(heterogeneous) sources can be combined or communicate with each other through 

pair-wise mappings established among these data sources. The advantages of the 

bottom-up approach include that the description of a data source by using the local 

ontology can achieve a high degree of accuracy since the local ontology is tailored to 

describe its own data, the changes made on individual ontology would not affect other 

ontologies and no commitment on a global ontology is needed. However, the lack of a 

global ontology makes it extremely difficult for individual sources to cooperate with 

each other. For example if certain semantic interoperability needs to be achieved 

among multiple data sources, pair-wise schema-level mappings need to be established 

among these sources. The pair-wise mappings would grow dramatically as the 

number of data sources increases. Moreover, as pointed out by Wache et al. [25, 27] 

and others, in practice the pair-wise mappings are very difficult to define and 

maintain, because of many semantic heterogeneity problems that need to be dealt 

with. Although, the new endeavor of Linked Open Data (LOD) initiative, lowers the 

technical barriers of adopting Semantic Web techniques to aggregate data, little effort 

was seen in developing and populating LOD dataset for the manufacturing domain or 

its subdomains.  

      Hybrid Approach. The hybrid approach strikes a balance between the top-down 

approach and the bottom-up approach. For one thing, as opposed to top-down 

approach, individual sources use their local ontologies to describe data. These local 

ontologies are typically expressed in the same ontology language (e.g., OWL) as the 

global ontology is. For another, as opposed to bottom-up approach, the hybrid 

approach achieves the semantic interoperability by establishing mappings from local 

ontologies to a global ontology. Thus, instead of establishing and maintaining  

set of mappings, as bottom-up approach does, the hybrid approach only need to 

maintain O(n) sets of mappings. The global ontology defines generic concepts and 

relationships to describe the domain of interest and provides a unifying conceptual 

view on that domain. This enables the formulation of high-level queries over the 

entire domain through one interface without knowledge about the heterogeneous 

back-end data sources.  

O(C2
n )
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      Despite all these benefits, there is one critical challenge that prevents the hybrid 

approach from being adopted by domains such as manufacturing. That is, in order to 

achieve semantic interoperability, the proprietary data models (e.g., rational databases 

and XML schemas) of different sources should be expressed in the same ontology 

language and mapped to the global ontology. Mapping each of them to the global 

ontology is not only costly but also not scalable in the web since there are simply too 

many websites that are represented in different modeling languages and have 

different degree of formalization for their different conceptualizations. From a more 

technical perspective, the hybrid approach is difficult to be adopted by business 

entities because (1) the syntax and semantics of the formal ontology languages such 

as OWL and the state of art Semantic Web techniques are not familiar to the users 

and thus they would have a steep learning curve to model their legacy data using 

these techniques and (2) no sufficiently mature and widely available tools for 

inexperienced users to embrace these newly emerging techniques. 

2.2.2 Information Extraction  

In this section, we briefly review some researches on Information Extraction (IE). We 

include this section because the ontology-based information extraction is a subfield of 

IE and it adopts many techniques from the field of IE. For more thorough review of 

IE, we refer the reader to [28, 29, 30].  

      According to Russell and Norvig [31], Information Extraction is the process of 

(semi-) automatically extracting certain types of structured information (e.g., a 

particular class of objects or events and occurrences of relationships among them) 

from unstructured documents (e.g., free text) or semi-structure documents (e.g., xml 

document and web pages). Here, we present some IE methods/systems by grouping 

them into categories based on the two types of input sources, namely the free text and 

the web-pages. Surveys of IE methods from other perspectives can be found in [30, 

29]. 

      Extract data from free text. When dealing with free text, IE typically employs 

natural language processing techniques such as part-of-speech taggers, lexical 

semantic interpretation, name-entity recognizers and morphological analyzer [32, 33]. 
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Based on these techniques, linguistic rules or extraction patterns can be built by 

human experts or learned by machine learning (ML) algorithms. Manually created 

linguistic rules typically harness human intuition and domain knowledge, and thus no 

training data are needed. In addition, manually created linguistic rules can achieve 

high degree of accuracy since they are tailored to the specific problem. Building 

Finder [34] is a domain specific system aimed to retrieve and integrate information 

about streets and buildings mainly from texts of heterogeneous sources and present 

them in satellite images. Its record-linkage system applies manually created mapping 

rules to various documents, including free-text documents, of this specific domain to 

extract relevant data. Amilcare [35] is an adaptive IE system that uses ML algorithms 

to learn to adapt to new domains by using a set of annotated texts. More specifically, 

Amilcare first creates training data by annotating text using ANNIE [36], GATE’s 

shallow IE system. Then, it applies supervised ML algorithm [37] to induce rules 

from the training data. These induced rules are applied to the text of the domain to 

extract more instance data. 

      Manually created rules require both language process skills and domain 

knowledge from human experts, and are perceived as expensive to create. ML-based 

rules, on the other hand, can be (semi-) automatically learned from some training 

data. Agichtein [38] proposed an approach that first creates extraction patterns by 

training an information extraction system called snowball with only a small set of 

seed instances. Then these extraction patterns combined with name-entity tags are 

used to identify new instances. Shinyama [39] applies an unrestricted relation 

discovery technique to discover all relations from a large corpus of new articles. In 

the process of unrestricted relation discovery, all articles are first clustered based on 

their topics. Then each article is name-entity tagged and each sentence of these 

articles are transformed into a GLARF structure (Grammatical and Logical Argument 

Representation Framework) [40]. A collection of extraction patterns, called basic 

patterns, is created from these GLARFized articles. Finally, these basic patterns are 

applied to extract relations. S-CREAM (Semiautomatic CREAtion of Metada) [41] is 

a system that automatically annotates texts given a set of training data. This system 

provides users with two tools, Onto-O-Mat and Amilcare, to create domain-specific 
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training data. With the assistance of the two tools, S-CREAM is trainable for different 

domains.  

      Extraction rules or patterns targeting at free text are typically learned from 

supervised machining learning algorithm since free text is lack of structure that is 

understandable by machines. For each specific task, a new set of training data is 

required. Thus, these supervised approaches are not robust to changes of domain. 

Information extraction systems dedicated to extract data from semi-structured web 

pages, however, can achieve higher degree of automation and robustness, since they 

can exploit existing structure of web pages, especially web pages with templates.   

      Extract data from web pages. Earlier web information extraction systems are 

designed to facilitate programmers in writing extraction rules. Later systems utilize 

supervised learning methods to automatically generate such rules. As discussed 

earlier, supervised methods need human-labeled training examples to train the 

extractor and thus are expensive in terms of cost for human expertise and manual 

labeling process. Recently, many efforts have been devoted to creating systems with 

unlabeled training examples, typically web pages represented by HTML DOM 

(Document Object Model). These systems are called semi-supervised or unsupervised 

information extraction systems since human labeling may not be required. IEPAD 

[42] is one of the first IE systems that use semi-supervised methods to generate 

extraction rules. IEPAD works under the observation that multiple homogeneous data 

records are normally rendered regularly using some templates for good visualization. 

Thus, patterns can be discovered by exploiting such regularity. Since human 

interventions are still required to ease uncertainties in found patterns, IEPAD is 

considered a semi-supervised system. RoadRunner [43] is an unsupervised IE system 

that does not use any labeled training examples and has no human interventions. It 

first clusters web pages with similar structure and then compares web pages from the 

same cluster to identify possible templates or patterns. Based on these similarities and 

differences, extraction patterns then can be induced. Finally, relevant data can be 

extracted by applying these patterns. Other than web IE approaches that target at web 

pages, approaches dedicated to extract data from specific HTML data structures (e.g., 
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table, list) have also been proposed [44, 45]. [46] reports one of the most recent 

efforts to extract linked data from tables. 

      A common shortcoming of most traditional information extraction approaches is 

that extracted data are not organized according to a shared formal ontology. Thus, 

data extracted from multiple sources cannot be queried as a whole, since they lack 

semantic interoperability. Ontology-based Information Extraction (OBIE) approaches 

are proposed to extract information from text documents (both free text and web 

pages) guided by ontologies and represent results using ontologies. Thus, the 

extracted data from heterogeneous sources are organized under a common ground 

such that they can be consumed by users using high-level queries without the 

knowledge about the back-end sources. This characteristic, and many others, makes 

OBIE useful in realizing the vision of the Semantic Web. 

2.2.3 Ontology-based Information Extraction 

Ontology-based Information Extraction (OBIE) is a subfield of information extraction 

[47]. It typically utilizes an ontology or a set of ontologies to guide the information 

extraction process. Some OBIE systems [48, 49] output a set of instances of classes 

and properties defined in existing ontologies. Others [50, 34] may output a set of new 

classes or/and properties as an extension to the existing ontologies. Figure 2.4 depicts 

a typical view of OBIE architecture. 
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Figure 2.4 Ontology-based Information Extraction architecture 

         

      As described in [25, 47], OBIE has many advantages over traditional IE. 

Following highlights some of these advantages [51, 52, 53, 54]: 

1) Resolving semantic heterogeneity among proprietary data models. The 

ontology (or a collection of ontologies) adopted by an OBIE system is typically an 

upper domain ontology that defines generic concepts and relations of the domain of 

interest. The semantic heterogeneities among proprietary data models can be resolved 

to certain degree by establishing schema-level mappings from these proprietary data 

models to this upper domain ontology. These mappings are typically considered as a 

part of the OBIE system [55].  

2) Creating structured data for the Semantic Web. The success of Semantic 

Web relies on the existence of a large volume of structured data that can be processed 

and interpreted by computer programs. OBIE provides an automatic (or semi-

automatic) mechanism to generate these structured data and store them as ontology 

instances. This process is known as semantic annotation [52, 56, 57].  

3) Improving the quality of ontologies and enriching ontologies. If a domain 

ontology can successfully guide an OBIE system to extract data related to that 

domain, this ontology can be seen as a good representation of this domain. If a 
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domain ontology fails to fulfill such task, the shortcomings of this ontology can be 

identified by analyzing the types of semantic content it has failed to extract. Further, 

the improvement and enrichment on this ontology can be achieved based on the 

analysis [53, 54].  

      The difference between OBIE and traditional IE mostly lies in the fact that the 

information extraction process in OBIE is guided by ontologies and the results are 

represented using ontologies. Except this fact, OBIE is almost identical to traditional 

IE. In other words, no new information extraction methods are invented in OBIE but 

the existing methods are applied to identify instances of an ontology. We have 

reviewed some systems on the traditional IE earlier. We now present some 

systems/tools that utilize OBIE to extract information: 

      SOBA [58] is an ontology-based information extraction and integration system 

that integrates information on football match events from web pages and focuses on 

HTML tables. The manually created mapping rules are leveraged to transform HTML 

tables to an XML representation that is then used to update the SWintO ontology [59], 

which integrates a number of domain and task ontologies. MUSING [48] constitutes a 

query answering system by adopting OBIE approach. It semi-automatically extracts 

information from text documents using linguistic rules and gazetteer lists guided by a 

manually defined ontology. The incorrect extractions made by this process can be 

corrected by domain experts. BOEMIE [60] extracts, fuses and interprets information 

from heterogeneous sources including texts, images and videos published in web 

pages. BOEMIE adopted a synergistic approach that on the one hand it automatically 

extract and semantically mark-up information from multimedia content guided by one 

or more ontologies in order to populate and enrich these ontologies and, on the other 

hand, it deploys enriched ontologies to enhance the robustness of the extraction 

system. PANKOW [52] automatically categories instance data from text with respect 

to a given ontology by exploiting extraction patterns and the redundancy on the web. 

It constructs the patterns by first mapping each instance datum extracted from the text 

to one of the classes defined in their tourism ontology. Each pair of the instance and 

class is then checked against the web via Google queries. The number of hits is used 
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as the measure of the degree of correctness of the mapping. Mappings with large hit 

number will be transformed as extraction patterns. 

2.2.4 Ontology Mapping 

Ontology mapping is aimed at resolving semantic heterogeneities among ontologies 

of heterogeneous data sources. For this reason, establishing mappings between 

ontologies is a crucial task in any Ontology-based Information Integration (OBIE) 

system. In this section, we first discuss various forms of semantic heterogeneities and 

then briefly survey basic techniques used to establish mappings between ontologies. 

Most of the materials covered in this section are from the book [14] and papers [61, 

62]. 

2.2.4.1 Types of semantic heterogeneity 

Due to the diverse ways of developing ontologies, the semantic heterogeneities that 

may occur between different ontologies come with different types. [62] categorizes 

them mainly into three types: syntactic heterogeneity, terminological heterogeneity 

and conceptual heterogeneity.  

      Syntactic heterogeneity occurs when two ontologies expressed in different 

ontology language (OWL and XML) or modeled using different representation 

formalism (description logic and F-logic).   

      Terminological heterogeneity refers to mismatches occurring in the process of 

naming entities (e.g., instances, classes and properties) in different ontologies. 

Typical examples of these mismatches are  

• Using different words to refer to the same entity 

• Using the same word to refer to different entities  

• Using word of different language to name entities 

• Syntactic variations of the same word 

      Conceptual heterogeneity refers to the differences in modeling the domain of 

interest (i.e., what entities should be represent in an ontology and what is the 

definition of an entity). Many reasons may cause conceptual heterogeneity. Three 

important ones are listed below: 
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• Coverage: Two ontologies model different regions of the domain of interest. 

• Granularity: Two ontologies model the same region of the domain of interest 

but at different level of detail. 

• Perspective: Two ontologies model the same region of the domain of interest 

at the same level of detail but with different viewpoints. 

      The common approach of overcoming heterogeneity is to establish 

correspondence or relations between entities defined in different ontologies. These 

correspondences are established typically through the measure of the similarity 

between entities of different ontologies. 

2.2.4.2 Basic techniques for measuring semantic similarity 

To resolve the semantic heterogeneities between ontologies, a large number of 

complex similarity measures [14, 63] have been developed to assess the similarity 

between entities of different ontologies. These complex similarity measures typically 

assess the similarity between two entities by aggregating similarities between various 

features (e.g., labels, types and relations) of these two entities [64]. In this section, we 

only examine basic similarity measures that assess the similarity of two entities based 

on a single particular feature of these entities. Composite similarity measures based 

on multiple features used in this dissertation will be presented in Chapter 4. [14] 

groups the basic similarity measures into four broad categories: Name-based 

similarity, Structure-based similarity, Extension-based similarity and semantic-based 

technique. 

      Name-based (or label-based) similarity. Part of the semantics of an entity lies in 

the words used to name or label that entity. Name-based similarity computation 

attempts to measure semantic similarity between labels of two entities. The most 

widely used techniques for similarity between two labels are string-based measures. 

A large number of string-based similarity measures have been proposed, including 

Hamming distance, n-gram similarity, Jaro measure and edit distance [65]. Since a 

label is often a word or concatenation of several words, some of the name-based 

similarity measures require the label first be tokenized or normalized to a set of words 

and then the similarity score between two sets of word calculated. Since stop words 
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(e.g., and, of) appear often and consequently have low information content in 

information theory [66], they can be removed from the similarity computation. To 

further enhance the accuracy of the Name-based measures, common knowledge 

corpora, such as WordNet11, Wikipedia12 and domain-specific corpora can be utilized 

to identify semantically similar words. For example, WordNet groups terms based on 

a notion of synsets or sets of synonyms. In other words, terms in the same synset are 

synonyms. Thus, two terms can be considered similar if they belong to the same 

synset. Name-based similarity is a common way used to resolve the terminological 

heterogeneity between entities. 

      Structure-based similarity. Structure-based similarity measures the similarity of 

two entities by comparing the structures of these entities. The most commonly used 

structures are property structure and taxonomic structure. Property structure is often 

used as comparison source for matching instances. The idea of comparing the 

property structures of two instances is that when two instances have similar properties 

with similar values, the two instances are likely referring to the same object. The 

taxonomic structure reflects the subsumption relationship of classes defined in an 

ontology. It is often used as comparison source for mapping classes. When two 

classes have similar taxonomic structure, the two classes are likely referring to the 

same concept. The Wu-Palmer similarity [67] and Upward Cotopic similarity [68] are 

often used to compute the similarity between two classes based on their taxonomies. 

Wu-Palmer measures the similarity between two classes of the same taxonomy. It 

takes into account the locations of classes in the taxonomy as well as the distance 

between classes in terms of edges. The Upward Cotopic similarity treats the 

taxonomic structure of a class as a set of its superclasses and compares two classes by 

applying the Jaccard similarity to the two sets of superclasses of these two classes. In 

this sense, Upward Cotopic similarity is useful to match classes that have different 

names but share similar taxonomic structures.  

      Extension-based similarity. Extension-base similarity measures normally 

compute the similarity between two classes (or properties) when their instances are 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 http://www.wordnet.princeton.edu 
12 http://www.wikipedia.ord!
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available. The simplest way of comparing two classes in terms of their instances is to 

test the intersection of their instance sets. If the two classes share a large portion of 

instances, then they are likely referring to the same concept. A more formally defined 

extension-based similarity measure is the Jaccard similarity [69], which computes the 

similarity based on probabilistic interpretation of the set of instances. Extension-

based similarities are useful to compute the overlap between two classes when 

instances of both classes are available. However, in situations where instances of 

classes are not available, other techniques have to be considered. 

      Model theoretic techniques. The model theoretic techniques cannot compute the 

similarity between entities or establish correspondences by itself. It is typically used 

to prune incorrect correspondences and discover new ones by using deductive 

techniques after certain correspondences between ontologies have been established. 

For example, after classes from two ontology O1 and O2 have been mapped to a 

reference ontology O, the relationships between classes in O1 and O2 can be inferred 

by using the reasoning ability of the ontology O. Deductive techniques such as 

propositional satisfiability (SAT) techniques can be also applied to check the 

completeness and consistency of the established correspondences [70]. 

2.3 Summary 

Ontology-based information integration is a process that adopts a combination of 

information extraction, information retrieval, natural language processing, machine 

learning and semantic web techniques to (semi-)automatically extract features of 

interests (e.g., MSC instances) from raw unstructured text and/or (semi-)structured 

documents (e.g., XHTML web pages). Guided by ontologies, extracted features then 

are annotated and integrated based upon correspondences built among heterogeneous 

data sources by leveraging various similarity measures based on terminological, 

conceptual as extensional arguments. The basic techniques surveyed in §2.2.4.2 are 

the building blocks on which various mapping solutions are built. In Chapter 4, we 

will present similarity measures and mapping functions that we develop for 

discovering, annotating and integrating MSC instances and relations. Before going 
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into detail on how these processes are performed, we will first overview the semantic 

resolution framework in the next chapter 
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Chapter 3.   

!
Semantic Resolution Framework 

Overview!
 

 

This chapter provides an overview of the semantic resolution framework (SRF). It 

starts with explaining the functionalities of core components that constitute the SRF 

and then, depicts the architecture of the SRF and describes how these components 

interact with each other. 

3.1 Framework Components 

This section describes in detail the functionalities of the three core components that 

constitute the semantic resolution framework. The three components together aim at 

addressing the challenges of extracting a large volume of manufacturing service 

capability instances from web sites of manufacturers, accurately annotating and 

integrating these instances into a manufacturing domain ontology (MDO) with 

minimal human intervention. 

3.1.1 Instance Extractor 

The instance extractor takes as input a website of a manufacturer and outputs an 

instance description model (IDM) of instances extracted from that web site. To 

facilitate the annotation of instances at later stage, IDM describes each instance !! 
with a context containing a set of concepts of !! with broader meaning of !! and a set 

of relations that connects !! with other instances or numerical data values. Intuitively, 

each concept indicates a category that !! may belong to and each relation indicates a 

characteristic that !! may have. Thus, concepts and relations of instance !! describe 

the semantics of this instance and will be seen to be very useful in identifying a class 
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label defined in MDO for !!  at the annotation stage later. Figure 3.1 shows an 

example that illustrates the entities (i.e., instances and relations) extracted from a web 

page and how these entities are described by IDM in graphic form.   

 
Figure 3.1 Example of IDM describing instances extracted from a web page 

        

      The left picture of Figure 3.1 shows one web page of the accutrex.com13 web site 

while the right picture shows the IDM that describes the entities extracted from this 

web page in graphic form. In this particular example, entities in red circles are 

instances, in green circles are concepts of instance aerospace waterjet cutting, in 

blue circles are relations applied to aerospace waterjet cutting and other entities in 

red circles with edges directed to blue circles are values of the relations. The concepts 

and relations of aerospace waterjet cutting forms the context of aerospace waterjet 

cutting and will be leveraged to identify class label for aerospace waterjet cutting 

in the instance annotation stage. 

      The fact that HTML provides no constructs to explicitly define schema of 

instances makes identifying contexts (i.e., concepts and relations) of instances a 

challenging task. Information extraction (IE) techniques may help identify those 

entities. However, they may not be robust enough to deal with the diverse ways of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!www.accutrex.com!
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presenting instance data in web pages. Moreover, IE techniques typically require 

manually created linguistic rules or entity recognizers. Thus, it is costly in terms of 

human effort. Our approach identifies instances and their contexts by leveraging site-

independent features such as XHTML markup tags, hierarchical structure of XML 

source tree that represents web pages and the redundancy in web pages – the 

existence of multiple variations of the same phrase or term (e.g., the two phrases 

“industry served” and “we serve industries include” are actually referring to the same 

relation).  

      After identifying all instances and their contexts, we then semantically annotate 

these instances based on their contexts.  

