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Abstract 

 

  This paper presents a theoretical framework and relat-

ed methods for integrating probabilistic knowledge repre-

sented as low dimensional distributions (also called con-

straints) into an existing Bayesian network (BN), even 

when these constraints are inconsistent with the structure 

of the BN due to dependencies among relevant variables in 

the constraints being absent in the BN. Within this frame-

work, a method has been developed to identify structural 

inconsistencies. Methods have also been developed to 

overcome such inconsistencies by modifying the structure 

of the existing BN. 

  

1 Introduction 

 
 Knowledge integration involves modifying the existing 

knowledge base according to newly discovered knowledge. 

This process can be difficult because pieces of new 

knowledge coming from different sources may conflict 

with each other or with the existing knowledge base. In 

this situation we say the pieces of new knowledge are in-

consistent. 

 In this paper we focus on a specific kind of knowledge 

integration, i.e., the discrete probabilistic knowledge inte-

gration for uncertain knowledge, where the knowledge 

base is represented as a discrete joint probability distribu-

tion (JPD), and pieces of new knowledge are represented 

as lower dimensional distributions, which are also called 

constraints. We are especially interested in representing 

the knowledge base using a Bayesian network (BN) for its 

compact representation of interdependencies (Pearl 1988). 

Each node in a BN represents a variable in the knowledge 

base, and arcs between the nodes represent the interde-

pendencies among variables. All the nodes and edges form 

a directed acyclic graph (DAG) of the BN, which we refer 

to as the structure of BN. A conditional probability table 

(CPT) is attached to each node to represent the strength of 

the interdependencies. Using BN introduces an additional 

 

 

challenge for integration, i.e., a constraint may conflict 

with the structure of the existing BN when the probabilistic 

dependencies among some of the variables in the constraint 

are absent in the BN. We call this kind of constraint struc-

tural inconsistent constraint. 

 When the structural inconsistency occurs, one can 

choose to 1) keep the structure of the BN and integrate as 

much as possible of the knowledge in the constraint that is 

consistent and ignore or reject the inconsistent part of the 

knowledge in the constraint; 2) modify the structure of the 

BN so that the knowledge in the constraint can be com-

pletely integrated into the BN; or 3) find a trade-off be-

tween the above two options. 

 Existing methods in this area mainly take the first option. 

The integration of pieces of new knowledge is carried out 

by only updating the parameters of the existing BN while 

keeping the network structure intact. The rationale behind 

this is that in many situations the structure of the existing 

BN represents more stable and reliable aspects of the do-

main knowledge, and therefore is desirable to not change 

frequently. In this paper, we explore the second option to 

completely integrate the structural inconsistent constraint. 

The motivation of doing this is that when new pieces of 

knowledge are more up-to-date or come from reliable 

sources and the new dependencies they bring should be ac-

cepted, it is necessary and beneficial to modify the struc-

ture of the existing BN so that the new constraints, includ-

ing the new dependencies they contain, can be integrated 

into the BN in its entirety.  

 The rest of this paper is organized as follows. In Section 

2 we introduce some background and formally define the 

problem we set to solve. In Section 3 we briefly review the 

existing works related to this problem. In Section 4 we ex-

plore how to identify structural inconsistencies between the 

constraints and the BN. In Section 5 we investigate how to 

overcome the identified structural inconsistencies during 

knowledge integration. Finally, we show the effectiveness 

of the proposed methods through experiments in Section 6 

and conclude the paper in Section 7 with directions of fu-

ture research. 



2 Background and the Problem 

 
 We will follow the following conventions in this paper. 

To name a set of variables, we will use capital italic letters 

such as X, Y, Z and with superscripts such as Xi, Yj, Zk for 

subsets of variables. To name their instantiations, we will 

use lower case italic letters such as x, y, z correspondingly. 

To name an individual variable, we use capital italic letters 

such as A, B, C. To name their instantiations, we will use 

lower case italic letters such as a, b, c correspondingly. If 

the individual variable belongs to a set, we will use sub-

scripts to indicate its position in the set, such as Xi for the 

ith variable in set X, and xi for its instantiation. P, Q, R are 

specifically used to indicate probability distributions, and 

bold P, Q, R are used for sets of distributions. 