3.1.2 Instance Annotator  

Given an instance description model (IDM) constructed from a manufacturer’s web 

site, the instance annotator identifies a class label for each instance of the IDM based 

on the mapping established from the context of that instance to vocabularies (i.e., 

classes and properties) defined in the MDO. Then, these annotated instances are 

integrated into the MDO.  

      The challenge here is that ontology mapping techniques applied in traditional 

ontology-based information integration approaches cannot be applied directly to this 

instance annotation process. This is because that the objective of ontology mapping 

and instance annotation differs. More specifically, the ontology mapping is concerned 

with establishing correspondences between schema-level entities, typically classes 

and properties, of formally defined ontologies (e.g., OWL-based ontologies). Thus, in 

ontology mapping, ontology-specific semantics (e.g., class hierarchies and property 

restrictions [71]) defined for these entities are typically leveraged to establish 

correspondences. Further, based on established correspondences, instances of these 

ontologies can be integrated. While the instance annotation process focuses on 

identifying class labels from a formal ontology (i.e., MDO) for instances described by 

the local semantic model IDM that informally encodes the semantics of each instance 

via the context of that instance. To address this difference in formalism, we designed 

and developed a new scheme of annotating instances of the IDM. 
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      More specifically, we first map each relation r of IDM to a property p of MDO 

that is most similar to r based on the similarity aggregated along three dimensions – 

domain, range and lexical label – between r and p. Then, for each instance !! of IDM, 

we map concepts in the context of !! to classes of MDO based on label similarity. 

Finally, we choose a class label from MDO for instance !! based on the mappings 

established between entities in the context of !! and those of MDO. Figure 3.2 shows 

an example that illustrates the mappings established between entities in IDM (on the 

left) and those defined in MDO (on the right).  

 

 
Figure 3.2 Example of mappings established between IDM and MDO 

 

      The solid lines in Figure 3.2 indicate that entities on the IDM side of the line are 

annotated by entities on the MDO side of the line. For example, aerospace waterjet 

cutting is annotated by class WaterJetCutting and materials include is annotated 

by property hasMaterial. The dash lines present the assistant mappings (established 

between concepts of instances in IDM and classes in MDO) that help identify class 

labels of instances. Note that the IDM shown in Figure 3.2 just a partial view of the 
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whole accutrex.com web site and thus it does not show all the instances, concepts and 

relations.  

      Because of the semantic heterogeneity, the instance annotator may not be able to 

accurately annotate some instances. For example, as shown in Figure 3.2, the Brass 

and Carbon steel were annotated with the class Material, which is not accurate in 

describing the meaning of the two instances. With the help of the semantic resolution 

knowledge base, the accuracy of the instance annotator can be improved.   

3.1.3 Semantic Resolution Knowledge-Base  

The semantic resolution knowledge base (SR-KB) tries to address the technical 

challenges of effectively improving the accuracy of instance annotator while at the 

same time reducing or minimizing human intervention. 

      SR-KB provides a manufacturing concept mapping repository (MCMR) that each 

entry in this repository is a mapping that maps a concept !  extracted from 

manufacturing web sites to a class ! defined in MDO such that ! and ! have the same 

or similar meaning but share low label similarity. Thus, MCMR helps map more 

concepts of instances of IDM to classes of MDO and thereby may improve the 

accuracy of annotating instances by resolving terminological heterogeneity that exists 

between manufacturing web sites and the MDO.   

      SR-KB also offers a Naïve Bayes-based annotation corrector (NBAC) to 

automatically correct misannotated (i.e., assigned with wrong or inaccurate class label) 

instances. In the initial stage, the NBAC may not be mature enough to be able to 

correct misannotated instances. Thus, domain experts in the loop perform most of the 

work of validating instances and correcting misannotated ones. As the instance 

annotation process goes by, the NBAC is consistently trained by features extracted 

from instances that have been validated by domain experts, and its accuracy 

continuously improved. Consequently, the role of domain experts can be gradually 

replaced by the NBAC.  

      Last but not least, the SR-KB includes an instance validation platform (IVP) that 

assists domain experts to validate all annotated instances through a simple user 

interface. There are primarily two options open to domain experts to make correction: 
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(1) mappings from context of an instance to classes of MDO and (2) the class label of 

an instance. An innovative part of the IVP is that it offers a list of recommended class 

labels for each instance as alternatives to the original class label (automatically 

identified by instance annotator) of that instance. Thus, domain experts can correct a 

misannotated instance by simply choosing a class label from the list of recommended 

class labels rather than navigating the whole MDO that may contains hundreds or 

even thousands of classes.!

3.2 Framework Architecture 

As stated earlier, the semantic resolution framework (SRF) consists of three core 

components: including an instance extractor, an instance annotator and a semantic 

resolution knowledge base (SR-KB) and SR-KB in turn contains three 

subcomponents: a manufacturing concepts mapping repository (MCMR), a Naïve 

Bayes-based annotation corrector (NBAC) and an instance validation platform (IVP). 

The architecture of the five components and how they interact with each other are 

depicted in Figure 3.3. 
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Figure 3.3 Semantic resolution framework architecture 

 
As shown in Figure 3.3, the instance extractor builds an instance description model 

(IDM) upon each manufacturing web site. The instance annotator takes IDM as 

input and automatically annotates instances of IDM with classes defined in 

manufacturing domain ontology (MDO) based on contexts of these instances and 

forms features of these instances. MCMR in SR-KB helps instance annotator more 

accurately annotate instances by resolving terminological heterogeneity while 

NBAC is to correct misannotated instances (i.e., assigned with wrong or inaccurate 

class label) by resolving conceptual heterogeneity. The NBAC is trained by 

features of annotated instances validated by domain experts with the assistance of 
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IVP. The output of IVP can be either stored in local database or published in 

Linked Open Data cloud. 

3.3 Summary 

In this chapter, we introduced the semantic resolution framework and its core 

components. Also, we briefly described the functionality of each component and the 

challenges that each component tries to solve. From Chapter 5 to Chapter 7, we will 

elaborate the methodologies and algorithms leveraged to implement these 

components. Before directly jumping into these chapters, in the Chapter 4 we will 

first define similarity measures and mapping functions that are commonly used by 

these methodologies and algorithms. 
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Chapter 4.  

               Similarity Measures 
 

 

Similarity measures and mapping functions play a crucial role across the whole life 

cycle of the manufacturing service capability instance annotation process. Mappings 

between entities of different sources are typically established through the measure of 

similarity between those entities. In §2.2.4, we overviewed basic techniques for 

measuring similarity. In this chapter, we will present the measures we adopted to 

assess similarity between labels of entities and the functions to establish mappings 

between entities based on these similarity measures. Specifically, we first introduce 

three measures of label similarity between two entities. Then, we define two 

direction-dependent mapping functions and their respective mapping scores. Finally, 

a symmetric mapping score measure is defined. 

4.1 Label Similarity Measures 

Label similarity measures we use in this work are for calculating the lexical similarity 

between labels (or names) of two entities. Particularly, we adopt a string-based 

similarity measure to calculate the similarity between labels on the character level and 

a semantic-based similarity measure to calculate the similarity between labels on the 

word level. The latter one leverages WordNet [72] to match synonyms between 

words in two labels. Thus it may more accurately reflect the similarity between labels 

of entities. On the other hand, however, the accuracy of the semantic-based similarity 

measure is affected by the result of the tokenization preprocess on labels to be 

compared. Consequently, very similar labels but with different spitting points may 

obtain low label similarity. To address this issue, we come up with a hybrid similarity 

measure that takes both (string-based and semantic-based) measures into 

consideration. The three label similarity measures are described as follow. 
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      String-based similarity measure. The string-based measure uses n-gram [74] to 

compute the label similarity between two entities. The n-gram similarity is known for 

its ability to deal with word variations (e.g., child vs children, process vs processing). 

It computes similarity between two labels (i.e., strings) by counting the number of 

occurrences of different n-grams (i.e., the substrings of length n in the label). More n-

gram two labels have in common, the more similar the two labels will be. To compute 

the label similarity between two entities based on n-gram, we adopted the formula 

described in [14] which is re-stated bellow. 

Definition 4.1: Let ngram(e, n) be the set of substrings of e of length n. The ngram 

similarity is defined as: 

1 2
1 2
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      Semantic-based similarity measure. The ngram does not consider the words 

comprising the label as well as the semantics of these words. To better measure the 

semantic similarity between labels, we explore an innovative approach developed by 

Kim [3]. This approach computes label similarity between two entities by using an 

ordered maximum-weighted bipartite matching algorithm that leverages WordNet to 

match synonyms. We define this ordered maximum-weighted bipartite matching 

algorithm as follow. 

Definition 4.2: Given similarity measure σ that measures the similarity between two 

words, the ordered maximum-weighted bipartite matching algorithm (OMBM) that 

computes similarity between two sets of words that constitute the labels of two 

entities e1 and e2 respectively is defined as:  
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where mappings(e1,e2) is a set of mappings, each of which is a one-to-one mapping 

that maps words in label of e1 to words in label of e2.  
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        Kim applied an bottom-up dynamic programming algorithm to identify a 

mapping !  ∈ mappings(e1,e2) such that 

!(!!,!!)(!!,!!)∈! ≥ !(!!,!!)(!!,!!)∈!�  for any mapping !�  ∈ 

mappings(e1,e2) and  ! ≠ !�. σ computes the similarity between two words based 

on WordNet. The WordNet groups terms based on a notion of synsets or sets of 

synonyms. In other words, two terms can be considered similar if they belong to the 

same synset. This approach takes O(|e1||e2|) to compute the label similarity between 

the two labels of entities e1 and e2, where |e1| and |e2| denote the numbers of words in 

the labels of entity e1 and e2, respectively. To reduce computational cost, a greedy 

heuristic strategy was proposed for implementing this algorithm. Although the greedy 

strategy is not globally optimal, it may be a better choice in situation where the 

computational cost is more of a concern.   

      Hybrid similarity measure. The hybrid similarity measure computes the 

similarity between labels of two entities considering both string-based and semantic-

based similarity measures mentioned earlier, and returns the highest one. The 

objective of this hybrid similarity measure is to obtain the best result when comparing 

similarities between entities from different data sources, since applying either of the 

two aforementioned label similarity measures (i.e., string-based and semantic-based) 

alone may not be sufficient to deal with the terminological heterogeneity [75] that 

may exist between these sources. More specifically, labels of entities extracted from 

web pages typically are not designed for machine to process (e.g., tokenization). 

Consequently, the semantic-based similarity measures  may return low 

similarity between labels of entities e1 and e2 even though the two entities are very 

similar. Consider entities “waterjet cutting” and “WaterJetCutting” as an example. It 

is clear to us that the two entities refer to the exact same manufacturing capability 

concept. However,  returns a similarity score of only 0.64 between 

those two entities. This is because  is not able to tokenize the string 

“waterjet” as two words. The hybrid similarity measure helps us alleviate such issues. 

We define the hybrid similarity measure as follow: 

SimOMBM
L (e1,e2 )

SimOMBM
L (e1,e2 )

SimOMBM
L (e1,e2 )
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Definition 4.3: Given the and , the hybrid similarity measure 

is defined as: 

1 2 1 2 1 2( , ) max( ( , ), ( , ))L L L
hybrid ngram OMBMSim e e Sim e e Sim e e=  

        

      The choice of the most suitable measure among these three for calculating label 

similarity largely depends on the nature of linguistic features of entities to be 

compared, the particular task, and the expected response time. When computing label 

similarity between entities from the same data source, the string-based label similarity 

measure is usually applied. For computing label similarity between entities from 

heterogeneous data sources (e.g., mapping entities extracted from web pages to 

entities defined in the manufacturing domain ontology), semantic-based or hybrid 

similarity measures are more suitable. 

4.2 Mapping Functions 

Label similarity measures are concerned with measuring similarity between labels of 

two entities. They serve as basis for establishing mappings between entities from 

different (or the same) data sources. In this section, we will define an entity mapping 

function that maps one entity from a set to one entity from another set and an entity-

set mapping function that maps a set of entities to another set of entities. We will also 

define measures to calculate mapping scores of these functions.  

Definition 4.4: Given an entity e1 ∈ E1, the entity mapping function that identifies the 

counterpart of e1 in entity set E2 is defined as: 

2 2

1 2 1 2( , ) argmax ( , )
e E

m e E e eδ δ
∈

=  

where δ(e1, e2) is a generic similarity measure of the similarity between e1  and e2 in 

terms of certain aspects of the two entities. It can be a label similarity measure 

defined in §4.1 or any other more complex similarity measure based on different use 

cases. In the rest of this chapter, we will consistently use the symbol δ to refer to such 

generic similarity measure. In the following chapters, we will replace δ with specific 

SimL
ngram SimL

OMBM (e1,e2 )
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similarity measures in different scenarios and different stages of integration. Based on 

Definition 4.4, the entity-set mapping function is defined as follow. 

Definition 4.5: Given two sets of entities E1 and E2 and a similarity measure δ, the 

entity-set mapping function that identifies a set of directed correspondences from 

entities in E1 to entities in E2 is defined as:  

{ }deeEemeEeeeEEM >=∈= ),(  and  ),(:),(),( 21212112121 δδδ  

Notice that each entity from E1 is mapped to at most one entity from E2. This means 

that we consider two entities mapped only when their similarity beyond a predefined 

threshold d. 

      The entity-set mapping function is directed and does not achieve 1-to-1 mapping. 

These properties are useful in identifying mapping between two sets of entities that 

entities in one set are not the exact paraphrases of entities in another [76]. The entity-

set mapping function suits situations where one tries to find a reference for each 

entity of one set in the other set. In these cases, it is useful to map multiple entities 

from one set with similar or related semantics to a single entity in the other.  

      In the remainder of this chapter, we will define three functions used in different 

scenarios for computing mapping score between two sets of entities. The first two 

functions are non-symmetric measures: one is average mapping score and another is 

weighted mapping score. The last function is a symmetric measure called alignment 

score. 

Definition 4.6: Given two sets of entities E1 and E2 and a similarity measure δ, the 

average mapping score between these two sets is defined as:  

1 1
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      Definition 4.6 assumes all entities from E1 are equally important. In certain 

situation, however, this may not be the case. For example, we associate each instance 

!! extracted from manufacturing web sites with a context that represents the meaning 

of instance !!. Such context contains a set of concepts each of which is associated 

with a score reflecting the relevance of that concept to !!, We want to compute the 
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score of a mapping established between the set of concepts and a set of classes 

defined in the manufacturing domain ontology considering the relevance of each 

concept to !!. In this scenario, the concepts are not equally important with respect to 

instance !!. To deal with this scenario, a weighted mapping score is required.  

Definition 4.7: Given two sets of entities E1 and E2 and a similarity measure δ, the 

weighted mapping score between the two sets is defined as: 

1

1 1
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e

e E
MS E E e m e Eδ δβ δ

∈

= ∑  

 where
1e

β denote the weight of entity e1. 

      Definition 4.6 and 4.7 define two non-symmetric similarity measures that 

compute scores for directed mappings. Definition 4.8 defines a symmetric similarity 

measure between two sets of entities, dispite the asymmetric nature of the mappings. 

Definition 4.8 satisfies all the constraints that a symmetric similarity measure should 

satisfy, including (1) positiveness, (2) maximality and (3) symmetry. We call this 

symmetric similarity measure cross mapping score. 

Definition 4.8: Given two sets of entities E1 and E2 and a similarity measure δ, the 

cross mapping score of the two sets of entities is defined as: 
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4.3 Summary 

In this chapter, we defined three label similarity measures, an entity mapping function 

and an entity-set mapping function. These measures and functions serve as building 

blocks for algorithms we developed to annotate and integrate manufacturing service 

capability instances from heterogeneous sources. In the next three chapters, we will 

explain in detail the approaches we take to extracting manufacturing service 

capability instances from web sites of manufacturers, annotate these instances with 

vocabularies defined in a manufacturing domain ontology, and correct misannotated 
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instances, and see how these similarity measures and mapping functions applied in 

these processes.  

! !
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Chapter 5.  

!
Extracting Manufacturing Service 

Capability Instances!
 

 

In this chapter, we elaborate the approach of extracting manufacturing service 

capability (MSC) instances from HTML web sites of manufacturers. As opposed to 

ontologies or many other data models that are able to explicitly define concepts and 

their relationships (terminological knowledge) as well as instances and their attributes 

(assertional knowledge) [77, 78]. HTML provides few constructs to fulfill such 

purposes. To facilitate the annotation of extracted instances with semantics defined in 

a manufacturing domain ontology and the integration of those instances under the 

ontology, we developed an instance extractor that, on one hand, can identify the 

context of each instance that helps to understand the meaning of such instance and on 

the other hand, is able to handle various forms of presenting instance data in 

manufacturing web sites. The instance extractor takes as input a manufacturing web 

site and outputs an instance description model that serves as a lightweight local 

semantic model of instances extracted from that web site. The instance description 

model (IDM) describes an instance !! with a context consisting of a set of concepts 

that are related to but have broader meaning than !!, and a set of relations relating !! 
to other instances or data values. Intuitively, concepts of an instance can be 

considered as a set of tags indicating the categories that instance may belong to and 

relations describing the characteristics of that instance. Thus, the IDM describes 

instances in a structural way in term of concepts and relations. As a result, the IDM 

facilitates the annotation of manufacturing capability instances and the integration of 

these instances into OWL-based manufacturing domain ontologies. 

      This remainder of this chapter is structured as follows. In §5.1, we first define the 

XHTML tree model, instance description model and some related terminology that 

allows us to represent the manufacturing capability instance extraction problem. From 
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§5.2 to §5.6, we elaborate the approaches of extracting manufacturing capability 

instances and constructing the instance description model. We summarize this chapter 

in §5.7. 

5.1 Definitions 

In this section, we define the XHTML tree model of web pages from where we 

extract manufacturing service capability (MSC) instances and the instance description 

model that describes the extracted MSC instances. 

5.1.1 XHTML Tree Model 

A web page is processed and presented by a web browser through parsing the source 

code associated with that web page. The source code is typically written in Extensible 

Hypertext Markup Language (XHTML) [80], which is an application of the 

Extensible Markup Language (XML) [81], and it is organized in a tree structure. 

Therefore, we call source code of a web page XML source tree and define it as 

follow: 

Definition 5.1: XML source tree is a XML serialization of a web page. It represents a 

web page in a machine-processable way. We define it as a 3-tuple: 

X = (r, N, E) 

where r is the root of XML source tree and N is a finite set of nodes, each of which is 

a descendant of r and has zero or more child nodes and one parent node. E is a finite 

set of edges, each of which connects a parent node to a child node.  

      The XML source tree has two types of nodes: leaf node and, inner node. We 

define them as follow: 

Definition 5.2: Any node in N that has no child is called leaf node. Leaf nodes are 

also called atomic nodes since they are the smallest unit and cannot be further 

divided. We define a leaf node l in N of a XML source tree as 3-tuple: 

l = (id, t, e) 
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where id uniquely identifies node l, t is the XHTML tag associated with node l, and e 

is an entity representing the textual content wrapped by tag t.  

      An entity can be a word, a phrase, a sentence, a paragraph or numerical data 

values or description (e.g., 6” x 4” x 1” wall thickness) that does not contain other 

tags. In practice, we limit the length (i.e., number of tokens) of entities to be extracted 

to a predefined threshold because we are only interested in manufacturing service 

capabilities expressed in short sentences or phrase, not in detailed descriptions of 

these capabilities or other irrelevant content.  

Definition 5.3: An inner node is a XHTML node that has at least one child node that 

can be either a leaf node or other inner node. We define an inner node m in N of XML 

source tree as 3-tuple: 

m = (id, t, X) 

where id uniquely identifies node m, t is the XHTML tag associated with node m, and 

X is a set of node pointers that each is pointing to a leaf node or other inner node that 

is a direct child of m.  

      Definitions 5.2 and 5.3 impose restriction on the structure of XML source tree 

such that only leaf nodes contain entities of interest. In reality, however, an inner 

node m may also contain entities that are often intertwined with tags of children of m. 

Consider following paragraph marked by XHTML tags (i.e., <p> and <em>) as an 

example shown in Figure 5.1 (a). According to Definition 5.2 and 5.3, node 2 is a leaf 

node since it does not contain any child node but the entity “aerospace waterjet 

cutting”, while node 1 is an inner node since it contains node 2 as its child node.  
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Figure 5.1 Example of leaf node and inner node 

 

      We will not consider the text content (i.e., At AccuTrex, we perform) nested 

between tags <p> and <em> as well as text content (i.e., of virtually every material 

used in the aerospace industry) nested between </em> and </p> as entities of node 1 

although they are wrapped by the tag (i.e., <p> and </p>) of node 1. Figure 5.1 (b) 

shows the diagram of the two nodes (i.e., node 1 and node 2) when the two pieces of 

texts are ignored. This restriction simplifies our instance extraction approach since we 

only consider leaf node when extracting entities. However, we may lose some 

information by ignoring the textural content nested among different XHTML tags. In 

the future, we will apply more sophisticated approaches to extract entities of interest 

from those texts.  

      XHTML tags play a crucial role in marking up data publishing on web pages and 

serve various purposes. To suit our purpose of forming contexts of instances, we 

group XHTML tags into three categories based on their intended usage. The three 

categories are listed as follow: 

• Topic tags: A topic tag t is a XHTML tag that indicates an entity e wrapped by t is 

of certain importance and such entity e is typically a topic (e.g., a MSC instance, a 

relation or a category of MSC instances). The detailed characteristics or values of 

a topic are typically listed below that topic in the same web page. In our research, 
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entities contained in topic tags are the main resources we explore to form the 

contexts of instances. Some of topic tags include <caption>, <strong>, <em>, <b>, 

<i>, <h1> to <h6>, <cite>, <dt> and <th>.  

• Function tags: A functional tag is a XHTML tag that serves as certain functions 

such as triggering events, taking user inputs and transferring these inputs to web 

servers, or is a segment of code or script that drive these functions. In other words, 

functional tags aim at functionality of a web site rather than the content 

presentation. Thus, when we parse the XML source tree, we will ignore all the 

contents contained in function tags. Some of the function tags include <form>, 

<input>, <textarea>, <button>, <select>, <option>, <optgroup>, <fieldset>, and 

<label>. 

• Other tags: Any tag that does not belong to the two categories listed above 

belongs to this category. We treat tags (e.g., <table>, <tr>, <ul>, <ol> and <span>) 

of this category as components constituting the XML source tree. The nested (i.e., 

hierarchical) structure of these tags determines the relationship between entities 

resided in these tags. 

      Since web browsers display a web page by parsing its XML source tree, the order 

in which a web browser (or XML parse tools) renders elements of the XML source 

tree matters with respect to constructing entity paths from our XML source tree 

(§5.2). We assume that all XML parsers render elements of a XML document 

following the document order [82], which is the order in which nodes appear in the 

XML serialization of a XML document. We define the preceding siblings of a node n 

(or a tag t) as the siblings that appear earlier than n (or t) by the document order. As 

shown in Figure 5.2, for example, node 2 and 3 are inner nodes; node 1, 4, 5, 6, 7, 8 

and 9 are leaf nodes; the preceding siblings of node 3 are node 1 and node 2; the 

preceding siblings of node 6 are node 4 and node 5. Similarly, the preceding siblings 

of node 9 are node 7 and node 8. 
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Figure 5.2 Example of nodes and their preceding siblings in XML source tree 

 

      We will parse and analyze XML source trees of web pages to extract entities of 

interest and connect related ones. These entities can be instances, relations that 

connect related instances or data values. To facilitate the annotation of extracted MSC 

instances, we designed an instance description model to describe instances and their 

relationships.   

5.1.2 Instance Description Model  

Instance description model (IDM) describes manufacturing service capability 

instances extracted from web pages of manufacturers in terms of contexts of these 

instances. The design goal of IDM is to facilitate the annotation of manufacturing 

service capability instances with semantics defined in a formal manufacturing domain 

ontology (MDO) and thus the integration of these annotated instances into MDO. We 

formally define the instance description model as follow: 

Definition 5.4: Given a web site W, the instance description model of W is a 6-tuple 

(I, K, Ro, Rd, N, D), where: 

! = !! , the set of instances extracted from W. 

! = !! , the set of numerical data values. 

! = !! , the set of numerical data types extracted from !. All data types of     

         members in ! constitute this numerical data type set D. In §5.4.2, we will  
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         explain how the function ! !  determines the numerical data type of ! ∈ !  

         work. 

!! = !! , the set of object relations that each connects two (related) instances, 

          with !! = (!, !) ! ∈ !, ! ∈ ! , !!"!! = ! (!, !) ∈ !!  is the domain of !! and         

          !"!! = ! (!, !) ∈ !! !is the range of !!. The label of !! is denoted as !!!. 
!! = !! , the set of data type relations that each connects an instance with a  

          numerical data value, with !! = (!, !) ! ∈ !, ! ∈ ! ,!!"!! = ! (!, !) ∈ !! !!is  

          the domain of !! and !"!! = !(!) (!, !) ∈ !!  is the range of !!. The label of  

          !! is denoted as !!!. 
! = !! ∪ !!, the set of all relations 

! = !!! , a set of contexts of instances; 

         where !!! = !!! ,!!!  is the context of instance !! 
         where !!! = !!!,!  is the concept set of !!, 
          !!!,! = !!!,! ,!!!,!  is the qth concept of !!; !!!,! !is the label of !!!,!;   

                     !!!,! !is the relevance score of !!!,! !with respect to !! 
          where !!! = !!!,!  is the relation set of !! such that !! ∈ !!"!!!,!, !!!,! is the   

                     qth relation of !! 
 

      Definition 5.4 defines components describing instances extracted from a 

manufacturing web site. Intuitively, these components can be considered as 

terminological knowledge on extracted instances. In the following, we define the 

assertional knowledge based on these components. This assertional knowledge 

together with the terminological knowledge constitute the knowledge base of a 

manufacturing web site. The objective of the semantic resolution framework 

presented in this dissertation is to integrate the knowledge bases extracted from a 

large amount of manufacturing web sites into a manufacturing domain ontology 

(MDO). 

Definition 5.5: Given the instance description mode IDM of a web site W, the 

assertions of IDM is a 2-tuple (Ao, Ad), where: 
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!! = !, !! , ! !! ∈ !! , ! ∈ !!"!! , ! ∈ !!"!! , the set of assertions in the form of   

          subject-predicate-object triple, in which the predicate is an object relation  

!! = !, !! , ! !! ∈ !! , ! ∈ !!"!! ,!(!) ∈ !!"!! , the set of assertions in the form  

          of subject-predicate-object triple, in which the predicate is a data type relation  

! = !! ∪ !!, the set of all assertions 

 

      I, Ro, Rd, and N are signature of IDM. They are disjoint sets and each is a set of 

entities identified from a manufacturing web site. Members of other sets (e.g., Ao, Ad 

and K) are formed by members from the four sets. Ao and Ad are sets of assertions that 

contain facts about the instances of IDM. IDM does not explicitly describe the type 

information of instances or the domains and ranges of relations. This is because the 

XML source tree of web pages from where instances and relations were extracted 

contains no explicit type information on instances and relations.  

      IDM describes types of instances through the contexts of these instances. The 

context of an instance !! can be used to disambiguate and determine the meaning of 

!!, thereby helping identify a class label defined in the MDO for instance !!. The 

context of !!, denoted as !!!, is represented by a set of instances, denoted as !!!, 
where each instance is related to but typically has boarder meaning than !!, and a set 

of relations, denoted as !!!, where each relation connects !! to other instances or 

numerical data values. Each instance in !!! is also referred to as a concept of !! since 

it can be a topic that is described by !! or a category that !! may belong to. Thus, we 

call !!! the concept set of instance !!. Each concept !!!,! ∈ !!! is associated with a 

relevance score !!!,! representing the degree of relevance of that concept to instance 

!!. Table 5.1 show an example of the context for instance Aerospace Waterjet 

Cutting extracted from web site of AccuTrex Products, Inc14. 

Table 5.1  Context of instance Aerospace Waterjet Cutting 
Instance:  Aerospace Waterjet Cutting 

Context 
Concepts: Aerospace Waterjet Cutting  ! = 1.0 

Abrasive Waterjet Cutting  ! = 0.8 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14!http://www.accutrex.com/!
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Capability   ! = 0.64 

Relations: material include ! = 0.8 

waterjet cutting benefits            ! = 0.8 

       

      Notice that each concept in the concept set of an instance is an instance itself, 

thus, the context of which would be formed accordingly. Put another way, an instance 

in the IDM has two roles: one is an instance with a context and the other is a concept 

appearing in the contexts of other instances. Acting as the first role, an instance will 

be annotated with a class label in the instance annotation process (Chapter 6). Acting 

as the second role, an instance will help us to identify class labels for other instances.  

       A relation r of IDM connects two related instances if r is object relation or 

connects an instance to a numerical data value if r is data type relation. IDM 

describes domain of r, denoted as !"!, as a set of instances described by relation r. 

Since an object relation connects an instance to another instance while a data type 

relation connects an instance to a numerical data value, IDM treats the ranges of the 

two types of relations differently. Specifically, the range of an object relation ro, 

denoted as !"!!, is represented by a set of instances that are values of r. While the 

range of a data type relation rd, denoted as !"!!, is represented by a set of data types 

determined based on numerical data values of rd. Notice that we only allow the value 

of a data type relation to be a numerical data value or numerical description such as 

“.001 in - 1/4 in” and “Up to 144 in”. Any other types of values of a relation are 

considered as instances. The reason for this consideration is that it typically has no 

clue at this instance extraction stage that can help determine whether an entity 

published in a web page is a string or an instance of certain type (i.e., class). Thus, we 

treat all entities that were not identified as numerical data values or relations (§5.4) as 

instances of certain types. Then, at the instance annotation stage (Chapter 6), we 

assign each instance with a class label. 

      Assertion set A of IDM are facts on instances and in the form of subject-predicate-

object triple. The predicate of an assertion is a relation that relates an instance (i.e., 

subject) to another instance or a numerical data value (i.e., object). When the 
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predicate of an assertion a is an object relation, a belongs to Ao. Otherwise, a belongs 

to Ad. 

5.2 Constructing Entity Path  

According to Definition 5.4, to construct instance description model (IDM) from web 

site of a manufacturer, we need to identify members of the signature of IDM (i.e., 

instances, relations and numerical data values) from the contexts of instances as well 

as domains and ranges of relations. However, HTML provides no constructs to 

explicitly distinguish and connect these members. To address this challenge, we 

extract and connect related entities appearing in the same web page in the form of 

entity paths based on the structure of the XML source tree. An entity path is a 

directed path such that each edge is directed from child entity to its parent. Each 

entity in the entity path can be an instance, a relation or a numerical data value. Based 

on the observations, which will be given shortly, a child entity e can be either a 

characteristic of or a specific instance of its parent. In the former case, the entity e is a 

relation of its parent and the value of such relation is the child of e. In the latter case, 

the parent of entity e is a concept of e (i.e., a member of the concept set in the context 

of e). Notice that the same entity e may appear in multiple entity paths constructed 

from different web pages of the same web site and thus the context of e should 

comprise concepts and relations of e extracted from all entity paths that e appears in. 

Thus, we merge all entity paths of a web site by fusing similar entities to form entity 

graph (§5.3) that connect related entities on the site basis. The structure of entity 

graph enables us to construct the context for each instance.  

      The approach of extracting entity paths is based on the following two 

observations on the structure of manufacturing web pages and the XML source tree.  

1. A manufacturing web site typically dedicates one or more description pages to 

describe the features of manufacturing service capabilities it offers. In each page, 

the description of a MSC is typically presented in a hierarchical (tree) structure 

such that an entity appearing at lower level of the hierarchy typically describes a 

specific aspect or is a specific instance of entities appear at higher level of the 

same hierarchy. In other words, entities that appear at higher level than entity e 
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does typically have broader meaning than e and should be included in the context 

of e. Figure 5.3(a) illustrates a snippet of the web page that describes the materials 

used by Abrasive Waterjet Cutting. For example, it shows that Elastomer is an 

instance of Polymer which in turn is an instance of material used by Abrasive 

Waterjet Cutting. 

 

      Note that the first observation is based on the hierarchical structure of entities 

presented at the web browser. Such hierarchical structure is not the same as the 

structure of entities encoded in the XML source tree of web page that is processed by 

computer programs, although they share some commonalities. The second 

observation helps to deal with this problem. 

2. In the XML source tree of a manufacturing web page, an entity e1 residing in a 

node n1 typically describes a specific aspect of or is a specific instance of an entity 

e2 residing in a node n2 that is n1’s nearest preceding sibling with a topic tag. 

Thus, e2 is a topic described by e1 and is added as parent of e1 to the entity path. If 

we cannot find the topic of e1 among the preceding siblings of n1, we will 

recursively search preceding siblings of ancestors of n1 for such topic. For 

example, as shown in Figure 5.3(b), Thermoplastic’s topic  (i.e., Polymer) is 

found at its nearest preceding sibling with topic tag <b> while Polymer’s topic 

(i.e., Abrasive Waterjet Cutting Material) is found at its parent’s nearest 

preceding sibling with topic tag <h2>. In turn, Abrasive Waterjet Cutting 

Material’s topic (i.e., Abrasive Waterject Cutting) is found at its nearest 

preceding sibling with topic tag <h1>. This observation is crucial for the instance 

extractor to extract entity path that each entity is a topic for its child, thereby 

helping form the contexts of instances. 
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Figure 5.3 A snippet of a manufacturing web page and its corresponding XML 

source tree. 

!

      Based on these two observations, our instance extractor constructs an entity path 

starting from a leaf node of XML source tree. Experiments show that our instance 

extraction algorithm based on these two observations works well. However, by no 

means do we assume that all manufacturing web pages follow the same structure as 

stated above and all concepts are residing in topic tags. Occasionally, a child entity 

may have a more general meaning than its parent and topics may locate in other types 

of tags. The issues of missing potential topics or collecting incorrect ones for certain 

entities can be alleviated by forming an entity graph (§5.3) from entity paths of the 

whole web site. This is because entity graph collects concepts of entities at the site 

level and it may locate the missing concepts of entities in different web pages. The 

algorithm for constructing entity path is given bellow. 

Algorithm 5.1: Given the XML source tree of a web page, the entity path extraction 

algorithm works in three steps: 

      Step 1. Extract leaf nodes of the XML source tree of a given web page following 

the document order and store these leaf nodes in list L. 

      Step 2. Fetch a leaf node l from L, create an empty entity path EP and add entity 

of l to EP as the leaf entity of EP. Scanning upwards the XML source tree for l’s 

preceding sibling g that has a topic tag that is not the same as the tag of node l (if the 

siblings g and l have the same tag, we consider them in the same level. Thus, g will 
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not be considered as the parent of l). If g is found, add entity of g to EP as parent of l. 

Then go to Step 3. 

    Step 3. Go one level up to the parent p of the current node and scan upwards the 

XML source tree for p’s preceding sibling g’ that contains a topic tag that is not the 

same as the tag of node p. If g’ was found, add entity of g’ to EP as the parent of p. If 

reaches the top of the XML source tree, Go to Step 2. Otherwise, go to Step 3. 

      Algorithm 5.1 describes an approach of extracting entity paths based on the 

hierarchical structure of MSC information published in web pages. With small 

revision, Algorithm 5.1 is able to parse tables with headers of data records presented 

in the first column of each row. We call these headers row headers and table with row 

headers row header table. A row header table can be considered as a special 

hierarchical structure of presenting MSC information. The row header of a data 

record typically suggests the type information of or the topic described by data items 

in that record. Thus, when constructing an entity path, we extract the row header of a 

row r as the parent entity of data items presented in row r. As shown in Table 5.2, the 

first column presents row headers indicating topics described by data items presented 

in the second column. 

Table 5.2 Example of a simple row header table 
Fabrication Method Abrasive Water Jet Cutting 

Flame Cutting 
Shearing 

Materials Stainless Steel 
Aluminum 
Abrasion Resistant Plate 

Additional Services Provided Reverse Engineering 
CAD Drafting 
Assembly 

   

      Figure 5.4 shows the XML source tree of Table 5.2. In this XML source tree, each 

row header resides in the first table data tag <td> of its corresponding row that in 

turn resides in table row tag <tr>, while data items reside in the following <td> tags 

(in this particular example, all data items are presented in the second column). To 
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enable Algorithm 5.1 to parse row header tables and extract entity paths from them, 

we revise the Step 3 of Algorithm 5.1 as follow: 

      Step 3. Go one level up to the parent p of the current node. If node p contains a 

tag of <td>, directly go to the farthest preceding sibling (or the first preceding sibling 

in document order) of p and search inside for node d containing a topic tag. 

Otherwise, scan upwards the XML source tree for p’s preceding sibling g’ that 

contains a topic tag. If either node d or node g’ was found, add the entity of d or g’ to 

EP. If reaches the top of the XML source tree, Go to Step 2. Otherwise, go to Step 3. 

      Intuitively, the revised step 3 first checks whether the node p is a data item 

contained in a table. If it is, identify the row header of the row that p is residing in. if 

it is not, follow the normal way of finding the topic of p. From our investigation of 

the 45 manufacturing web sites we used to conduct the experiment, 39 out of the 45 

web sites (86.7%) utilize row header tables to describe detailed information of 

manufacturing service capabilities. Thus, we assume that the revised version of 

Algorithm 5.1 is able to deal with the majority of tables used in manufacturing web 

sites. 
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Figure 5.4 XML source tree of Table 5.2 (Only first two rows are presented) 
 

      One issue with the entity path extraction algorithm is that an (sub-) entity path 

may be generated multiple times, since a leaf entity of an entity path may also appear 

as inner entities in other entity paths. For example, Figure 5.5 shows three entity 

paths constructed from three leaf nodes Polymer, Elastomer and Thermoplastic 

presented in the Figure 5.3(b).  

 
Figure 5.5 Example of repetitively constructed entity paths 

 

      The first entity path is a sub-path of the second and third ones and it has been 

constructed three times. Repetitively constructing the same sub-path decreases the 

efficiency of the entity path extraction algorithm. To address this issue, after an entity 

path p is constructed, we cache p in the form of key/value pair. The key is the id of 

the leaf node from where p was constructed and the value is the entity path p. In this 

particular example, the first entity path is cached in the form as follow. 

 
Figure 5.6 Example of an entity path catch entry 

       

      The next time when the instance extractor comes across a node with an id that 

exists in the cache, the instance extractor directly fetches the value (i.e., entity path) 

corresponds to that id from the cache instead of constructing it from scratch. This 

way, each entity path will be constructed only once.  
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5.3 Constructing Entity Graph  

While an entity path connects related entities appearing in the same web page, an 

entity graph of a web site connects related entities across the entire web site. 

Intuitively, entity graph are formed by merging similar entities (i.e., entities with 

similar labels) in entity paths constructed from that web site. More specifically, we 

implement entity paths as ordered lists in which each edge is directed from child node 

to parent node. Then, we navigate each entity path from tail (i.e., leaf node) to head 

and add two adjacent nodes with their directed edge to the entity graph at a time. The 

label of each entity is normalized before added to the entity graph. Entities with the 

same normalized label are merged as one entity node in the entity graph. Algorithm 

5.2 explains in detail how entity paths are merged into entity graph and Figure 5.7 

illustrates how Algorithm 5.2 works.  

Algorithm 5.2: Given a set of entity paths EP extracted from a web site, the entity 

graph construction algorithm forms an entity graph EG by performing following 

three steps: 

      Step 1. Fetch an entity path p from EP, denote the index of entity in p as i and 

initialize index i to 0 (pointing to the tail of p). 

      Step 2. Fetch two adjacent entities ei and ei+1 from p starting from leaf node of p 

and denote the pair as an edge <ei, ei+1> in which ei is directed to ei+1. Normalize the 

label of each entity in <ei, ei+1> and then add <ei, ei+1> to EG by performing following 

set operation. 

EG = EG !{< !! , !!!! >} 
Increase index i by 1. If index i is smaller than the length of p, go back to Step 2. 

Otherwise, go to Step 3. 

      Step 3. If no entity path exists in EP, terminate the algorithm. Otherwise, go to 

Step 1.  
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Figure 5.7 Example of merging two entity paths to form the entity graph 
 
      Entities that appear in multiple web pages of a web site may describe the 

terminological knowledge (e.g., concepts of instances and relations connecting 

instances) of that web site. Thus, by constructing the entity graph of a web site we are 

able to identify relations and concepts of instances and thus form contexts of 

instances. Figure 5.8 and 5.9 show two concrete examples of merging entity paths 

into a sub-entity-graph. These two sub-entity-graphs illustrate two typical structures 

of entities from where relations and concepts of instances can be identified. 

      We interpret the merged sub-entity-graph shown in Figure 5.8 as relational 

structure of entities. In this structure, we consider benefits include as a relation that 

connects specific waterjet cuttings with benefits of these waterjet cuttings. These 

waterjet cuttings form the domain of benefits include while benefits form the range 

of benefits include. In §5.4, we will elaborate our approach of identifying relations 

from the entity graph. 
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Figure 5.8 Example of sub-entity-graph of relational structure 
 

      Although by forming entity graph, we are able to identify potential relations that 

connect instances, entity graph lost the information of how specific instances are 

related via relations. Such information is coded in entity paths. Therefore, we will 

store both entity graph and entity paths constructed from a web site to form the whole 

IDM of that web site. We will elaborate this point in §5.6. 

      According to the Definition 5.4, the relations identified for an instance partially 

form the context of that instance. The rest of the context is formed by concepts of that 

instance. The sub-entity-graph shown in Figure 5.9 illustrates the hierarchical 

structure of entities from where the concepts of entities can be identified. Entities at 

higher level of the hierarchical structure can be seen as concepts of entities at lower 

level since they typically have broader meaning than entities at the lower level. Thus, 

in this particular example, Capability is a concept of Abrasive waterjet cutting and 

Laser cutting. Capability and Abrasive waterjet Cutting are concepts of 

Architectural waterjet Cutting, Glass waterjet cutting and Aerospace waterjet 

cutting while Capability and Laser cutting are concepts of CNN laser cutting.  

 



59!
!

 

Figure 5.9 Example of sub-entity-graph of hierarchical structure 
 

      Figure 5.10 depicts a snippet of the entity graph constructed from the web site of 

Accutrex Products, Inc. It includes, among other things, the two sub-entity-graphs 

shown in Figure 5.8 and Figure 5.9.  