 Knowledge integration refers to the process of incorpo-

rating new knowledge into an existing knowledge base. 

The probabilistic knowledge base can be represented using 

JPD ( )P X , where X represents the set of variables in the 

domain. The new knowledge that needs to be integrated in-

to ( )P X usually comes from more up-to-date or more spe-

cific observations for a certain perspective of the domain. 

It can be represented as a lower-dimensional probability 

distribution over a subset of X , which is called probabilis-

tic constraint, or constraint for short. We use the probabil-

ity distribution ( )j

jR Y  to denote the jth piece of new 

knowledge or the jth constraint which is a distribution over 

the set of variables jY , where
jY X . A set of m con-

straints can be represented as 1

1{ ( ),..., ( )}m

mR Y R YR . 

Definition 1 (Constraint Satisfaction) Let ( )P X be a JPD, 

and ( )R Y be a constraint, where .Y X ( )P X is said to 

satisfy ( )R Y if ( ) ( )P Y R Y , i.e., the marginal distribution 

of ( )P X on variable set Y equals ( )R Y . 

Definition 2 (Consistent Constraints) If there is at least one 

JPD ( )P X that can satisfy all the constraints in ,R i.e., 

( ) , ( ) ( )j j j

j jR Y P Y R Y  R holds, then we say con-

straints in R are consistent. 

Definition 3 (Inconsistent Constraints) If there does not 

exist a JPD that can satisfy all the constraints in ,R then we 

say constraints in R are inconsistent. 

 The probabilistic knowledge integration problem is to 

modify ( )P X to satisfy all the constraints in .R Meanwhile, 

it is desirable to minimize the modification to ( )P X during 

the integration process, which can be measured using some 

metrics such as I-divergence (Csiszar 1975; Kullback and 

Leibler 1951; Vomlel 1999) or its weighted version I-

aggregate (Vomlel 2003) defined afterwards. 

Definition 4 (I-divergence) Given two probability distribu-

tions ( )P X and ( )Q X , I-divergence from ( )P X to ( )Q X is:                        

  
( )

( ) log if
( )( || )

otherwise

x X

P x
P x P Q

Q xI P Q 


 

 


    (1) 

where QP  means Q dominates ,P i.e., { | ( ) 0}X P X   
' '{ | ( ) 0}X Q X  . 

Definition 5 (I-aggregate) Let P be a JPD,
1{ ,..., }mQ QQ  

be a set of distributions, and
j be a nonnegative weight 

for
jQ . I-aggregate is the weighted sum of I-divergence for 

all of the distributions in Q , i.e., 

       ( , ) ( )j jP I P Q  Q         (2) 

where 0<
j <1 and 1j  . 

 BNs have been widely used for representing large uncer-

taint knowledge bases. For a given BN G , we use
sG to re-

fer to the DAG, i.e., the network structure of G , and
PG to 

refer to the set of CPTs. A BN can then be represented 

as ( , )S PG G G , where {( , )}S i iG X  . Here
i is the set 

of parents for
iX , and { ( | )}P i iG P X  . The following are 

some graph definitions based on the DAG of the BN (Gei-

ger, Verma and Pearl 1990). 

Definition 6 (I-Map) Given a DAG
sG , and a JPD P which 

uses the same set of variables as
sG , if every independency 

implied by
sG holds in ,P  then we say

sG is an I-Map 

of P (Geiger, Verma and Pearl 1990). A complete DAG is 

an I-Map of any distribution. 

Definition 7 (Minimal I-Map) The minimal I-Map of P is a 

DAG
sG that by removing any arc from

sG introduces inde-

pendencies that do not hold in P (Geiger, Verma and Pearl 

1990). 

 From the definition of a minimal I-Map we know that, to 

represent ,P the BN structure
sG needs to be an I-Map 

of ,P if it is not a minimal I-Map of .P That means
sG can 

have more dependencies than ,P but not less (Geiger, Ver-

ma and Pearl 1990). This leads to our definition for struc-

tural inconsistent constraint. 