 

 
Figure 5.10 Example of an entity graph. 
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      We create the instance description model (IDM) of a web site based on entity 

graph constructed from that web site. Each entity in an entity graph belongs to one of 

the four sets of IDM: I, Ro, Rd and N. Specifically, we first identify relations (i.e., Ro 

and Rd), instances (i.e., I) and numerical data values (i.e., N) from the entity graph, 

and then form contexts (i.e., K) of instances as well as assertions (i.e., Ao and Ad) on 

instances according to the Definition 5.4. In the next three sections, we will elaborate 

each of these processes in detail. 

5.4 Identifying Relations  

To identify relations from entity graph, we apply the heuristic that a relation applied 

in a web site describes multiple distinct instances and has multiple distinct values. In 

other words, a relation should have the cardinality of m-to-n. Based on this heuristic, 

entities with multiple ancestors and descendants in an entity graph can be considered 

as relations. However, directly applying this heuristic may miss out many potential 

relations. This is because a relation may appear multiple times across the web site 

with some variations of its label and each variation may be dedicated to describing 

only one particular instance. For example, as shown in Figure 5.10, Architectural 

waterjet cutting materials include and Glass waterject cutting materials include 

are two specific relations that each states that a particular waterject cutting includes 

some materials. Those two entities have a cardinality of 1-to-n instead of m-to-n and 

thus they will not be identified as relations based on the heuristic stated above. To 

address this issue, we first locate entities in the entity graph that have the cardinality 

of 1-to-n or m-to-n and consider them as specific relations. Notice that we assume 

that a relation should have at least two values and thus we do not consider entities 

with the cardinality of 1-to-1 or m-to-1 as relations. The rationale behind this 

consideration is two-fold. On the one hand, it is more natural and intuitive that a valid 

relation should have multiple distinct values [83]. On the other hand, it would narrow 

down the search space for valid relations when only relations that have multiple 

values are considered.  
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      To more accurately identity valid relations presented in web pages and efficiently 

establish mappings from relations extracted from web pages to properties that are 

typically applied to a class or a set of classes defined in an ontology, we further 

abstract these specific relations by clustering them based on their labels, applied 

instances and values. Abstract relations are extracted from clusters that satisfy 

predefined criteria.  

5.4.1 Clustering Specific Relations 

Clustering algorithms come in various shapes and forms. They can be categorized on 

the basis of many different criteria [84]. For example, they can be categorized based 

on the structure of the cluster (hierarchical and partitional), based on the type and 

structure of the data (grid-based and categorical) and based on the size of the data set. 

The choice of clustering algorithm largely depends on the characteristics of the data 

set and the particular task.  

      Our clustering task is to group similar entities that are considered as specific 

relations based on their labels, ancestors and descendants. The number of clusters 

keeps changing during the process of clustering until no similar clusters can be 

merged. Based on these requirements, agglomerative clustering [85] fits our purpose. 

Intuitively, the agglomerative clustering algorithm starts with clusters each of which 

contains only one member. Then, the algorithm iteratively merges two existing 

clusters that are most similar to each other to form a new cluster. The algorithm 

terminates when there are no clusters that are similar enough to be merged.  

      In traditional agglomerative clustering algorithm, each cluster is represented by 

the centroid of its members and each centroid is typically the mean of its members 

calculated based on certain numerical measure. Such measure does not suit our 

clustering task, since each cluster member (i.e., entity representing a specific relation) 

in our relation-clustering task is represented by categorical data (i.e., label, domain 

and range). Therefore, we need an alternative way to calculate the centroid of cluster 

members. We formally define each cluster member as: 

! = (!! ,!"! ,!"!) 
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!! !is the label of entity e, !"! !is a set of ancestors of e in the entity graph and 

represents the domain of e, and !"! !is a set of descendants of e and represents the 

range of e. The definition of e conforms to that of a relation in Definition 5.4 since we 

treat e as a specific relation in this particular clustering task. Bellow, we formally 

define the centroid of members of a cluster: 

Definition 5.5: A centroid of members of a cluster i is defined as 

!! = (!!! ,!"!! ,!"!!) 
                     in which: 

            !!! = !"#( !! ! ∈ !"#$%&'! ) 

!"!! = !"!
!∈!"#$%&'!

 

!"!! = !"!
!∈!"#$%&'!

 

 

      The label of the centroid of a cluster is defined as the longest common sequence 

(LCS) [73] of labels of members in that cluster while the domain (or range) of the 

centroid of a cluster is defined as the union of domains (or ranges) of those members. 

The rationale behind Definition 5.5 is that the centroid of a cluster is a relation 

abstracted from the specific relations in that cluster (each member in a cluster 

represents a specific relation). Thus, the label of the abstract relation is the common 

name of those specific relations and the domain (or range) of the abstract relation 

contains all the members in the domains (or ranges) of those specific relations. The 

similarity between two centroids is a combination of similarities along three 

dimensions: label, domain and range, and it is defined as follow:  
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where  is the hybrid similarity measure defined in Definition 4.3 and it 

computes the label similarity between two entities. is the cross mapping 

score function defined in Definition 4.8 and it computes the similarity between two 

sets of entities. w1, w2 and w3 are weights associated with each dimension and 

w1+w2+w3=1. Following gives the algorithm of clustering entities that represent 

specific relations. 

 

Algorithm 5.3: Given a list of entities E where each entity in E is a specific relation, 

the relation agglomerative clustering algorithm works as follows: 

      Step 1. Assign each entity in E to an empty cluster and add these clusters to the 

cluster set C. 

      Step 2. Search the cluster set C for two clusters, say !!  and !!, that have the 

centroids most similar to each other among all the possible cluster pairs according to 

(5.1). If the similarity between !!  and !! is beyond a predefined threshold, merge !!  
and !! as a new cluster !! and compute the centroid !!!of !!. Remove !!  and !! from 

C and add !! to C.  

      Step 3. If only one cluster left in C or there were no cluster formed in Step 2, 

terminate the algorithm. Otherwise go back to Step 2. 

 

      For each cluster !!  in C, the centroid !! that satisfies the condition that !"!! > 1 

and
 
!"!! > 1 is considered as a relation !!. Such relation !! will be added to the 

relation set R of the instance description model (IDM) as well as the relation set !!! 
of each instance !!  belonging to the domain of !! . All members in cluster !!  are 

specific variations of the abstract relation represented by !! . In other words, all 

members in cluster !! are actually the same relation as the abstract relation !! but with 

more specific names. Thus, the label of each of those members will be revised to be 

consistent with the label of !!. Figure 5.11 shows a simple example of merging two 

clusters !! and !! as a single cluster !!. 
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L
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!
Figure 5.11 Example of clustering potential relations 

 

      As shown in Figure 5.11, in this particular example, the clustering algorithm starts 

with two clusters !! and !! that each contains only one member and it ends up with a 

cluster !! merged from the two clusters. The label of the centroid of the merged 

cluster !! is material include, which is the longest common word sequence of the 

labels of centroids of clusters !! and !!. The domain (or range) of the centroid of !! is 

the union of domains (ranges) of centroids of !! and !!. Because the centroid of !! 

satisfy the condition that !"!! > 1 and
 
!"!! > 1, material include is identified 

as a relation.  

5.4.2 Data type Relation vs. Object Relation 

In §5.4.1, we described a generic approach of clustering entities that are potential 

relations. However, according to Definition 5.4, there are two types of relations: data 

type relation and object relation. A data type relation has values that are numerical 

data types while an object relation has values that are instances. To make relations to 

be clustering compatible, we cluster the two types of relations separately. We 
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differentiate relations by examining their values. Specifically, if above half of values 

of a relation r are numerical data values, r is considered a data type relation. 

Otherwise, it is an object relation. We used two tools – NERClassifierCombiner and 

RegexNERAnnotator – that are part of the coreNLP software package15 developed by 

Stanford natural language processing group to determine whether a value of a relation 

is a numeral data type (or numerical description). NERClassifierCombiner is trained 

by built-in natural language corpora and it recognizes numerical entities using a rule-

based system. RegexNERAnnotator implemented a rule-based named entity 

recognizer over token sequences using Java regular expressions. It allows us to 

develop RegexNER rules incorporating named entity labels that are not annotated in 

the built-in natural language corpora.  

      The simplest RegexNER rule has two tab-separated fields. The first field contains 

a sequence of one or more space-separated regular expressions. If the regular 

expressions match a sequence of tokens, the tokens will be labeled as the category 

specified in the second field. Following shows a simple RegexNER rule that checks 

whether a numeral description is of type inch:  

(up|Up) to (^-*[0-9,\.]+$) (in|inch) INCH 

      This rule contains four regular expressions. The first one checks if the first token 

of an inputted entity matches string of “up” or “Up”, the second one checks if the 

second token exactly matches string of “to”, the third regular expressions checks if 

the third token matches a number and the last one checks if the forth token matches 

string of “in” or “inch”. “Up to 144 in” is an example of an entity that matches the 

rule presented above. Consequently, the entity is labeled as a numerical data type of 

INCH. Other possible numerical data types such as FEET, TON and LBS (i.e., 

pound) can be incorporated similarly into the RegexNER rules. 

      Relations grouped into each of the two types – data type relation and object 

relation – are clustered separately by applying Algorithm 5.3. Values of identified 

data type relations are labeled as numerical data values and added to the numerical 

data value set N, while values of identified object relations are labeled as instances 

and added to the instance set I. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 http://nlp.stanford.edu/software/corenlp.shtml 



66!
!

  

5.5 Identifying Instances and their Concepts 

Having entities belonging to sets Ro, Rd and N been determined, the entities left in the 

entity graph are labeled as instances and added into set I. At this point, categories of 

all entities in entity graph have been settled. According to Definition 5.4, only three 

components– Ao, Ad and K – are left undetermined. K is a set of contexts of instances 

of IDM. Each instance’s context contains two parts: a set of concepts and a set of 

relations. In §5.4.1, we explained how the set of relations of an instance is 

constructed. In this section, we explain the procedure of forming the concept set for 

an instance. In §5.6, we will form assertions Ao and Ad of IDM.  

      In §5.3, we briefly talked about how the concept set of an instance !! is formed. 

Basically, we breadth-first navigate ancestors of instance !!  and record them as 

concepts of !! based on the observation (§5.2) that ancestors of an instance typically 

have broader meaning than that instance. Each concept of !! is associated with a 

score representing its relevance to !!.  

Algorithm 5.4: The algorithm of identifying concepts for instance !! goes as follow: 

      Step 1. Identify !!’s ancestors at level s (i.e., s is the number of edge from these 

ancestors to !!).  Initially, set s = 1; 

      Step 2. For each ancestor e at level s, compute the relevance score !! from e to 

!!, where α ∈ (0,1] is the relevance decay factor; add e and its relevance score to the 

concept set !!!  
      Step 3. If the level of traversal reaches a predefined threshold (e.g., 3), terminate 

the traversal. Otherwise, set s = s + 1 and go to Step 2. 

      Figure 5.12 (a) shows an example of visited ancestors (i.e., concepts) of instance 

!! . There are four distinct concepts for instance !! . Figure 5.12 (b) shows the 

relevance score of each concept of instance !!. 
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Figure 5.12 Example of forming context of instance !! 

 

      For each instance !!, the concept set !!! constructed in this section along with 

relation set !!! constructed in §5.4 form the context !!! of !!. The context !!! !helps 

determine the class label of !!. In Chapter 6, we will map !!! !of !! to classes defined 

in the manufacturing domain ontology to locate a class label for !!.       

5.6 Extracting Assertions 

As stated before, the objective of constructing an entity graph is to identify relations 

and form contexts of instances. In other words, it aims to identify the terminological 

knowledge of instances. However, the information of how specific instances are 

related via relations is lost when constructing entity graph. Such assertional 

knowledge can be found in entity paths. Figure 5.13 illustrates this point.   
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Figure 5.13 Example of entity path and entity graph presenting different level of 

knowledge published on web site 
 

Figure 5.13 (b) shows the sub-entity-graph formed by entity paths shown in Figure 

5.13 (a). Based on Algorithm 5.3, we consider benefits include as a relation that 

connect specific waterjet cuttings to benefits of these cuttings. However, from this 

sub-entity-graph, we cannot determine which benefit is related to which waterjet 

cutting via the relation benefits include. This information is encoded in the entity 

paths. For example, from the first entity path, we can tell that Accurate tolerance is a 

benefit of Architectural waterject cutting. Therefore, we need to navigate all entity 

paths to extract assertions. According to Definition 5.5, an assertion is a subject-

predicate-object triple in which the subject is an instance, predicate is a relation and 

the object is an instance or numerical data value. Thus, we extract triples from entity 

paths and check whether the three parts of these triples satisfy the definition of an 

assertion.  

Algorithm 5.5: Given an entity path p, the algorithm of extracting assertions from p 

goes as follow: 
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      Step 1. Denote the index of entity in p as i and initialize index i to 0; 

      Step 2. Extract three consecutive entities ei, ei+1 and ei+2 starting from the leaf 

node of p. Denote the triple <ei, ei+1, ei+2> as ai. If ei ∈ I, ei+1 ∈ R and ei+2 ∈ I or N (I, 

R and N are the set of instances, the set of relations and the set of numerical data 

values of IDM respectively), add ai to the assertion set A of IDM and increase index i 

by 2. Otherwise, increases index i by 1. go to step 3.  

      Step 3. If i+2 < the number of entities in p, terminate the algorithm. Otherwise, go 

to Step 2. 

      Notice that in Step 2 we increase index i by 2 when the triple <ei, ei+1, ei+2> is an 

assertion. This is because if triple <ei, ei+1, ei+2> is an assertion, triple <ei+1, ei+2, ei+3> 

cannot be an assertion because the entity ei+1 is a relation which contradict the 

definition of assertion. In this case, we skip triple <ei+1, ei+2, ei+3> and go two steps 

further to check whether the next triple in the entity path is an assertion. Figure 5.14 

illustrates how assertions are extracted from an entity path given two identified 

relations — Capability and Benefits include. 

 
Figure 5.14 Example of extracting assertions from entity paths 
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      As illustrated in Figure 5.14, the first triple <Glass waterject cutting, Benefits 

include, Accurate tolerance> is identified as an assertion and added to the assertion 

set A of the instance description model (IDM). Then, we go two steps further to check 

whether the triple <Capability, Abrasive waterject cutting, Glass waterject cutting> is 

an assertion and the answer is negative. Finally, we identify triple <Steel fabrications, 

Capability, Abrasive waterject cutting> as an assertion and add it to the assertion set 

A.  

      At this point, all the eight components of IDM – I, Ro, Rd, N, D, K, Ao and Ad – 

have been formed and thus the construction of IDM of a manufacturing web site has 

been completed. The next step is to annotate instances of IDM with semantics defined 

in the manufacturing domain ontology (MDO) based on the contexts of these 

instances. 

5.7 Summary 

      In this chapter, we elaborated the procedure of extracting manufacturing service 

capability instances from a manufacturing web site and forming an instance 

description model (IDM) to describe these instances. More specifically, this 

procedure first extracts entity paths from the web site and constructs entity graph 

based on these entity paths. Then it identifies relations that connect instances and 

forms the contexts of instances by analyzing the structure of entity graph. Finally, 

based on the relations identified, it extracts assertions on these instances. In next 

chapter, we will elaborate the approach of automatically annotating instances and 

relations with semantics defined in a MDO. 
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Chapter 6.  

!
Annotating Manufacturing Service 

Capability Instances!
 

 

In this chapter, we elaborate the approach of automatically annotating instances of 

instance description model (IDM) constructed from a manufacturing web site with 

semantics defined in manufacturing domain ontology (MDO). This process is the start 

of the semantic resolution. Specifically, it involves two subtasks: the first subtask is 

mapping relations of IDM to properties of MDO. The second task is identifying a 

class label from MDO for each instance of IDM based on the context of that instance. 

In §6.1, we first introduce the OWL-based manufacturing domain ontology (MDO) 

that defines common concepts (i.e., classes) and relationships (i.e., properties) 

between these concepts in the manufacturing domain. §6.2 describes in detail how 

correspondences between components of IDM and those of the MDO are established. 

Based on those correspondences, instances of IDM are annotated with classes defined 

in MDO. The experiment results are presented in §6.3. 

6.1 Manufacturing Domain Ontology 

In this section, we introduce the manufacturing domain ontology we leverage to 

annotate and integrate manufacturing service capability (MSC) instances extracted 

from manufacturing web sites. 

      A great number of ontologies have been developed and published along with the 

development of semantic web for different domains and purposes. Only a very few of 

them are developed for the manufacturing domains. These few include for example 

GoodRelations, an upper ontology for e-commerce, and MSDL (Manufacturing 
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Service Description Language) [86], a detailed ontology for manufacturing 

capabilities, especially for machining services.  

      We developed a manufacturing domain ontology (MDO) based on MSDL and 

GoodRelations for experimental use in this research. We also integrated some 

concepts reverse-engineered from popular manufacturing e-marketplace portals, 

including mfg.com, thomasnet.com16 and globalspec.com 17 into MDO for better 

coverage of core concepts of manufacturing domains. MDO (1) covers the most 

common and important concepts of manufacturing domain, (2) is easy to use (for 

application), reusable, extensible, and conceptually compatible with other relevant 

ontologies, and (3) functions as a shared conceptualization of the manufacturing 

domain for resolving semantic difference among data from heterogeneous sources. It 

defines 845 classes and 22 of them are top classes, and each top class corresponds to 

a class hierarchy (§6.2.2). The core classes and properties of MDO for describing 

manufacturing service capabilities are shown in Figure 6.1. 

 

 
Figure 6.1 Core classes and properties of manufacturing domain ontology 

       

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16!www.thomasnet.com!
17 www.globalspec.com!
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      The MDO is written in OWL that is a combination of RDF data model and a 

dialect of description logic [18]. The primary advantage of RDF is that it facilitates 

the integration of data from heterogeneous sources, while the description logic allows 

one to perform logical reasoning over the ontology and its instances. Since the 

extracted instances are described by IDM, which is a local semantic model, in a 

structural way, the annotation of instances of IDM is mainly performed by exploiting 

the mappings established between components of IDM and those of MDO as well as 

the structure of those components. The main advantage of having this local semantic 

model (i.e., IDM) is that the MSC instances extracted from web pages can be easily 

and accurately annotated by (partially) applying ontology mapping techniques. We 

define the structure of a given manufacturing domain ontology as follows: 

Definition 6.1: The structure of a given manufacturing domain ontology is a tuple 

<C, SR, OI, Po, Pd, U, V>, where: 

! = {!!} represents a set of classes. These classes are arranged with a corresponding  

subsumption hierarchy: { }1 2 1 2 1 sup 2( , ) , ,SR c c c C c C c c= ∈ ∈ ≥ , which is a set of 

2-tuple that each represents the subclass relationship between a pair of classes. 

1 sup 2c c≥  denotes that c2 is a subclass of c1 

!" = !"!!!!∈! , the set of ontology instances of MDO, where !"!! = !!!,!  is the  

           set of  instances belong to class !! 

!! = !! , a set of object properties that each connects two (related) instances with  

!! = (!, !) ! ∈ !"!! , !! ∈ !"!!; ! ∈ !"!! , !! ∈ !"!! ,!!!"!! ⊆ ! is the 

domain of !! and !"!! ⊆ ! is the range of !!. The label of !! is denoted as 

!!!.
 

!! = !! , a set of data type properties that each connects an instance with a data    

           value with !! = (!, !) ! ∈ !"!! , !! ∈ !"!!; ! ∈ !,!"#"!!"#$!!"!! ∈ !"!!  , 

           !"!! ⊆ ! is the domain of !! and !"!! ⊆ ! is the range of !!, where ! is the    

           set of all data values of data type properties in !! and ! is the set of primitive  

           data types that can be assigned to values of data type properties. The label of 
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           !! is denoted as !!!. 
! = !! ∪ !!, the set of all properties 

 

      The assertional knowledge of manufacturing domain ontology is defined below. 

Having been annotated, instances of IDM were transformed as instances of MDO. 

Consequently, assertions of IDM were integrated into the MDO. 

 

Definition 6.2: Given a manufacturing domain ontology, the assertions of this 

ontology is a 2-tuple <!"!, !"!>, where: 

!"! = !,!! , ! !! ∈ !! , ! ∈ !", ! ∈ !" , the set of assertions in the form of  

             subject-predicate-object triple, in which the predicate is an object property  

!"! = !,!! , ! !! ∈ !! , ! ∈ !", ! ∈ ! , the set of assertions in the form of  

             subject-predicate-object triple, in which the predicate is a data type property  

!" = !"! ∪ !"!, the set of all assertions 

 

      The definition of the MDO and that of the IDM are analogous (Definitions 5.4 

and 5.5), since our objective of developing IDM is to model manufacturing service 

capabilities published in manufacturing web sites in a structural way that it can 

facilitate the annotation of these capabilities with semantics defined in MDO. 

Defining the two models in similar way helps achieve such objective. The main 

difference between the two models is that MDO explicitly defines the type 

information of instances through classes as well as domains and ranges of properties 

while IDM represents the type information of an instance by a set of terms related to 

that instance (i.e., context). This is because MDO is written by formal ontology 

language designed for explicit knowledge representation and meticulously developed 

by ontology engineers while IDM is automatically constructed from web pages that 

are mainly for visually consumption by humans rather than machine to process. In 

Table 6.1, we present the correspondences between components of MDO and those of 

IDM. 
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Table 6.1 The comparison between components in MDO and IDM 

MDO IDM Description 

C K 
Each member of C is a formally defined class 
while each member of K is the context describing 
the meaning of an instance !! . The main 
objective of the instance annotation is to identify 
a class from C as the class label for !! based on 
the context of !!. 

OI I 
Each member of the two sets refers to an 
instance. One subtask of the instance annotation 
is to transform members of I as members of OI 
by assigning each member a class label defined in 
MDO. 

Po Ro 
Each member of the two sets is a relation that 
relates an instance to another. In general, domains 
and ranges of members of Po are formally defined 
as a set of classes while those of members of Ro 
are interpreted as a set of instances. Mapping 
each member of Ro to a member of Po is another 
subtask of the instance annotation 

Pd Rd 
Each member of the two sets is a relation that 
relates an instance to a primitive data value. 
Ranges of members of Po are defined as a set of 
primitive data types while ranges of members of 
Ro are defined as a set of numerical data types. 
Mapping each member of Ro to a member of Po is 
another subtask of the instance annotation 

U D 
Each member of set U is a predefined primitive 
data type while each member of set D is a 
numerical data type determined based on 
members in N. 

V N 
Each member of set V is a primitive data value 
while each member of set N is a numerical data 
value. In IDM, data values that are not numerical 
types are treated as instances. 

OAo Ao 
Each member of the two sets is a triple in which a 
subject is related to an object through a relation 
or a property. Both subject and object are 
instances 

OAd Ad 
Each member of the two sets is a triple in which a 
subject is related to an object through a relation 
or a property. Subject of each triple is an instance 
while object is a primitive data value. 

SR 
 SR is a set of subsumption relationships defined 

between members (i.e., classes) of C. We will 
exploit SR to help identify class labels for 
instances of IDM. Because IDM is constructed 
from web pages, no subsumption relationship 
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      Our approach for annotating IDM with semantics of MDO is given in the next 

section. 

6.2 Semantic Annotation of the Instance Description Model 

The objective of semantically annotating instances of instance description model 

(IDM) is to describe these instances with vocabularies (i.e., classes and properties) 

formally defined in the manufacturing domain ontology (MDO). To this end, three 

tasks are involved: 

• Mapping relations in R of IDM to properties in P of MDO 

• Mapping concepts in context !!! of each instance !! of IDM to a set of classes 

!!! defined in MDO.  

• Identifying a class label for instance ni based on !!!. 

      For Task 1, we map each relation !!of IDM to a property !!of MDO. We separate 

the establishment of mappings between relations and properties from the 

establishment of mappings between context of each instance and classes defined in 

MDO. This is because relations connect instances (Definition 5.4) while properties 

are applied to classes (Definition 6.1). In order to more accurately map a relation and 

a property, we need to leverage relation’s domain (and/or range) that is defined as a 

set of instances rather than a specific instance. Thus, we consider relation as a 

separate component rather than a member in the context of a particular instance when 

establishing mappings. After the mappings have been established, the classes in the 

domain of p will be added as new concepts to the concept sets of instances belonging 

to!!"!, the domain of r. This added semantic information will help improve the 

accuracy of identifying class labels for those instances. Task 2 maps concepts of each 

particular instance !! to a set of classes defined in MDO. Based on these mappings, in 

Task 3, we then identify the class label of instance !!. We will explain Task 1 in 

§6.2.1 and Task 2 and 3 in §6.2.2. The result of each of the three tasks affects the 

result of the other. To achieve a global optimal result of the semantic annotation, the 

between entities in IDM was defined. 
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three mapping tasks should be considered as whole. In our case, however, fast 

computing time is preferred over global optimal matching result. For one thing, the 

mappings are typically performed at real time. For another, incorrect mappings can be 

corrected when needed by using semantic resolution knowledge base as will be 

discussed in Chapter 7.  Therefore, we adopt a greedy approach that solves the three 

mapping tasks sequentially. 

6.2.1 Annotating Relations of IDM 

Given a set of relation R of an instance description model (IDM) and a set of 

properties P (both Po and Pd) of the manufacturing domain ontology (MDO), the 

semantic annotation of relations of IDM is the problem of finding a counterpart for 

each r ∈ R in P. Each r ∈ R maps to at most one p ∈ P while each p ∈ P can be 

mapped by multiple relations from R. The counterpart (i.e., property) of relation r ∈ R 

in P can be identified by applying the entity mapping function defined in Definition 

4.4 (§4.2). 

( , ) argmax ( , )                                            (6.1)R
R

Sim
p P

m r P Sim r p
∈

=  

where SimR(r, p) is the similarity measure that computes the similarity between a 

relation r and a property p. Similar to formula (5.1) that computes similarity between 

two centroids of two clusters of relations as discussed in §5.4.1, we compare r and p 

along three dimensions: labels, domains and ranges between r and p:
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Where !! and !! are labels of r and p respectively; DSr and DSp are domains of r and 

p respectively; RSr and RSp are ranges of r and p respectively. We compute similarity 

between !!  and !!  by applying the hybrid label similarity measure defined in 

Definition 4.3 (§4.1). Similarity between domains (or ranges) of r and p is computed 
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by applying the average mapping score function defined in Definition 4.6 (§4.2). The 

set of mappings from all relations in R to properties in P is established by applying 

the entity-set mapping function ( , )RSim
M R P defined in Definition 4.5 (§4.2). 

      One issue with (6.2) of computing similarity between r and p is that the IDM 

represents the domain of a relation as a set of instances, while the MDO represents 

the domain of a property as a set of classes (typically one or two classes). This may 

cause granularity heterogeneity because IDM may provide a more detailed 

description of a domain than MDO does. To address this issue, when establishing 

mappings between members in DSr and those in DSp, we extend domain DSp that 

originally contains a set of classes C to a set of terms that involves subclasses and 

instances of classes in C: 

{ } { }and ( , ) and 
qp p i i c q p j q j q pDS DS n n OI c DS c c c SR c DS← ∈ ∈ ∈ ∈U U  

where SR is the subsumption hierarchy defined in Definition 6.1. The reason that we 

consider subclasses and instances of classes in C as part of the domain of a property p 

is twofold: (1) the original classes contained in C may be insufficient to describe the 

domain of p in the context of comparing domains between relations of IDM and 

properties of MDO; (2) subclasses and instances are useful descriptions of the domain 

of p. The same extension process is also applied to the ranges of object type 

properties.  

6.2.2 Annotating Instances of IDM 

Given a set of instances I of instance description model (IDM) where each instance !! 
is associated with a context !!! = !!! ,!!!  and a set of classes C defined in the 

manufacturing domain ontology (MDO), the instance annotation is the problem of 

identifying a class label c ∈ C for each instance !! ∈ I based on !!!. We decompose 

this problem into two steps: (1) identifying the top class hierarchy closest to !! based 

on !!!. The identified top class hierarchy is denoted as !!. (2) Choosing the class 

label for !! from !!. These two steps are described in detail in the following. 
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6.2.2.1 Identifying Class Hierarchy for Instance 

The first step of identifying a class label from the MDO for an incoming instance !! 
is identifying the top class hierarchy that is closest to instance !! based on context !!! 
of !!. The basic idea behind this process is that we first narrow down the search space 

to the area where the correct class label for instance !! most likely resides in. A top 

class hierarchy, as we will define shortly, is a set of classes that describes a specific 

category of the MDO. Therefore, identifying the top class hierarchy closest to 

instance !! is equivalent to identifying the sub-ontology of MDO that is specific to 

describing the category that instance !! most likely belongs to. We formally define 

the top class and top class hierarchy as follow: 

Definition 6.3: Given the set of classes C of an OWL-based manufacturing domain 

ontology O, A class g ∈ C is a top class if and only if there exists no other class in C 

that is superclass of g. 

      Note that the class set C stated in Definition 6.2 contains only domain specific 

classes created by manufacturing domain experts. It does not include built-in classes 

(i.e., Thing and Nothing) of OWL-based ontologies.  

Definition 6.4: A top class hierarchy Hj of a top class g, is a rooted graph denoted as:  

Hj  = (g, Ω, S), 

where g is the root of Hj , Ω is the set of all subclasses of g and S is a finite set of 2-

tuples that each represents a subclass relationship between two classes in Ω: 

{ }1 2 1 2 1 sup 2( , ) , ,S c c c c c c= ∈Ω ∈Ω ≥  

      The closeness of an instance !! to a top class hierarchy Hj  is measured based on 

the label similarities between concepts in the concept set !!! of !! and classes in Hj , 

as well as the relevance score !!!,! !of each concept !!!,!  in !!!  to instance !! . 
Concepts in the !!! play a crucial role in measuring the closeness from !! to Hj . 

However, since the concept set !!! is extracted from the web site that instance !! 
resides in, it is likely that some of, or even most of, the concepts in !!! cannot find 

counterparts (i.e., classes) in MDO because of the terminological or conceptual 
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heterogeneity. To improve the chances that concepts in !!! can be mapped to classes 

in MDO, we extend the !!! to include the classes in domains of properties that has 

been mapped to relations in the relation set !!! of instance !!: 

{ }, ,( , ) , ( , ) ( , ) and 
i i i i in n j j n q n n q j pT T c r R r p M R P c DS← ∂ ∈ ∈ ∈U  

where M(R,P) is the set of mappings established between relations in R of IDM and 

properties in P of MDO according to (6.1). !! in (!!, !!) is the relevance score of !! to 

instance !!. To identify the class hierarchy that is closest to instance !!, we first map 

each concept !!!,! in !!! to a class in MDO that is closest to !!!,!  by (6.3)   

(6.3)                                         ),(max ,, ctSimc qn
L
hybridCczj i∈

=  

where   ),( , ctSim qn
L
hybrid i

measures the similarity between labels of concept !!!,! and 

class !. The class !!,! is the closest class among all the classes C defined in MDO to 

!!!,! and it is the zth class in class hierarchy !!. Based on (6.3), we denote the set of 

mapping pairs established between concepts in  !!! and classes in !! as follow. 
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      Note that we consider concept !!!,! and class cj,z  are mapped only when their 

similarity is beyond the threshold d. We denote ! as the set of class hierarchies that 

each includes one or more class mapped to concepts in !!!. Then, for each class 

hierarchy !! in !, we compute the closeness score between !!!and !! by (6.5). 

(6.5)                   ),(),(
),(

,,,
,,

∑
∈

⋅∂=
jzjqin

iii
HMct

zjqn
L
hybridqnjn ctSimHTcloseness  

The top class hierarchy that is closest to !! is computed as follow:  
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(6.6)                                     ),(argmax jn
HH

k HTclosenessH
i

j∈
=  

      Figure 6.2 shows an illustrative example on identifying the closest top class 

hierarchy for instance !!. The three blue circles are concepts from !!! of instance !! 
and each concept !!!,! is associated with a relevance score !!!,! ! to !!. The two graphs 

composed of green circles are top class hierarchies defined in MDO. The label 

similarities between each concept in !!!and a class in one of the two top class 

hierarchies are given to the right of two hierarchies. The two sets of mapping pairs 

(i.e., HM1 and HM2) are also given on the right of  Figure 6.2. According to (6.5), the 

closeness from !!!to H1 is 0.36, to H2 is 0.64. Thus, closest top hierarchy to instance 

!! is H2 according to (6.6). 

 

 
Figure 6.2 An example of identifying the closest top class hierarchy for instance 

ni 
 

      After the top class hierarchy !! that is closest to instance !! has been identified, 

we then choose a class label from !! for instance !!.  
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6.2.2.2 Identifying Class Label for Instance 

We choose a class label from !! for an instance !! based on the classes in !! that 

have been mapped to concepts in !!! of !!. In other words, the class label of !! is 

chosen from kHM  established in (6.4). This kHM !serves as a translator that translates 

the description of instance !! in terms of a set of manufacturing concepts expressed in 

manufacturing web site to the description of !! in terms of a set of classes defined in 

MDO. The set of mapped classes for describing instance !! is denoted as: 

{ } (6.7)                                   ),( ,,, kzjqnzjn HMctcC
ii

∈=  

    We choose a class c from !! that best represents the meaning of as the class 

label for instance !!. Such class c is called the best representative class of  and is 

chosen based on two criteria: (1) the best representative class should be able to 

resolve the semantic conflicts that occurs when two or more classes in  have no 

subsumption relationships among them. (2) Among classes that satisfy the first 

criteria, denoted as , the most specific class in terms of the subsumption 

relationships defined in !! will be chosen as the class for instance !!. This is because 

the most specific class carries the most semantics among classes in . Choosing 

this class as the class label for !! , we maintain the most possible semantics 

represented by  of !!. We develop the algorithm for solving this problem based on 

two scenarios that each corresponds to a way of finding the best representative of 

. 

      The first scenario, as shown in Figure 6.3, occurs when there exists a convergence 

among classes in . More specifically, there exists a class k ∈ such that it is the 

subclass of all other classes in . In this case, class k inherits semantics of all 

members in and thus it is chosen as the best representative class of . 
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Figure 6.3 The first scenario of identifying best representative of . In this 

scenario, = {j, e, f, k} and the best representative of is class k. 

 

      If such a class does not exist, as illustrated in Figure 6.4, two or more classes in 

 diverge from their common parent. In other words, there exists a divergence 

among classes in . In this case, semantic conflict occurs among divergent classes. 

The semantic conflict caused by diverging classes (e.g., e and f) can be resolved by 

finding common ancestors (e.g., a, j and b) of these classes. This is because common 

ancestors of diverging classes define semantics shared by those divergent classes. Put 

another way, instances of divergent classes that have common ancestors are also 

instances of these ancestors. The lowest common ancestor (e.g., b) among all 

common ancestors (in other words, the lowest common subsumer of divergent 

classes) is chosen as the best representative class of since the lowest common 

ancestor maintains the most possible semantics of those divergent classes.  

 
Figure 6.4 The second scenarios of identifying best representative of . In this 

scenario,  = {j, e, f } and the best representative of is b. 
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Algorithm 6.1: Given a class set containing classes mapped by concepts of !!, the 

algorithm of identifying the best representative class of works as follow: 

      Step 1. Identify the class k that is the subclass of all the members in . If such 

class k exists, k is chosen as the class label of !!  and terminate the algorithm. 

Otherwise, identify divergent classes among members in  and store these classes 

to an empty class set F, and go to Step 2.  

      Step 2. Identify common ancestors of members in F. Chose the lowest one as the 

class label of !! and end the algorithm.  

      The algorithm first checks if contains class that is the subclass of all its 

members. If there exists no such class, contains divergent classes. Thus, we 

identify common ancestors of these divergent classes in order to resolve the semantic 

conflict. The lowest one is chosen as the class label of instance !!. 

6.3 Experimental Evaluation 

We randomly selected 45 manufacturing web sites from Thomasnet to evaluate the 

quality of the contexts formed for manufacturing service capability (MSC) instances 

extracted from these web sites and the effectiveness of our approach for automatically 

annotating these instances based on their contexts. We did not evaluate if we 

extracted all instances from each manufacturing web site considered.  This is mainly 

because (1) our major objective is not to extract all instances but as many as possible 

and accurately annotate these instances with classes defined in the MDO and (2) the 

evaluation of whether all the instances of a manufacturing web site have been 

extracted is extremely time-consuming and labor-intensive since we need to go over 

each web page of the manufacturing web sites to check whether all instances were 

extracted. We leave a thorough evaluation of this part to future research and did a 

simple sampling to get a sense of how many instances can be extracted. This was 

done by selecting 5 pages for each of the 45 web sites and compute the ratio of 

instances (including relations) extracted from these pages to all instances of interest 

presented in these pages determined by human. The ratio obtained is 0.76, which 

Cni
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demonstrates that the instance extractor works fairly well in extracting MSC 

instances.   

      To evaluate our approach for automatically annotating extracted manufacturing 

service capability instances, we created the ground truth by manually annotating 

14894 instances of interest extracted from 45 web sites with classes defined in MDO. 

The correctness of these annotated instances is then validated by myself and Yunsu 

Lee, who is a researcher at the National Institute of Standards and Technology (NIST) 

and familiar with both the manufacturing domain and OWL-based ontology. We 

adopt the relaxed version of the precision and recall [87] to evaluate our instance 

annotation approach since the traditional ones cannot discriminate between a totally 

wrong annotation and an almost correct annotation. As a result, they are not able to 

accurately reflect the effectiveness of our approach. [87] defines the relaxed precision 

and relaxed recall as follows: 
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m is the number of instances assigned class labels, and n is the number of instances 

defined in the ground truth. !!!! !is the expected class (defined in the ground truth) of 

instance !! , while !!!!  is the assigned class (assigned by instance annotator) of 

instance !!. The ω(!!!! ,!!!!) measures the proximity between the expected class 

and real class of !!, and it is defined as follow: 
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β is set to 0.8 if !!!! !is superclass of !!!!, otherwise set to 0.6. The reason we assign 

higher score to β for the first condition is because that an instance !! of type !!!! is 
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also an instance of type !!!!  and thus it is still correct when we classify !!  to 

!!!! !rather than !!!!. If !!!! !is subclass of !!!!, an instance !! of type !!!! is not 

necessarily an instance of type !!!!. Thus, the class label !!!! !assigned to instance 

!! by the instance annotator is not strictly correct. However, we still give credits for 

!!!! !and !!!!being in the same class path. σ(!!!!, !!!!) is the number of edges in 

the shortest path between !!!! !and !!!!. The experimental results are given in Table 

6.2. 

Table 6.2 Experimental results for Instance Annotator 
Web Site  Pre. Rec. F1 Miss 

Schulermfg 0.78 0.59 0.67 0.25 
Soundmfg 0.76 0.59 0.66 0.23 
numericalconcepts 0.8 0.7 0.75 0.13 
Basssettinc 0.84 0.64 0.72 0.24 
Aerostarmfg 0.91 0.79 0.71 0.22 
magnamachine 0.79 0.45 0.57 0.43 
Ashleyward 0.93 0.55 0.69 0.32 
Accutrex 0.94 0.82 0.88 0.12 
Weaverandsons 0.9 0.73 0.831 0.19 
Astromfg 0.71 0.59 0.65 0.16 
Wisconsinmetalparts 0.77 0.69 0.73 0.10 
Tmfincorporated 0.92 0.83 0.87 0.10 
Robersontool 0.83 0.77 0.8 0.08 
Spmfg 0.96 0.76 0.85 0.21 
Smccontractmfg 0.79 0.65 0.71 0.18 
Swiftglass 0.96 0.88 0.92 0.09 
Ameristarmfg 0.94 0.89 0.91 0.06 
Jnmetalproducts 0.91 0.82 0.86 0.10 
Nobleindustries 0.85 0.73 0.78 0.14 
Aalloy 0.92 0.89 0.91 0.04 
Portersfab 0.93 0.84 0.88 0.10 
Californiabrazing 0.94 0.78 0.85 0.13 
Columbiamanufacturing 0.91 0.75 0.82 0.17 
Mantecservicesinc 0.82 0.7 0.76 0.16 
Kilgoremfg 0.93 0.63 0.75 0.32 
Elgeprecision 0.97 0.59 0.74 0.39 
Dynamicprecision 0.94 0.76 0.84 0.19 
Pbandm 0.82 0.67 0.74 0.18 
Schenketool  0.89 0.85 0.87 0.05 
Pierceindustries 0.87 0.6 0.71 0.39 
Westfieldmachine  0.99 0.6 0.75 0.28 
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Ardelengineering  0.83 0.6 0.72 0.18 
Hhsmm  0.66 0.55 0.6 0.17 
Wiegeltoolworks  0.91 0.77 0.84 0.16 
Adaptplastics  0.89 0.64 0.74 0.28 
Mpi-dms  0.95 0.78 0.86 0.18 
Contract-mfg  0.89 0.71 0.79 0.20 
Hloeb  0.94 0.82 0.87 0.13 
Milacronmachining  0.78 0.56 0.65 0.26 
cuttingexperts 0.82 0.42 0.55 0.48 
hds-usa 0.82 0.57 0.67 0.30 
madisontoolinc 0.86 0.75 0.8 0.12 
Duratrack 0.57 0.43 0.49 0.24 
nationgrinding 0.92 0.8 0.86 0.13 
Schmidtool 0.82 0.74 0.78 0.11 
Average 0.86 0.69 0.76 0.19 

 

       

      The first column of Table 6.2 lists the web sites of manufacturers. In each site, 

more than 50 web pages were crawled and on average 331 instances were extracted 

from each site. The column 2, 3, and 4 give the numbers of relaxed precision, relaxed 

recall and F1 measure respectively. The last column gives the ratio of the numbers of 

instances that were not annotated (assigned a class label) to the numbers of instances 

that were extracted. We call such ratio the miss rate since it measures the percentage 

of instances that were not assigned a class label. The relaxed precision measures the 

accuracy of our approach assigning class labels to instances that were annotated, 

while the relaxed recall measures the accuracy of our approach assigning class labels 

to all instances that were extracted (including instances that were annotated and 

unannotated). As shown in the second column, the 87% relaxed precision 

demonstrates that our approach is quite effective for accurately assigning class labels 

to instances provided that the concepts in the contexts of these instances can be 

mapped to classes defined in MDO (§6.2). However, the 69% relaxed recall shows 

that our approach has difficulty in assigning class labels to all instances extracted. 

This mainly because: (1) some MSC terms or concepts published on manufacturing 

web sites is not covered by the MDO, and (2) our label similarity measure is 

insufficient to map all concepts in contexts of instances to classes defined in MDO 
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typically because of the terminological heterogeneity. The 0.19 miss rate also 

demonstrates this point.  