Definition 8 (Structural Inconsistent Constraint) Given 

DAG
sG over a set of variables X , and a constraint R over a 

set of variables Y X , if every independency implied 

by
sG involving variables in Y holds in R , then we say R is 

structurally consistent with .sG Otherwise, we say R is 

structurally inconsistent with
sG , or we say R is a structural 

inconsistent constraint for
sG . 

 Structural inconsistent constraint (defined in Definition 

8) and inconsistent constraints (defined in Definition 3) re-

fer to different types of inconsistencies, and we refer them 

as Type I and Type II inconsistency, respectively, in the 

rest of this paper. Type I inconsistency in Definition 3 is 

defined for a set of constraints. It can arise whether or not 

the knowledge base is represented as a BN. Type II incon-



sistency in Definition 8 is defined for an individual con-

straint with respect to a particular BN. It can occur only 

when the knowledge base is represented as a BN, and some 

dependency relations in the constraint are absent in the BN. 

 Figure 2 below shows some examples of inconsistent 

constraints for the BN in Figure 1. Constraints in Figure 

2(a) have Type I inconsistency because 1( ) 2( )R A R A . 

Constraint in Figure 2(b) has Type II  inconsistency be-

cause it contradicts with the dependency relation in the BN 

structure of Figure 1, where B and C are independent giv-

en A , while 3( , | ) 3( | ) 3( | )R B C A R B A R C A  . 

 

 

 

 

 

Figure 1: A 3 Node BN 

 
 
 
 

(a) Constraints with Type I Inconsistency 

 

 
 
 

 

 

(b) Constraint with Type II Inconsistency 

Figure 2: Inconsistent Constraints 

 With the definition of Type I and Type II inconsistencies, 

the problem we set to solve is formally defined as follows: 

 Given BN ( , )S PG G G with JPD ( )P X , and a set of 

constraints 1

1{ ( ),..., ( )}m

mR Y R YR with at least one con-

straint having Type II inconsistency, construct a new BN 
' ' '( , )S PG G G with probabilility distribution ' ( )P X that 

meet the following conditions: 

C1: Constraint satisfaction:
'( ) , ( ) ( )j j j

j jR Y P Y R Y  R ; 

C2: Minimality: '( ( ) ( ))I P X P X is as small as possible. 

 

3 Related Works 

 
 In this section we briefly review the existing works re-

lated to the problem. IPFP (Iterative Proportional Fitting 

Procedure) (Kruithof 1937) and virtual evidence method 

(Pearl 1990) are the two basis methods that support the 

other methods in this section. 

 IPFP is a mathematical procedure that iteratively modi-

fies a JPD to satisfy a set of constraints while maintaining 

minimum I-divergence to the original distribution. Vomlel 

applied IPFP to knowledge integration problems with con-

sistent constraints (Vomlel 1999). The core of IPFP is I-

projection (Valtorta, Kim and Vomlel 2002). Specifically, 

for a set of constraints R and an initial JPD, the IPFP pro-

cedure is carried out by iteratively modifying the current 

JPD
1( )kQ X

according to the following formula, using one 

constraint ( )j

jR Y in R at a time: 

      1

1

( )
( ) ( )

( )

j

j

k k j

k

R Y
Q X Q X

Q Y




  ,         (3) 

where modj k m , which determines the constraint used 

at iteration k , and m is the number of constraints in R . 

Here, ( )kQ X is said to be an I-projection of
1( )kQ X

on the 

set of all JPDs that satisfy ( )j

jR Y , and as such, ( )kQ X has 

the minimum I-divergence from 
1( )kQ X

among all the 

JPDs that satisfy ( )j

jR Y . 

 One limitation of IPFP-based integration methods is that 

it works on JPDs, not on BNs. To solve this problem, Peng 

and Ding proposed E-IPFP (Peng and Ding 2005) based on 

IPFP by adding a structure constraint: 

       1

1

( ) ( | )
n

k k i i

i

Q X Q X 



 ,         (4) 

where ( , )i i sX G  . ( )kQ X is the JPD of the BN whose 

CPTs are extracted from
1( )kQ X

according to
sG (Peng et 

al. 2012). When constraints in R are consistent, E-IPFP 

will converge to a new BN which 1) has the same structure 

as the given BN, 2) satisfies all the constraints in R , and 3) 

with changes to the given BN minimized. 