6.4 Summary 

In this chapter, we introduced the manufacturing domain ontology (MDO) and 

described in detail the approach of automatically annotating instances and relations of 

the instance description model (IDM) with semantics defined in the MDO. 

Specifically, we mapped each relation of IDM to a property defined in MDO and 

identified a class label from MDO for each instance of IDM. The experiment result 

shows that our approach is quite effective in accurately annotating instances but still 

has potential for improvement. To further improve the annotation quality, we 

developed an approach that utilizes domain knowledge learned from both the human 

experience and the automatic instance annotation process and stored in a semantic 

resolution knowledge base (SR-KB). In Chapter 7, we will discuss this SR-KB in 

detail. 
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Chapter 7.  

!
Semantic Resolution Knowledge Base!

 

 

The instance annotator based on the approach described in Chapter 6 can 

automatically assign class labels to manufacturing service capability instances with 

reasonably high accuracy as demonstrated by the experimental results. However, it 

has the following limitations: 

• It has problem in dealing with terminological heterogeneity [75] when mapping 

concepts in the context of an instance !! to classes defined in manufacturing 

domain ontology (MDO). This is because the label similarity measures used to 

map concepts and classes utilize WordNet to map synonyms (or words with 

similar senses) existing in labels of concepts and classes. However, WordNet is a 

general-purpose lexicon and it contains only the most commonly used words, and 

synonyms. Thus, it is unable to map synonyms specific to the manufacturing 

domain such as “capability” to “service” and “shearing” to “die cutting”. The 

WordNet also cannot map domain-specific phrases to their corresponding 

abbreviations (and vice versa), such as “electrical discharge machining” to 

“EDM”, “computer-aided manufacturing” to “CAM” and “metal inert gas” to 

“MIG”.  

• It is insufficient to address the issue of conceptual heterogeneity especially when 

a manufacturing web site describes certain portion of the manufacturing domain 

that is not covered by the MDO or it describes certain manufacturing domain 

concepts that are defined in the MDO but with different perspectives. For 

example, some manufacturing web sites treat their services as product, while 

some others treat their services as capability. 

• It lacks learning ability that can avoid the same mistakes made before and prevent 

similar mistakes from happening in the future.  
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      These limitations can be addressed with the help of domain expertise. 

However, human efforts are often costly in terms of time and effort. Thus, a 

mechanism that can address these issues while at the same time minimize human 

intervention is needed. To this end, we developed a semantic resolution 

knowledge base (SR-KB) that iteratively enriches itself through annotated 

instances validated by domain experts. Specifically, the SR-KB includes (1) a 

manufacturing concepts mapping repository (MCMR), (2) a Naïve Bayes-based 

annotation corrector (NBAC) and (3) an instance validation platform (IVP). 

MCMR helps the instance annotator solve the issue of terminological 

heterogeneity when annotating instances of IDM. NBAC is to correct 

misannotated instances (i.e., assigned with wrong or inaccurate class label) by 

resolving conceptual heterogeneity. It is trained by annotated instances and their 

features (§7.2.1) validated by domain experts with the assistance of IVP. As the 

instance annotation process goes by, both MCMR and NBAC will evolve and 

improve their performance. Consequently, the requirement for human intervention 

will be gradually reduced. Figure 7.1 shows how the three components of SR-KB 

interact with each other. 
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Figure 7.1 Interactions between components of SR-KB 

       

      In the following three sections, we will introduce these components and explain 

each of them in detail. In §7.4, we present the experimental evaluation on the effect of 

applying the semantic resolution knowledge base to instance annotation.  

7.1 Manufacturing Concepts Mapping Repository  

As discussed earlier, instance annotator cannot sufficiently deal with terminological 

heterogeneity (e.g., entities with similar meaning but have low similarity in their 

labels) when it maps concepts extracted from proprietary manufacturing web sites to 

classes defined in MDO because the instance annotator maps concepts to classes 

solely based on label similarity measures. The manufacturing concepts mapping 

repository (MCMR) comes to address this issue and help the instance annotator more 

effectively identify class labels for manufacturing service capability instances.  
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      MCMR only stores mappings between concepts and classes that may have similar 

meaning but share low similarity in their labels (i.e., similarity below a predefined 

threshold). In other words, if a concept and a class are similar in their labels, the 

mapping between them will not be considered in MCMR. The rationale behind this 

consideration is twofold. First, it is not necessary to store mappings of this kind since 

they can be established by instance annotator at run time with any label similarity 

measure at low cost. Secondly, MCMR is constructed from a large amount of 

manufacturing web sites before it is applied to the instance annotator. That is to say 

once the similarities between concepts and classes are computed and stored in 

MCMR, they are expensive to change (e.g., if we want to change the label similarity 

measure from n-gram to token-based string similarity, we have to reconstruct the 

MCMR). However, in experiments or real applications, we might change label 

similarity measures from time to time according to different situations. Thus, it is 

more suitable to maintain the flexibility in choosing label similarity measures in 

different scenarios rather than adopting only one of them for all situations. 

      Intuitively, the MCMR can be considered as a simplified WordNet in the 

manufacturing domain that each entry in MCMR is a pair of synonyms or terms with 

similar word sense. More specifically, each entry is a 3-tuple <t, c, s> where t is a 

manufacturing concept extracted from web pages, c is a class defined in MDO that is 

mapped to t and s is the semantic relatedness score associated with the mapping 

between t and c, and it statistically measures the confidence that t and c are in fact 

semantically related. In the next section, we explain how this MCMR is constructed. 

7.1.1 Constructing Manufacturing Concepts Mapping Repository 

The MCMR is constructed from concept sets in the contexts of instances defined in 

IDM based on an approach similar to that of annotating manufacturing service 

capability instances (§6.2.2). We assume that concepts in the same concept set of an 

instance are semantically related. Thus, for each concept t in a concept set !!! of an 

instance !! of IDM, if t cannot be mapped to any class defined in MDO based on 

label similarity measures, we will map t to a class c that is collaboratively determined 

by other members in !!!. 
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      Specifically, for each concept set !!! (associated with instance !!) defined in an 

IDM, we first locate the top class hierarchy !! closest to !!! according to (6.6). 
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! is the set of class hierarchies that each includes more than one class mapped to 
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      Based on this formula, the set of classes in !! mapped by concepts in !!! is 

denoted as { }kzkqnzkn HMctcC
ii

∈= ),( ,,,  while the set of concepts that each is 

mapped to a class in any !! ∈ !  is denoted as !!!!  

{ }HHHcHMctt jjzjjzjqnqn ii
∈∈∈=  and  and ),( ,,,, . Then, we identify the class c 

that best represents the semantics of  according to Algorithm 6.1. Last, we map 

each concept t in !!!!! = !!! !\!!!!  (concepts in !!! !but not in !!!!!) to class c. Figure 7.2 

shows a concrete example that illustrates this approach.  

 
Figure 7.2 Example of creating an entry of the MCMR 

 

      As shown in Figure 7.2, Capability, Abrasive waterjet cutting, and Aerospace 

waterjet cutting are concepts in the same concept set of instance !!! denoted as !!!. 

Cni
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The top class hierarchy Hp is the one closest to !!! among all the top class hierarchies 

defined in MDO. Both concepts Abrasive waterjet cutting and Aerospace waterjet 

cutting were mapped to class WaterJetCutting, while concept Capability was 

failed to be mapped to any class defined in Hp based on label similarity measures. 

According to Algorithm 6.1, class WaterJetCutting is identified as the best 

representative of !!!. Thus, in this particular example, we map Capability to class 

WaterJetCutting. As we will explain shortly, the concept Capability may come 

from different manufacturing web sites and be mapped to many other classes defined 

in MDO. 

      The MCMR can be constructed from arbitrary amount of manufacturing web sites. 

It is highly likely that certain manufacturing concepts would appear in multiple web 

sites constructed based on different domain conceptualization. Consequently, those 

manufacturing concepts may be mapped to different classes defined in the MDO. For 

example, the concept Capability may be mapped to Service, Process or some other 

classes. We denote all the classes mapped by the same concept t as a class set Ct. 

Intuitively, each class in Ct can be considered representing a different sense or a 

synonym of t. We assign each class c∈Ct with a score indicating the semantic 

relatedness between c and t. Such semantic relatedness score of mapping <t, c> is 

measured according to (7.1) shown below. f<t,c> is the frequencies (i.e., counts) of 

mapping <t, c> appearing in the entire MCMR where ft is the frequencies of t 

appearing in mappings of MCMR, and dt serves as the normalization factor that is the 

biggest semantic relatedness score among all the semantic relatedness scores between 

t and c∈Ct: 

 

      As will be explained in the next section, the MCMR will be applied to the 

instance annotation process to help map concepts of instances to classes defined in 

MDO. Thus, the semantic relatedness score of a mapping <t, c> would be compared 

with the label similarity between t and c at the same scale. Without the normalization 

factor dt, however, the semantic relatedness scores between t and c∈Ct would be 

extremely small when the concept t was mapped to multiple classes. As a result, these 

r(t,c) =
f<t,c>
dt ⋅ ft

                                                        (7.1)
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MCMR mappings may make no difference when applied to the instance annotation 

process (§7.1.2). For example, the instance Marine Hardware has a concept 

Military that was mapped to nine classes according to MCMR approach. Among the 

nine, class Industry has the highest semantic relatedness score with Military and 

such score is 0.27 without applying the normalization factor. The semantic 

relatedness score between Military and Industry is so small that it may have little 

impact on the result of annotating Marine Hardware with a class of MDO. After 

applying the normalization factor dt, the semantic relatedness score between Military 

and Industry is increased to 1.0. Thus, the instance Marine Hardware will highly 

likely be classified into Industry. Figure 7.3 shows a concrete example of some 

mappings stored in MCMR constructed from 45 manufacturing web sites. For 

presentational purpose, the format of MCMR mappings shown below is different 

from the one defined in Definition 7.1. In Figure 7.3, the first term presented at the 

beginning of each row is a concept t that is followed by a set of classes Ct mapped by 

t and each class c∈Ct is associated with a semantic relatedness score between c and t.  

 
Figure 7.3 Example of some concept-to-class mappings stored in the MCMR 



96!
!

 

      The MCMR stores a set of concept-to-class mappings where each mapping 

between a manufacturing concept t and a class c is established based on the contexts 

of t and c rather than the label similarity between them. Consequently, MCMR is able 

to help the instance annotator to match concept and class that are semantically related 

but have low similarity in their labels, thereby improving the instance annotation 

accuracy. In §7.1.2, we will explain how the MCMR is applied to assisting the 

annotation of manufacturing service capability instances.  

7.1.2 Using Manufacturing Concepts Mapping Repository 

As stated at the beginning of this chapter, one of the major issues of our instance 

annotation approach is that it is sometimes inadequate in mapping concepts in the 

context of an instance to classes defined in MDO because of terminological 

heterogeneity. Consequently, some instances may be assigned incorrect class labels or 

fail to be assigned one. The experiment results shown in §6.3 demonstrated this point. 

      MCMR helps address the terminological heterogeneity occurring in the instance 

annotation process. It is applied to steps that require establish mappings between 

concepts in the concept set !!! and classes defined in MDO. Specifically, the place to 

where we apply the MCMR is identifying a class c in C, the set of classes defined in 

MDO, that is closest to !!! of !! based on (6.3) defined in §6.2.2, which is recited 

below: 

),(max ,, ctSimc qn
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      Formula (6.3)  measures the similarity between a concept !!!,! in !!! and a class ! 

in C solely based on the label similarity measure that as discussed before is not 

capable of dealing with the terminological heterogeneity. This can be addressed with 

the help of MCMR as in the revised formula below. 
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      MCMR is also applied to formula (6.5) defined in §6.2.2 in order to keep the 

similarity score between a concept !!!,! and a class ! consistent across the whole 

instance annotation process. The purpose of applying MCMR(!!!,! , !) in (7.2) is to 

establish correspondence between !!!,! and ! that are synonyms or share similar word 

senses but have low label similarity. In other words, when !!!,!  and ! share low 

similarity in their labels, they still can be mapped if they have high semantic 

relatedness score. As a result, more concepts in !!! can be mapped to classes defined 

in MDO, thereby improving the chance that the class label of instance !! can be 

effectively identified. This is demonstrated by the experiment results shown in §7.4. 

Briefly, having MCMR been applied, the relaxed recall of the annotated instances 

improved significantly. However, the relaxed precision only slightly decreased. 

Among other things, this is mainly because that both the original instance annotator 

and the one with MCMR incorporated have difficulty in dealing with conceptual 

heterogeneity between proprietary manufacturing web sites and the manufacturing 

domain ontology. Consequently, certain instances were assigned incorrect class 

labels. The Naïve Bayes-based annotation corrector is developed to alleviate such 

issue. 

7.2 Naïve Bayes-based annotation corrector 

The primary objective of the instance annotator is to assign manufacturing service 

capability instances extracted from proprietary manufacturing web sites with class 

labels defined in the manufacturing domain ontology (MDO). To this end, these 

extracted instances should conform to the conceptualization of the MDO. However, 

because of conceptualization heterogeneity, conceptual conformation may fail during 

instance annotation. Although MCMR helps alleviate the issue of terminological 

heterogeneity existing in the instance annotation, it is insufficient in addressing the 

semantic heterogeneity. In §2.2.4, we have identified and discussed several types of 

semantic heterogeneity. With respect to the problem of instance annotation, we 

mainly focus on the issue of conceptual heterogeneity on instances in this section. 
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      Conceptual heterogeneity occurs when the class label of an instance assigned by 

instance annotator is different from the one determined by domain experts. More 

specifically, if the two mismatched classes have no subsumption relationship between 

them, we consider the class label assigned by the instance annotator incorrect. For 

example, sheet metal fabrication was classified into class Product by the instance 

annotator, but it actually should be classified into class ManufacturingProcess that 

is in a different class hierarchy from that of Product. In this case, we consider sheet 

metal fabrication was incorrectly classified (i.e., assigned a wrong class label). On 

the other hand, if the two mismatched classes are on the same class path (one class is 

a superclass of the other), we consider the class label assigned by the instance 

annotator was inaccurate. For example, the cnc laser cutting was classified into 

Process class by the instance annotator, but it actually should be classified into 

LaserCutting class that is a subclass of Process. In this case, we consider the class 

label Process assigned to cnc laser cutting was correct but inaccurate.  

      The Naïve Bayes-based annotation corrector (NBAC) is trained to address the 

issue of class mismatch. It is iteratively trained by annotated instances validated by 

domain experts and applied to correct incorrect or inaccurate class labels of newly 

annotated instances. This iterative process of applying NBAC is illustrated in Figure 

7.4 below. 
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Figure 7.4 The iterative procedure of applying Naïve Bayes-based annotation 

corrector 
 

      As shown in Figure 7.4, the NBAC takes as input annotated instances and features 

associated with these instances, and outputs instances with corrected class labels. 

Then, these corrected instances and their features are passed to the instance validation 

platform for validation. After the class labels of instances have been validated by 

domain experts with the assistance of the instance validation platform (§7.3), the 

validated instances and their associated features are stored in the training instance set 

that will be used for further training of the NBAC; Validated instances and their 

relations are stored in local repository. 

7.2.1 Training Naïve Bayes-based Annotation Corrector 

To train the Naïve-Bayes-based annotation corrector, we represent each instance !! as 

a feature vector denoted as !!! created based on the output of the instance annotator. 

There are two types of features:  



100!
!

• Lexical features – a set of n-grams created from the label of !! by the n-gram 

generator of the instance annotator. 

• Conceptual mapping features – mappings established from concepts of !! to 

classes of MDO or from relations of !! to properties of MDO. Both concepts 

and relations are from the context of instance !!  and those mappings are 

established during the instance annotation process. We call the former 

mappings concept-to-class mapping features denoted as CC while the latter 

mappings relation-to-property mapping features denoted as RP. A conceptual 

mapping feature is in the form of <e1, e2>, where e1 is either a concept or a 

relation of !! while e2 is either a class or a property defined in MDO. 

      The following is an example showing the features of instance Aerospace 

Waterjet Cutting which has a context including concepts Aerospace Waterjet 

Cutting, Abrasive Waterjet Cutting and Capability, and a relation material 

include:  

 

Table 7.1 Features of instance Aerospace Waterjet Cutting 

Features 

Lexical Features: 
 n-grams in the label of Aerospace Waterject 

Cutting (In practice, we use 3-grams) 

Conceptual 

Mapping  

Features: 

CC: 

 

 

<Aerospace Waterjet Cutting, WaterJetCutting> 

<Abrasive Waterjet Cutting, WaterJetCutting> 

<Capability, Product> 

RP: <material include, hasMaterial> 

 

      The union of features of instances belonging to a class c forms the features of 

class c. The lexical features of a class c indicate what n-grams or terms that instances 

of class c might have. The conceptual mapping features of a class c represent (both 

explicit and hidden) relationships between class c and the contexts of its instances 

extracted from proprietary manufacturing web sites. Put another way, conceptual 

mapping features of classes may bridge the conceptual gap between proprietary 

manufacturing web sites that instances were extracted from and the manufacturing 
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domain ontology that instances would be populated into. Figure 7.5 illustrates the 

process of how the class label of the second incoming instance !! can be corrected by 

the NBAC that was trained by the first incoming instance !! validated by domain 

expert. We assume that both the two instances have only one concept Capability (in 

reality, one instance typically has more than one concepts) and belong to class 

Process.  

 

Figure 7.5 Example of how a conceptual mapping feature helps correct class 
label of instance 

 

      In the instance annotation stage as shown in Figure 7.5, the concept Capability of 

instance !! was mapped to class Product and thus the instance annotator outputted 

instance !!  with class label Product and a conceptual mapping feature 

Capability!Product. In the annotation correction stage, the class label of !! was 

unchanged since only class Product has the feature Capability!Product (as we 

will explain shortly, we temporarily add features of newly incoming instance to 

NBAC before the annotation process to avoid annotation/classification bias). In the 
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instance validation stage, domain expert changed the class label of !!from Product 

to Process. Thus, the Capability!Product was added as a new conceptual mapping 

feature of class Process in the stage of retraining NBAC. The instance annotator 

annotated the second incoming instance !! with class label Product for the same 

reason when annotating instance !!. However, in the annotation correction stage, 

NBAC changed the label of !!  from Product to Process since the 

Capability!Product is more likely the feature of class Process than that of 

Product. Then, a domain expert validated the class label of instance !! and proved 

that the class label is correct. As a result, the probability that an instance with feature 

Capability!Product is of class Process was increased in the last stage.  

      Intuitively, the conceptual mapping feature Capability!Product of class 

Process can be seen as an evidence indicates that a newly incoming instance !! may 

belong to class Process. The rationale behind the idea that we utilize conceptual 

mappings of instances as features of classes rather than concepts of instances is that 

the same concept can be extracted from different web sites and mapped to different 

(e.g., concept Capability can be mapped to classes Product, WaterJetCutting, 

Service and Process) and more importantly these conceptual mapping of instances 

can either be reconcile or conflict with the conceptualization model of MDO. Either 

case, these features should be captured by the NBAC and serves as evidences for 

annotating newly incoming instances.  

      We interpret the probability of each feature f appearing in class c as a measure of 

how much evidence f contributes that instance !! belongs to class c if !! possesses the 

feature f. The probability of an instance !! being in class c is computed as: 

( ) ( ) ( )                                                 (7.4)
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      Here, we use P
∧

 instead of P because we do not know the true values for the 

parameter, but estimate them from the training data set (i.e., annotated instances 

validated by domain expert). Each conditional parameter   P
∧

( f | c) is a weight that 
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indicates the relative frequency of feature f occurs in class c while the prior P
∧

(c)  is a 

weight that indicates the relative frequency of class c. Thus, the multiplication of the 

prior ( )P c
∧

 and   P
∧

( f | c)  of features is a measure of how much evidence there is for the 

instance !! being in the class c. 

      We use the maximum likelihood estimate (MLE) [88] to estimate the prior 

parameter and conditional parameter. For the priors, the estimate is: 
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where Nc is the number of instances in class c. The number 1 in the formula is to 

eliminate zero prior probability of classes that have no instances. This technique is 

referred to as Add-one smoothing [89] and can be interpreted as a uniform prior that 

each class has one instance. In other words, when there is no instance for all (or most) 

of classes C defined in the MDO, we treat the prior probability of these classes 

equally. Thus, ( )P c
∧

 is the ratio of number of instances in class c to total number of 

instances belong to classes in C.   

      We estimate the conditional probability   P
∧

( f | c)  as the relative frequency of 

feature f occurring in instances belonging to class c: 

'
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where is the number of occurrences of feature f in instances from class c. 

Similarly, the number 1 in this formula aims to eliminate the zero conditional 

probability of certain features that do not occur in class c. F contains features of all 

classes defined in MDO. 

      One issue with the estimation of ( )P c
∧

 and   P
∧

( f | c)  shown in (7.5) and (7.6) is that 

when computing , Kcf and F, they did not take into consideration evidences e for 

instance !! being in the original class co that was assigned by the instance annotator 

Kcf

Nc
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to !!. Consequently, they tend to underestimate ( )oP c
∧

 and ( )oP f c
∧

. As stated before, 

the goal of the Naïve Bayes-based annotation correction algorithm is to correct the 

original class label co of an instance !! that is mis-annotated (i.e., assigned with a 

wrong or inaccurate class label) by instance annotator. In other words, only when 

there exist stronger evidences, compared to the evidences for !! being in the original 

class label co, that prove a new class cn is more likely to be the class label of !! should 

we change the class label from co to cn. Thus, the absence of evidences e may lead to 

the originally correct class label of !! being changed to a wrong one.  

      For this reason, we temporally add the instance !! of class co to the training data 

when estimating the parameters of the Naïve Bayes-based annotation correction 

algorithm. F,  and  are updated as below. 

1                                                                    (7.7)
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      To permanently add an instance !! to the training data set, the class label of !! 
must be validated by domain experts assisted by the instance validation platform. In 

§7.3, we will present the instance validation platform and explain how a domain 

expert can validate class labels of instances. 

      As shown in Figure 7.4, having been trained, NBAC was applied to the instance 

annotator to correct class labels of instances that were mis-annotated.  

7.2.2 Using Naïve Bayes-based Annotation Corrector 

The procedure of correcting the class label of an instance involves following two 

steps:         

      Step 1: Obtain a set of potential class labels C for instance !!. For computational 

efficiency, we will not compute the ( )iP c n  over all classes defined in MDO. Instead, 

we compute ( )iP c n  only over classes that are potential class labels of !!. These 

potential class labels are identified based on the corrections performed by domain 

Nco
Kco f
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experts assisted by the instance validation platform (IVP). More specifically, if the 

class label co, identified by the instance annotator, of an instance !! was corrected by 

domain expert to a new class label cn, this new class label will be considered as one of 

the potential class labels for any new incoming instance that was assigned with class 

label co by instance annotator. We denote the set of potential class labels for instance 

!! as Cp.  

      Step 2: Choses a class from Cp as class label for !! based on the Naïve Bayes 

algorithm shown below:  

argmax ( ) ( )                                               (7.8)
i

ni

n
f Fp

c P c P f c
c C
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∈
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∈

∏  

      The incoming instances along with their class labels, possibly corrected by 

NBAC, will be passed to the instance validation platform for validation. Then, 

validated instances will be added to the training instance pool for retraining the 

NBAC. In the next section, we will present the instance validation platform and its 

core functionalities. 

7.3 Instance Validation Platform 

The purpose of the instance validation platform (IVP) is to assist domain experts to 

validate class labels of inputted instances and make changes if necessary. IVP also 

allows domain experts to validate and change conceptual mapping features of 

instances. Figure 7.6 shows the main user interface of the IVP. 
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Figure 7.6 Main user interface of instance validation platform 

       

      This graphical user interface is designed for domain experts who are not familiar 

with OWL-based ontologies. It hides technical details of ontologies and only shows 

relevant information for domain experts performing tasks at hand (e.g., change class 

labels or conceptual mappings of instances). On the left side of this user interface 

presents a list of annotated instances for quick review. When a domain expert selects 

an instance from the list, the detail of that instance will show on the right.  

      An innovative functionality of this user interface is that it provides a set of 

recommended classes for the selected instance. Domain experts only need to choose 

one of the recommended classes as the class label for the selected instance without 

needing to navigate the whole manufacturing domain ontology that may contains 

hundreds of classes. The recommended classes of an instance !! includes subclasses 

of the original class label of !! and classes from other class hierarchies that are 

related to the context of instance !!. If domain experts cannot find an appropriate 

class among the recommended classes, they can navigate the whole ontology to find 

one. Figure 7.7 shows recommended classes for instance Aerospace Waterjet 

Cutting. 
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Figure 7.7 Recommended classes for instance Aerospace Waterjet Cutting 

       

      IVP also enables domain expert to validate conceptual mapping features of 

instances and make changes if necessary. As defined in §7.2.1, a conceptual mapping 

feature of an instance !! is in the form of <e1, e2>, where e1 is either a concept or a 

relation of !! while e2 is either a class or a property defined MDO. Domain expert is 

allowed to change e2 to one of the entities (i.e., classes or properties) related to the 

class label c of !!. More specifically, if e1 is a concept, it can be changed to a 

superclass or subclass of c. Otherwise, it can be changed to a property of c. Figure 7.8 

shows the conceptual mapping features of instance Aerospace Waterjet Cutting. 

 
Figure 7.8 Conceptual mapping features of instance Aerospace Waterjet Cutting 
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      As depicted in Figure 7.1, the output of IVP was divided into three parts: the 

validated instances along with their class labels and features (both lexical features and 

conceptual mapping features) will be added to the training data set used to train the 

Naïve Bayes-based annotation corrector; the validated conceptual mapping features 

of instances will be applied to update the manufacturing concepts mapping 

repository; the validated instances with their class labels and properties will be 

published as public accessible data, which can be linked to the Linked Data Cloud. 

7.4 Experimental Evaluation 

This section presents the performance analysis on the instance annotation approach 

when applying SR-KB. To better analyze the performance and effects of applying the 

SR-KB, we compared the experimental results over four different instance annotation 

strategies: 

1. Annotate extracted instances without applying the SR-KB 

2. Annotate extracted instances only applying the manufacturing concepts 

mapping repository (MCMR) 

3. Annotate extracted instances only applying the Naïve Bayes-based annotation 

corrector (NBAC) 

4. Annotate extracted instances applying both MCMR and NBAC. That is, 

applying the SR-KB as a whole.  

      The first strategy serves as the control group based on which the effects of 

applying SR-KB can be measured. The second and third instance annotation strategy 

applies MCMR and NBAC of the SR-KB individually with the purpose of 

demonstrating how each of the two components would affect the instance annotation 

approach and thus shedding more light on how the SR-KB as a whole would affect 

the performance of the instance annotator.  

      Besides using the relaxed precision, relaxed recall and F1-meausre introduced in 

§6.3 to measure the performance on each of the four instance annotation strategies, 

we use correction rate to measure the efforts that domain experts would take to 

correct incorrect or inaccurate class labels of instances. Smaller correction rate 
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indicates lesser efforts required for domain experts to correct class labels of instances. 

We measure the effort of correcting the incorrect or inaccurate class label of an 

instance !! as the distance from the expected class !!!! !(defined in the ground truth) 

of instance !! to the assigned class !!!!  (assigned by instance annotator) of instance 

!!. Such distance is measured as follow:  

(7.9)                                          ),(1),(
iiii nnnn RCECRCECd ω−=  

where the ω(!!!!, !!!!) is defined in (6.9) and it measures the proximity between the 

expected class !!!! !and assigned class !!!! of !!. Thus, the correction rate for a set 

of annotated instances is calculated as follow:  

)10.7(                                        
),(

    rate correction 1

n

RCECd
n

i
nn ii∑

==  

      We use the same ground truth introduced in §6.3 to evaluate the performance on 

the instance annotation approach applying SR-KB. We created the ground truth by 

randomly selecting 45 manufacturing websites from Thomasnet and automatically 

extracting totally 14894 instances of interest from those web sites. Then, we manually 

annotated those instances with classes defined in MDO. The correctness of these 

annotated instances is validated by Yunsu Lee, who is a researcher at the National 

Institute of Standards and Technology (NIST) and familiar with both the 

manufacturing domain and OWL-based ontology. Table 7.2 presents the experimental 

results on the four instance annotation strategies. The Pre, Rec, F1, and Cor stands for 

relaxed precision, relaxed recall, F1 measure and correction rate respectively. 

      As demonstrated in the last row of Table 7.2 (average performance over all 

websites), the second strategy (i.e., MCMR applied) significantly improved the 

relaxed recall of the instance annotator compared to the first strategy. This was to be 

expected since MCMR helps instance annotator establish more mappings between 

concepts extracted from manufacturing web sites and classes defined in the MDO, 

thereby improving the chance of assigning an instance with a class label. However, 

the relaxed precision of the MCMR slightly decreased. This is mainly because the 
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class labels of certain newly annotated instances may not be accurate or even correct, 

thereby dragging down the overall relaxed precision. The third strategy applies the 

Naïve Bayes-based annotation corrector (NBAC) to assign new class labels to 

instances. More specifically, it may either correct wrongly assigned class labels of 

instances or assign class labels to instances that have not been assigned. Thus, it is 

supposed to improve both the relaxed precision and relaxed recall. However, as 

presented in Table 7.2 (from column 10 to column 13 on the last row), the relaxed 

precision of the third strategy dropped noticeably by 0.06 although the relaxed recall 

improved significantly (not as significantly as the second strategy) compared to the 

first strategy. There are two main reasons that lead to this outcome. For one thing, the 

NBAC applied in the third strategy assigns class labels to un-annotated instances 

solely based on the lexical features of these instances. As a result, it more likely 

assigns wrong (inaccurate or incorrect) class labels to these instances compared to the 

second strategy. According to (6.8), which is also recited below, newly annotated 

instances will always improve the relaxed recall, but they may negatively affect the 

relaxed precision if they were annotated with wrong class labels.  
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      The second reason for the relatively poor performance of the third strategy in 

terms of relaxed precision compared to the first and second strategy is the lack of 

conceptual mapping features for NBAC to make accurate classification decisions. As 

explained in §7.2.1, NBAC choses class labels for instances based on the probability 

distribution of features (both lexical features and conceptual mapping features) 

appearing in instances of each class. Lacking conceptual mapping features may lead 

lexical features to dominating the decision-making process of NBAC, thereby 

decreasing the relaxed precision of the annotation of instances.  
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      Based on the analysis stated above, exploiting more conceptual mapping features 

to train the NBAC would potentially improve the performance of the NBAC. The 

experimental result presented in Table 7.2 from column 14 to column 17 

demonstrates this point. It shows that strategy four (SR-KB applied) has the best 

performance over all other three strategies. The 0.88 relaxed precision score and the 

0.86 relaxed recall score on average demonstrate that both the quality and quantity of 

annotated instances increased significantly compared to the other three strategies. 

Also notice that the relaxed precision is almost identical to the relaxed recall. 

According to (6.8), this indicates that almost all extracted instances have been 

successfully assigned with class labels. Figure 7.9, Figure 7.10 and Figure 7.11 

graphically compare relaxed precision, relaxed recall and F1 measure among the four 

instance annotation strategies across 45 manufacturing web sites. The three figures 

manifest that strategy four outperforms other three strategies in all the three measures. 

The advantages of strategy four are even more obvious at later stage of the instance 

annotation process. This is because, as will explain in detail shortly, that more and 

more validated instances are available to train the NBAC as the instance annotation 

process continues, thereby improving the class label correction ability of NBAC. 

 

 
Figure 7.9 Comparison on relaxed recall among the four strategies 
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Figure 7.10 Comparison on relaxed precision among the four strategies 

!
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Figure 7.11 Comparison on F1 measure among the four strategies 
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Table 7.2 Comparison on relaxed precision, relaxed recall and correction rate among four instance annotation strategies 

Web Sites Strategy one: None Strategy two: MCMR Strategy three: NBAC Strategy four: SR-KB 
  Pre. Rec. F1 Cor. Pre. Rec. F1 Cor. Pre. Rec  F1 Cor. Pre. Rec.  F1 Cor. 

Schulermfg 0.78 0.59 0.67 0.41 0.77 0.67 0.71 0.33 0.78 0.59 0.67 0.41 0.77 0.67 0.71 0.33 
Soundmfg 0.76 0.59 0.66 0.41 0.7 0.66 0.68 0.34 0.7 0.66 0.68 0.34 0.76 0.72 0.74 0.28 
numericalconcepts 0.8 0.7 0.75 0.3 0.81 0.77 0.79 0.23 0.83 0.79 0.81 0.21 0.86 0.82 0.84 0.18 
Basssettinc 0.84 0.64 0.72 0.36 0.83 0.77 0.8 0.23 0.64 0.59 0.61 0.41 0.84 0.78 0.81 0.22 
Aerostarmfg 0.91 0.69 0.71 0.31 0.87 0.81 0.84 0.19 0.83 0.77 0.8 0.23 0.87 0.81 0.84 0.19 
magnamachine 0.79 0.45 0.57 0.55 0.76 0.64 0.69 0.36 0.82 0.82 0.82 0.18 0.7 0.69 0.69 0.31 
Ashleyward 0.93 0.55 0.69 0.45 0.85 0.68 0.76 0.32 0.74 0.74 0.74 0.26 0.75 0.75 0.75 0.25 
Accutrex 0.94 0.82 0.88 0.18 0.88 0.83 0.86 0.17 0.63 0.61 0.62 0.39 0.86 0.83 0.85 0.17 
Weaverandsons 0.9 0.73 0.831 0.27 0.89 0.81 0.85 0.19 0.81 0.79 0.8 0.21 0.89 0.86 0.87 0.14 
Astromfg 0.71 0.59 0.65 0.41 0.77 0.75 0.76 0.25 0.6 0.6 0.6 0.4 0.72 0.72 0.72 0.28 
Wisconsinmetalparts 0.77 0.69 0.73 0.31 0.75 0.74 0.75 0.26 0.82 0.81 0.82 0.19 0.83 0.82 0.83 0.18 
Tmfincorporated 0.92 0.83 0.87 0.17 0.94 0.91 0.93 0.09 0.89 0.86 0.87 0.14 0.94 0.91 0.92 0.09 
Robersontool 0.83 0.77 0.8 0.23 0.84 0.84 0.84 0.16 0.81 0.81 0.81 0.19 0.88 0.88 0.88 0.12 
Spmfg 0.96 0.76 0.85 0.24 0.87 0.82 0.84 0.18 0.85 0.85 0.85 0.15 0.9 0.9 0.9 0.1 
Smccontractmfg 0.79 0.65 0.71 0.35 0.78 0.74 0.76 0.26 0.76 0.75 0.75 0.25 0.85 0.83 0.84 0.17 
Swiftglass 0.96 0.88 0.92 0.12 0.96 0.94 0.95 0.06 0.91 0.89 0.9 0.11 0.95 0.93 0.94 0.07 
Ameristarmfg 0.94 0.89 0.91 0.11 0.93 0.93 0.93 0.07 0.84 0.84 0.84 0.16 0.95 0.95 0.95 0.05 
Jnmetalproducts 0.91 0.82 0.86 0.18 0.91 0.89 0.9 0.11 0.81 0.79 0.8 0.21 0.94 0.93 0.93 0.07 
Nobleindustries 0.85 0.73 0.78 0.27 0.78 0.78 0.78 0.22 0.75 0.75 0.75 0.25 0.81 0.81 0.81 0.19 
Aalloy 0.92 0.89 0.91 0.11 0.91 0.91 0.91 0.09 0.79 0.79 0.79 0.21 0.89 0.89 0.89 0.11 
Portersfab 0.93 0.84 0.88 0.16 0.92 0.91 0.91 0.09 0.88 0.88 0.86 0.12 0.93 0.92 0.92 0.08 
Californiabrazing 0.94 0.78 0.85 0.22 0.9 0.87 0.89 0.13 0.86 0.85 0.86 0.15 0.89 0.89 0.89 0.11 
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Web Sites Pre. Rec. F1 Cor. Pre. Rec. F1 Cor. Pre. Rec F1 Cor. Pre. Rec. F1 Cor. 
Columbiamanufacturing 0.91 0.75 0.82 0.25 0.88 0.81 0.85 0.19 0.87 0.86 0.87 0.14 0.92 0.91 0.91 0.09 
Mantecservicesinc 0.82 0.7 0.76 0.3 0.77 0.77 0.77 0.23 0.82 0.81 0.82 0.19 0.9 0.89 0.89 0.11 
Kilgoremfg 0.93 0.63 0.75 0.37 0.82 0.8 0.81 0.2 0.77 0.76 0.76 0.24 0.88 0.87 0.87 0.13 
Elgeprecision 0.97 0.59 0.74 0.41 0.86 0.78 0.82 0.22 0.74 0.72 0.73 0.28 0.88 0.86 0.87 0.14 
Dynamicprecision 0.94 0.76 0.84 0.24 0.87 0.87 0.87 0.13 0.83 0.83 0.83 0.17 0.9 0.9 0.9 0.1 
Pbandm 0.82 0.67 0.74 0.33 0.83 0.83 0.83 0.17 0.79 0.79 0.79 0.21 0.91 0.91 0.91 0.09 
Schenketool  0.89 0.85 0.87 0.15 0.92 0.92 0.92 0.08 0.87 0.87 0.87 0.13 0.93 0.93 0.93 0.07 
Pierceindustries 0.87 0.6 0.71 0.4 0.86 0.78 0.82 0.22 0.75 0.75 0.75 0.25 0.87 0.86 0.86 0.13 
Westfieldmachine  0.99 0.6 0.75 0.4 0.91 0.83 0.87 0.17 0.77 0.77 0.77 0.23 0.88 0.87 0.88 0.13 
Ardelengineering  0.83 0.6 0.72 0.4 0.82 0.8 0.81 0.2 0.87 0.87 0.87 0.13 0.88 0.88 0.88 0.12 
Hhsmm  0.66 0.55 0.6 0.45 0.7 0.7 0.7 0.3 0.8 0.8 0.8 0.2 0.86 0.86 0.86 0.14 
Wiegeltoolworks  0.91 0.77 0.84 0.23 0.91 0.89 0.9 0.11 0.81 0.81 0.81 0.19 0.93 0.93 0.93 0.07 
Adaptplastics  0.89 0.64 0.74 0.36 0.86 0.84 0.85 0.16 0.79 0.78 0.78 0.22 0.89 0.88 0.88 0.12 
Mpi-dms  0.95 0.78 0.86 0.22 0.9 0.89 0.9 0.11 0.83 0.83 0.83 0.17 0.89 0.89 0.89 0.11 
Contract-mfg  0.89 0.71 0.79 0.29 0.88 0.88 0.88 0.12 0.84 0.84 0.84 0.16 0.91 0.91 0.91 0.09 
Hloeb  0.94 0.82 0.87 0.18 0.93 0.91 0.92 0.09 0.85 0.85 0.85 0.15 0.9 0.9 0.9 0.1 
Milacronmachining  0.78 0.56 0.65 0.44 0.73 0.72 0.73 0.28 0.78 0.78 0.78 0.22 0.85 0.85 0.85 0.15 
cuttingexperts 0.82 0.42 0.55 0.58 0.86 0.84 0.85 0.16 0.77 0.77 0.77 0.23 0.93 0.93 0.93 0.07 
hds-usa 0.82 0.57 0.67 0.43 0.78 0.72 0.75 0.28 0.76 0.76 0.76 0.24 0.9 0.9 0.90 0.1 
madisontoolinc 0.86 0.75 0.8 0.25 0.84 0.83 0.83 0.17 0.88 0.88 0.88 0.12 0.91 0.91 0.91 0.09 
Duratrack 0.57 0.43 0.49 0.57 0.69 0.67 0.68 0.33 0.64 0.64 0.64 0.36 0.83 0.83 0.83 0.17 
nationgrinding 0.92 0.8 0.86 0.2 0.85 0.83 0.84 0.17 0.87 0.87 0.87 0.13 0.93 0.93 0.93 0.07 
Schmidtool 0.82 0.74 0.78 0.26 0.77 0.74 0.75 0.26 0.88 0.88 0.88 0.12 0.9 0.9 0.9 0.1 
Average 0.86 0.69 0.76 0.31 0.84 0.81 0.82 0.19 0.80 0.79 0.79 0.21 0.88 0.86 0.87 0.14 
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      The objectives of applying the SR-KB are to help the instance annotator (1) 

accurately annotate as many instances as possible while at the same time (2) 

minimize human intervention. Thus, one important aspect of measuring the effects of 

SR-KB is to test whether the SR-KB helps the instance annotator achieve those 

objectives. The performance analysis based on the experimental results stated above 

demonstrated that the SR-KB successfully achieved the first objective. We use the 

correction rate to measure whether the SR-KB can help the instance annotator 

continuously decrease the human effort of correcting class labels of instances. This 

measurement is conducted both horizontally and vertically. That is, we compare the 

average correction rates as well as the trends of correction rate over 45 manufacturing 

web sites among the four strategies. The comparison on the average correction rates is 

presented in Table 7.3 while the comparison on the trends of correction rate is 

depicted in Figure 7.12.  

Table 7.3 Comparison on average correction rates 
Instance annotation strategy Correction rate 

Strategy one: None applied 0.30 

Strategy two: MCMR applied 0.19 

Strategy three: NBAC applied 0.21 

Strategy four: SR-KB applied 0.13 

 

 

 
Figure 7.12 Comparison on correction rate among the four instance annotation 

strategies 
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      Both Table 7.3 and Figure 7.12 clearly show that strategy four (SR-KB applied) 

has the best performance in terms of correction rate among the four strategies. More 

importantly, strategy four has a clear trend of declining correction rate as the instance 

annotation process goes by, as shown in Figure 7.13. This demonstrates that the SR-

KB has the ability of continuously decreasing human intervention on validating 

annotated instances.  

 

 
Figure 7.13 The trend of correction rate of the forth instance annotation strategy 
 

      Theoretically, both strategy three and four should be able to decrease the 

correction rate as the instance annotation process goes by because both of them utilize 

NBAC trained by validated instances to correct possibly wrong class labels of newly 

incoming instances. However, only strategy four shows a clear trend of declining 

correction rate while strategy three does not. The main reason leading to such 

different outcome is that the concepts of instances cannot be fully exploited in 

strategy three to create the conceptual mapping features because of terminological 

heterogeneity and as a result the class features created may not be able to well 

represent the relationship between classes and their instances. Consequently, the 

NBAC trained by these features may have high annotation error. On the other hand, 

strategy four exploits the MCMR to address the terminological heterogeneity issue 

when establishing mappings between concepts of instances and classes. As a result, 

more conceptual mapping features can be created to train the NBAC, thereby 

improving the annotation accuracy. 
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      One issue with the previous experiment is that it is conducted in sequential order 

on a list of manufacturing web sites. Therefore, the outcome of annotating instances 

from earlier web site would affect the outcome of the subsequent ones. To test 

whether the performance improvement from SR-KB is robust, we need to remove its 

dependency on the order of web sites. In other words, we need to test whether the 

instance annotator is able to perform consistently on any ordering of the web-sites. 