 Another limitation of IPFP is that it will not converge 

but oscillates when constraints are inconsistent (Csiszar 

1975; Peng and Ding 2005; Vomlel 2003). To deal with 

inconsistent constraints (i.e., Type I), Vomlel proposed 

CC-IPFP (Vomlel 1999; 2003) and GEMA (Vomlel 2003) 

by extending IPFP. Later Peng et al. proposed SMOOTH 

(Zhang and Peng 2008) which has better performance than 

CC-IPFP and GEMA. SMOOTH circumvents the incon-

sistency by making bi-directional modifications during the 

integration process. When the knowledge base is repre-

sented as a BN, SMOOTH can be extended to E-IPFP-

SMOOTH (Peng and Zhang 2010), which can deal with 

both Type I and Type II  inconsistencies by modifying the 

constraints. This is acceptable when constraints are consid-

ered to contain some noise. But when new dependency re-

lations are considered reliable, E-IPFP-SMOOTH will not 

be able to integrate this information into the revised BN 

since the structure of BN is not changed. 



 Next we briefly discuss virtual evidence method, not on-

ly because it plays an important role in BN belief update 

with uncertain evidences, but also because it serves as a 

basis for our proposed methods in Section 5. 

 Researchers have identified 3 kinds of evidences in BN 

belief update: hard evidence, virtual evidence, and soft ev-

idence (Pan, Peng, and Ding 2006). Hard evidence speci-

fies the particular state the variable is in, soft evidence 

specifies the probability distribution for the states the vari-

able is in (Valtorta, Kim, and Vomlel 2002), and virtual 

evidence specifies the likelihood ratio for the uncertainty 

of the observations of the states the variable is in (Pearl 

1990). For example, if one believes that the event repre-

sented by variable A occurs with probability p , and does 

not occur with probability1 p , then the likelihood ratio 

can be represented as ( ) : (1 )L A p p  , which does not 

necessarily need to be specific probabilities. 

 For belief update with virtual evidence, Pearl proposed 

the virtual evidence method (Pearl 1990). For virtual evi-

dence on variable A with likelihood ratio L(A), this method 

extends the given BN by creating a binary virtual nodeV as 

the child of A, with state v standing for the event that 

A a has occurred, and the CPT of V satisfying the fol-

lowing equation: 

    ( | ) : ( | )P v A a P v A a   ( )L A  .      (5) 

 It then treats v as a hard evidence by instantiatingV to v . 

This will update the belief in the given BN, and the updat-

ed BN will satisfy the given virtual evidence.  For belief 

update with soft evidence, Chan and Darwiche extended 

the virtual evidence method by first converting each soft 

evidence to a virtual evidence (Chan and Darwiche 2005). 

Let ( )P X be a distribution and ( )R Y be a soft evidence, 

where Y X . We use
(1) ( ),..., ly y to represent all the possi-

ble instantiations of Y which form a mutually exclusive 

and exhaustive set of events. ( )R Y can then be converted to 

a virtual evidence with the following likelihood ratio: 

    
(1) (2) ( )

(1) (2) ( )

( ) ( ) ( )
( ) : : ... :

( ) ( ) ( )

l

l

R y R y R y
L Y

P y P y P y
  .     (6)  

 For multiple virtual evidences, the belief update for one 

virtual evidence will not affect the belief update for the 

other virtual evidences (Pan, Peng, and Ding 2006). How-

ever, this is not the case for multiple soft evidences. For 

BN belief update with multiple soft evidences, Peng et al. 

proposed BN-IPFP (Peng, Zhang and Pan 2010) which 

combines Pearl’s virtual evidence method with IPFP. It is 

able to preserve marginal distributions specified in all soft 

evidences after converting them to virtual evidences. BN-

IPFP converges iteratively, and the resulting BN can satis-

fy multiple soft evidences at the same time. 