For this purpose, we shuffle the 45 manufacturing web sites 10 times and conducted 

the same experiment on each of the 10 orderings. For each of the 10 tests, we divide 

the experiment into two stages. In the initial stage, we let the given strategy works 

through the first 40 web sites to allow the SR-KB to have opportunity to be trained 

sufficiently well.  Thus, we test the robustness of SR-KB on the later stage. 

Specifically, we first compute the average of F1 measures of last five web sites for 

each of the 10 tests. For conciseness, we refer to the average of F1 measures as F1 

average. Then, we examine the accuracy of SR-KB by comparing F1 averages of the 

10 tests among the four instance annotation strategies. The result is shown in Table 

7.4 and pictorially presented in Figure 7.14.  

 
Table 7.4 Averages of F1 measures 

 

Strategy one: 
None 

Strategy two: 
MCMR 

Strategy three: 
NBAC 

Strategy four: 
SR-KB 

Test 1 0.708 0.816 0.788 0.892 
Test 2 0.726 0.83 0.812 0.902 
Test 3 0.81 0.878 0.83 0.912 
Test 4 0.778 0.878 0.846 0.91 
Test 5 0.762 0.872 0.818 0.898 
Test 6 0.76 0.864 0.862 0.906 
Test 7 0.758 0.886 0.836 0.914 
Test 8 0.796 0.864 0.86 0.91 
Test 9 0.722 0.84 0.832 0.898 

Test 10 0.748 0.854 0.856 0.922 
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Figure 7.14 Comparison on averages of F1 measures for the 10 tests among the 

four instance annotation strategies 
 

 

      Figure 7.14 shows that the fourth strategy (SR-KB applied) has the highest F1 

averages cross the 10 tests. This demonstrates that when SR-KB applied, the instance 

annotator can produce accurate annotation independently of order of inputted web 

sites. However, the F1 average along does not demonstrate that the SR-KB can help 

instance annotator consistently deliver accurate result that is independent of the order 

of web sites. In other words, we need to examine the stability of the SR-KB. To this 

end, we compute the standard deviation of F1 averages of the 10 tests for each of the 

four strategies. Then, we compare these standard deviations among the four instance 

annotation strategies. The result is presented in Table 7.5 and Figure 7.15. 

 

Table 7.5 Standard deviations of F1 averages  
Strategy one: 

None 
Strategy two: 

MCMR 
Strategy three: 

NBAC 
Strategy four: 

SR-KB 
0.032 0.023 0.023 0.009 
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      Figure 7.15 Comparison on standard deviations of F1 averages of 10 tests 

among the four instance annotation strategies 
 

      Figure 7.15 clearly shows that the fourth strategy (SR-KB applied) has the lowest 

standard deviation of F1 averages. This demonstrates that SR-KB can deal with 

various types of manufacturing service capabilities that different web sites may offer. 

In other words, the performance of the instance annotator does not change much 

when the order of the inputted web sites is modified. Figure 7.14 and Figure 7.15 

together demonstrate that the instance annotator is robust to produce high accurate 

annotation when SR-KB applied. 

      In order to establish the base-line for the experimental evaluation on the semantic 

resolution framework and examine the performance of this framework under a stricter 

assessment criterion, we conducted an additional experiment with a more restricted 

version of the precision and recall. Specifically, when measuring the correctness of an 

annotated instances, rather than computing a proximity score between the expected 

class label and the assigned class label as shown in formula (6.8), the restricted 

version of the precision and recall returns a boolean value indicating that whether a 

annotation is either correct or incorrect depending on if an exact match between the 

system generated annotation and the grand truth. The restricted precision computes 

the ratio of correctly annotated instances to all instances that were automatically 

annotated by the instance annotator (possibly corrected by NBAC) while the 

restricted recall computes the ratio of correctly annotated instances to the instances 

0.032#

0.023# 0.023#

0.009#

0#
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0.01#
0.015#
0.02#
0.025#
0.03#
0.035#

None# MCMR# NBAC# SR6KB#

Standard deviation of F1 averages 
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extracted from websites and annotated by domain experts (serves as the ground truth). 

The experimental result is presented in Table 7.6. 

      Since the assessment criterion used here on the correctness of annotated instances 

is stricter than the one used in (6.8) for the relaxed precision and relaxed recall, the 

result shown in Table 7.6 is as expected worse than the one shown in Table 7.2. 

However, the difference between the two situations is not that great. In fact, the 

precision and recall only drop from 0.86 to 0.76 and from 0.69 to 0.62, respectively, 

if the knowledge base is not used (the first strategy). Moreover, the result shows a 

significant improvement on the restricted recall of forth strategy compared to that of 

the first strategy although the restricted precision does not change and the correction 

rate of the forth strategy still shows a trend of continuing declining as depicted in 

Figure 7.16. 

 
Figure 7.16 The trend of correction rate of the forth strategy with restricted 

precision and restricted recall applied 

7.5 Summary 

In this chapter, we explained in detail each component of the semantic resolution 

knowledge base (SR-KB) that aims to improve the annotation accuracy of instance 

annotator while at the same time minimize the human intervention. Specifically, 

manufacturing concepts mapping repository (MCMR) helps alleviate the issue of 

terminological heterogeneity existing in the instance annotation process, thereby 

improving the chance of assigning instances with accurate class labels, while Naïve 

Bayes-based annotation corrector (NBAC) corrects misannotated instances. The 

instance validation platform (IVP) is an assisting tool that helps domain experts with 
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Table 7.6 Comparison on restricted precision, restricted recall and correction rate among four strategies 

Web Sites Strategy one: None Strategy two: MCMR Strategy three: NBAC Strategy four: SR-KB 
  Pre. Rec. F1 Cor. Pre. Rec. F1 Cor. Pre. Rec  F1 Cor. Pre. Rec.  F1 Cor. 

Schulermfg 0.74 0.56 0.64 0.44 0.75 0.65 0.7 0.35 0.74 0.56 0.64 0.44 0.75 0.65 0.7 0.35 
Soundmfg 0.64 0.49 0.56 0.51    0.61 0.58 0.59 0.42 0.59 0.56 0.57 0.44 0.69 0.65 0.67 0.35 
numericalconcepts 0.75 0.66 0.7 0.34 0.73 0.7 0.71 0.3 0.74 0.71 0.72 0.29 0.74 0.71 0.72 0.29 
Basssettinc 0.57 0.44 0.5 0.56 0.57 0.53 0.55 0.47 0.43 0.4 0.41 0.6 0.57 0.53 0.55 0.47 
Aerostarmfg 0.79 0.62 0.69 0.38 0.76 0.7 0.73 0.3 0.69 0.64 0.66 0.36 0.76 0.71 0.73 0.29 
magnamachine 0.61 0.43 0.5 0.57 0.43 0.36 0.39 0.64 0.47 0.47 0.47 0.53 0.63 0.63 0.63 0.37 
Ashleyward 0.63 0.45 0.53 0.55 0.57 0.57 0.57 0.43 0.54 0.54 0.54 0.46 0.73 0.73 0.73 0.27 
Accutrex 0.81 0.71 0.76 0.29 0.74 0.73 0.73 0.27 0.55 0.53 0.54 0.47 0.77 0.73 0.75 0.27 
Weaverandsons   0.83 0.66 0.74 0.34 0.82 0.75 0.78 0.25 0.67 0.65 0.66 0.35 0.78 0.76 0.77 0.24 
Astromfg 0.47 0.39 0.43 0.61 0.59 0.58 0.58 0.42 0.69 0.64 0.66 0.36 0.66 0.66 0.66 0.34 
Wisconsinmetalparts   0.67 0.6 0.63 0.4 0.73 0.73 0.73 0.27 0.71 0.7 0.71 0.3 0.73 0.73 0.73 0.27 
Tmfincorporated 0.8 0.72 0.76 0.28 0.82 0.79 0.8 0.21 0.8 0.77 0.78 0.23 0.87 0.84 0.85 0.16 
Robersontool 0.65 0.6 0.62 0.4 0.68 0.68 0.68 0.32 0.57 0.57 0.57 0.43 0.68 0.68 0.68 0.32 
Spmfg 0.84 0.65 0.73 0.35 0.84 0.78 0.81 0.22 0.6 0.6 0.6 0.4 0.78 0.78    0.78 0.22 
Smccontractmfg 0.73 0.61 0.66 0.39 0.68 0.65 0.66 0.35 0.72 0.7 0.71 0.3 0.71 0.69 0.7 0.31 
Swiftglass 0.82 0.75 0.78 0.25 0.83 0.81 0.82 0.19 0.8 0.79 0.79 0.21 0.82 0.81 0.81 0.19 
Ameristarmfg 0.89 0.84 0.86 0.16 0.89 0.89 0.89 0.11 0.8 0.8 0.8 0.2 0.91 0.91 0.91 0.09 
Jnmetalproducts 0.86 0.77 0.81 0.23 0.88 0.86 0.87 0.14 0.78 0.77 0.77 0.23 0.87 0.85 0.86 0.15 
Nobleindustries 0.76 0.65 0.7 0.35 0.68 0.68 0.68 0.32 0.67 0.67 0.67 0.33 0.68 0.68 0.68 0.32 
Aalloy 0.84 0.81 0.82 0.19 0.83 0.83 0.83 0.17 0.71 0.71 0.71 0.29 0.83 0.83 0.83 0.17 
Portersfab 0.8 0.72 0.76 0.28 0.77 0.76 0.76 0.24 0.82 0.8 0.81 0.2 0.82 0.8 0.81 0.2 
Californiabrazing 0.79 0.65 0.71 0.35 0.76 0.73 0.74 0.27 0.69 0.67 0.68 0.33 0.77 0.75 0.76 0.25 
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Web Sites Pre. Rec. F1 Cor. Pre. Rec. F1 Cor. Pre. Rec  F1 Cor. Pre. Rec.  F1 Cor. 
Columbiamanufacturing 0.74 0.62 0.67 0.38 0.77 0.71 0.74 0.29 0.66 0.65 0.65 0.35 0.75 0.73 0.74 0.27 
Mantecservicesinc 0.76 0.65 0.7 0.35 0.67 0.66 0.66 0.34 0.73 0.72 0.72 0.28 0.8 0.79 0.79 0.21 
Kilgoremfg 0.91 0.61 0.73 0.39 0.62 0.6 0.61 0.4 0.67 0.66 0.66 0.34 0.71 0.7 0.7 0.3 
Elgeprecision 0.96 0.59 0.73 0.41 0.76 0.68 0.72 0.32 0.66 0.65 0.65 0.35 0.71 0.7 0.7 0.3 
Dynamicprecision 0.66 0.54 0.59 0.46 0.64 0.64 0.64 0.36 0.57 0.57 0.57 0.43 0.64 0.64 0.64 0.36 
Pbandm 0.78 0.64 0.7 0.36 0.7 0.7 0.7 0.3 0.71 0.71 0.71 0.29 0.75 0.75 0.75 0.25 
Schenketool  0.8 0.76 0.78 0.24 0.88 0.88 0.88 0.12 0.81 0.81 0.81 0.19 0.86 0.86 0.86 0.14 
Pierceindustries 0.78 0.58 0.67 0.42 0.74 0.68 0.71 0.32 0.66 0.66 0.66 0.34 0.73 0.73 0.73 0.27 
Westfieldmachine  0.97 0.59 0.73 0.41 0.77 0.7 0.73 0.3 0.68 0.68 0.68 0.32 0.79 0.79 0.79 0.21 
Ardelengineering  0.61 0.61 0.61 0.39 0.65 0.65 0.65 0.35 0.63 0.63 0.63 0.37 0.71 0.71 0.71 0.29 
Hhsmm  0.59 0.59 0.59 0.41 0.59 0.59 0.59 0.41 0.53 0.53 0.53 0.47 0.65 0.65 0.65 0.35 
Wiegeltoolworks  0.83 0.7 0.76 0.3 0.8 0.78 0.79 0.22 0.73 0.73 0.73 0.27 0.79 0.79 0.79 0.21 
Adaptplastics  0.81 0.6 0.69 0.4 0.79 0.77 0.78 0.23 0.72 0.71 0.71 0.29 0.81 0.81 0.81 0.19 
Mpi-dms  0.87 0.71 0.78 0.29 0.81 0.81 0.81 0.19 0.75 0.75 0.75 0.25 0.79 0.79 0.79 0.21 
Contract-mfg  0.85 0.69 0.76 0.31 0.82 0.82 0.82 0.18 0.74 0.74 0.74 0.26 0.83 0.83 0.83 0.17 
Hloeb  0.83 0.71 0.77 0.29 0.89 0.87 0.88 0.13 0.8 0.8 0.8 0.2 0.84 0.84 0.84 0.16 
Milacronmachining  0.7 0.5 0.58 0.5 0.65 0.64 0.64 0.36 0.64 0.64 0.64 0.36 0.67 0.67 0.67 0.33 
cuttingexperts 0.7 0.39 0.5 0.61 0.77 0.74 0.75 0.26 0.71 0.71 0.71 0.29 0.82 0.82 0.82 0.18 
hds-usa 0.79 0.53 0.63 0.47 0.74 0.7 0.72 0.3 0.72 0.72 0.72 0.28 0.85 0.85 0.85 0.15 
madisontoolinc 0.81 0.73 0.77 0.27 0.82 0.82 0.82 0.18 0.84 0.84 0.84 0.16 0.88 0.88 0.88 0.12 
duratrack 0.57 0.43 0.49 0.57 0.62 0.62 0.62 0.38 0.6 0.6 0.6 0.4 0.75 0.75 0.75 0.25 
nationgrinding 0.88 0.76 0.82 0.24 0.71 0.71 0.71 0.29 0.75 0.75 0.75 0.25 0.87 0.87 0.87 0.13 
schmidtool 0.81 0.64 0.72 0.36 0.75 0.75 0.75 0.25 0.72 0.72 0.72 0.28 0.84 0.84 0.84 0.16 
Average 0.76 0.62 0.68 0.38 0.73 0.71 0.72 0.29 0.68 0.67 0.67 0.33 0.76 0.75 0.75 0.25 
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no or little knowledge on ontology validate annotated instances and creates training 
data set for NBAC. The experimental results demonstrate that SR-KB not only 
significantly improves the quality and quantity of the annotated instance but also 
continuously reduces human intervention as the instance annotation process goes by.$ $
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Chapter 8.  

                     Conclusion 
 

 

The objective of this research is to develop a semantic resolution formwork (SRF) 

that is able to extract manufacturing service capability (MSC) instances from a broad 

range of manufacturing web sites that may present their MSC instances in different 

ways and resolve semantic heterogeneity while integrating these instances into a (or a 

set of) manufacturing domain ontology. To this end, our research supports two 

different tasks: instance extraction task and instance annotation task. 

      For the instance extraction task, we propose an instance extractor that builds an 

instance description model upon each manufacturer web site. Such IDM describes 

each extracted instance !! with a context that includes concepts instance !! might 

belong to and relations connecting !! to other instances or numerical data values. Our 

instance extraction approach does not require manually created rules or training data. 

Neither does it require web pages to be built upon regular templates. It extracts MSC 

instances and forms their context by exploiting the common structure of and 

redundancy [12] in manufacturing web pages.  

      For the instance annotation task, we propose an instance annotator that annotates 

instances with classes defined in the manufacturing domain ontology based on 

contexts of these instances and the subsumption relationship defined in MDO. The 

experimental result shows that our approach is effective in accurately assign class 

labels to instances, so long as the concepts in the context of these instances can be 

mapped to classes defined in MDO. However, due to terminological heterogeneity, 

our approach has difficulty in mapping all the concepts in contexts of instances to 

classes defined in MDO, causing misannotations for some extracted instances. 

Besides, both the instance extractor and the instance annotator provide no mechanism 

that is able to correct misannotated instances. We propose a semantic resolution 

knowledge base (SR-KB) to address these drawbacks. This SR-KB contains a 

manufacturing concepts mapping repository (MCMR), a Naïve Bayes-based 
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annotation corrector (NBAC) and an instance validation platform (IVP). The MCMR 

stores a collection of automatically established mappings between manufacturing 

concepts and classes defined in MDO aiming to address terminological heterogeneity 

in the instance annotation process. The IVP facilitates the participation of domain 

experts to validate annotated instances and correct misannotated ones. The goal of the 

NBAC is to automatically correct misannotated instances based on corrections made 

by domain experts with the assistance of the IVP. As demonstrated by the 

experimental results presented in Chapter 7, we conclude that SR-KB is able to 

improve both relaxed precision and relaxed recall of annotated instances while at the 

same time reduce human involvement. To further improve the performance of the 

semantic resolution framework, we have identified several directions for future work. 

      Parameter selection and sensitivity analysis. Before running the semantic 

resolution framework, we need  to select a set of parameters such as the similarity 

thresholds used in clustering relation and annotating instance. We plan to develop 

methodical approaches that can help us identify a satisfactory set of parameters, if 

optimal set is not impractical.  This work is to be accompanied by sensitivity analysis 

of selected parameters on the system performance and robostness. $
!!!!!!Improvements on instance extractor. Certain improvements to instance 

extraction process have the potential to improve the SRF’s overall relaxed precision 

and relaxed recall. In the current state of the instance extractor, we only consider 

short phrases and sentence as instances of interest. In the next version of the instance 

extractor, we may integrate a Web-scale named-entity recognizer such as Lex [90] to 

help identify entities of interest in raw unstructured texts. Moreover, the instance 

extractor currently can only extract instances from row header tables (§5.2). This can 

be extended by adopting other table parse solutions [45, 46] for extracting instances 

from tables with different structures.  

      Improvements on the semantic resolution knowledge base. The semantic 

resolution knowledge base (SR-KB) adopts Naïve Bayes classifier to correct possible 

misannotated instances. The training features used to train the Naïve Bayes classifier 

are assumed to be independent with each other. In fact, however, some conceptual 

mapping features (§7.2) of an instance apparently are dependent of each other. To 
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better capture these possibilities, we may leverage more sophisticated classifiers such 

as Bayesian Network [91] and Support Vector Machine [92] to correct misannotated 

instances. The instance validation platform currently only allows users to correct class 

labels of instances that have been annotated by instance annotator. In the next version 

of the instance validation platform, we will add new features that allow users to create 

and add new instances and their contexts. This is particularly useful for the website 

builders who also want to semantically annotate the MSC information. Also, we will 

integrate other information and  knowledge sources such as domain-specific corpus 

and other statistical data, WordNet, ontologies, linked data, and other forms of 

semantic information into the SR-KB in addition to the manufacturing concepts 

mapping repository such that more valuable data published on websites can be better 

identified, annotated and integrated by our semantic resolution framework. 

      Practical application on semantic resolution framework. Linked open data 

(LOD) has achieved success in a wide variety of fields and is supported by a 

comparably large and active user community. However, to the best of our knowledge, 

no single data set related to manufacturing domain is available in the LOD cloud. 

Therefore, publishing linked data of manufacturing domain to the LOD cloud would 

be a great contribution to both manufacturing and Linked Data community. The 

manufacturing knowledge base, the output of our semantic resolution framework, 

could serve as the basis for that purpose. This manufacturing knowledge base, when 

published as linked data, can be leveraged by real world applications to help 

accurately match customers and suppliers, or agilely form manufacturing supply 

chains. 

       We will also examine the applicability of the semantic resolution framework and 

its methods outside the manufacturing domain. The relatively good performance of 

this framework relies on, among other things, its ability to utilize the structure of the 

manufacturing websites. This leads us to believe that our framework would be 

applicable to other service-oriented web sites, such as travailing, restaurant, and 

healthcare where the services they offer are typically described in detailed and 

structured ways similar to manufacturing websites.  It would of great interest to see 

how this framework and its methods apply to sample websites of a selected domain, 
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such as the healthcare service domain or some of its subdomains. The data collected 

from the experiments may provide valuable hints on improving the generality and 

accuracy of the framework as a whole or of its individual methods. 
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Appendices 
 

Appendix A – List of Abbreviations 

 
• CC – Concept-to-Class mapping features  

• CWA – Closed World Assumption  

• DOM – Document Object Model  

• HTML – Hypertext Markup Language  

• IDM – Instance Description Model  

• IE – Information Extraction  

• IVP – Instance Validation Platform  

• LCS – Longest Common Sequence 

• LOD – Linked Open Data   

• MCMR – Manufacturing Concepts Mapping Repository  

• MDO –  Manufacturing Domain Ontology  

• MLE – Maximum Likelihood Estimate  

• MSC – Manufacturing Service Capability  

• NBAC – Naïve Bayes-based Annotation Corrector   

• OBIE – Ontology-based Information Extraction  

• OMBM – Ordered Maximum-weighted Bipartite Matching algorithm   

• OWA – Open World Assumption    

• OWL – Web Ontology Language  

• RDF – Resource Description Framework  

• RP – Relation-to-Property mapping features  

• SRF – Semantic Resolution Framework  

• SR-KB – Semantic Resolution Knowledge Base  

• XHTML – Extensible Hypertext Markup Language 

• XML – Extensible Markup Language  

 