4 Identify Structural Inconsistencies 

 
 In this section we examine how to identify such struc-

tural inconsistencies for a given constraint and a BN. This 

is done by checking if every dependency relation in the 

constraint also holds in the BN. 

 First we discover dependency relations from the con-

straint and from the BN. We can use d-separation method 

(Pearl 1988) to discover dependency relations in the BN. 

This method tells whether every two variables are condi-

tionally independent under another set of variables by 

looking at the connection type between these two variables 

in the BN. 

 We can use the independence test to find out dependen-

cy relations in the constraint. The zero-order (uncondition-

al) independence test is to check wheth-

er ( , ) ( ) ( )R A B R A R B   holds for each pair of varia-

bles A and B in the variable set of R . Similarly, the j-order 

independence test for R is to check whether Equation 7 

holds for each pair of variables A and B , where Z is a set 

that contains any j number of variables in the variable set 

of R other than A and B . 

                 ( , | ) ( | ) ( | )R A B Z R A Z R B Z              (7) 

 The following is the algorithm for identifying structural 

inconsistencies between the constraint and the BN. 

Algorithm INCIDENT 

Input: BN ( , )s PG G G with ordering of nodes in
sG , and 

constraints
1 2{ , ,..., }mR R RR . 

Output: Structural Consistent constraint set 
R , structural 

inconsistent constraint set 
R and Dependency List DL . 

Steps: 

1. Create empty sets 
R and ,R and empty list DL ; 

2. Perform the following steps for each constraint
iR in R : 

2.1 Create an empty list iDL ; 

2.2 For each pair of variables A and B in
iR , do from 

zero-order to (| | 2)iR  -order independence test 

on them, where | |iR is the number of variables 

in
iR . If the test fails, add , , ,iR A B Z  to iDL ; 

2.3 For each entry , , ,iR A B Z  in iDL , use d-

separation method to test whether A and B are in-

dependent given Z , i.e., |A B Z . If the test 

fails, remove this entry from iDL ; 

2.4 If iDL is empty, add iR to 
R . Otherwise, add 

iR to 
R , and merge iDL into DL ; 

3. Return 
R , 

R , and DL . 



5 Overcome Structural Inconsistencies 

 
 In this section we focus on modifying the structure of 

the existing BN to accommodate the identified structural 

inconsistencies in a way similar to adding virtual evidence 

node in Pearl’s virtual evidence method. We can add one 

node in BN for each structural inconsistent constraint and 

make this node the child of all variables of that constraint. 

Then we set the CPT of the node with the likelihood ratio 

calculated from the constraint using (6), and set the state of 

the node to true. This guarantees the variables covered by 

the constraint to be dependent, which will overcome any 

structural inconsistencies for that constraint. This forms the 

core of our AddNode method, which can also be used with 

E-IPFP to integrate a set of constraints which may contain 

both structural consistent constraints and structural incon-

sistent constraints. The following is the algorithm which 

adds nodes for structural inconsistent constraints in 
R , 

and updates BN with constraints in 
R using E-IPFP. The 

input constraints are applied iteratively during the process. 

When the algorithm converges, all constraints are satisfied 

(C1). Besides, the IPFP style computing makes the JPD of 

the final BN as close to the JPD of the original BN as pos-

sible (C2). We are working to formally prove these claims. 

Algorithm AddNode+E-IPFP 

Input: BN ( , )S PG G G with ordering of nodes in
SG , and 

constraint set
1 2{ , ,..., }mR R RR . 

Output: BN ' ' '( , )S PG G G that satisfies R with JPD as close 

to that of G as possible. 

Steps: 

1. Run INCIDENT to partition R into 
R and 

R ; 

2. For each constraint
iR in 

R , add a new node 
iV  

to
SG with variables in

iR as its parents; 

3. /* this step is the same as AddNode method */ 

  For each constraint
iR in 

R ,  

3.1 Calculate likelihood ratio for
iR using 

     
(1) (2) ( )

(1) (2) ( )

( ) ( ) ( )
( ) : : ... :

( ) ( ) ( )( )

i i i li i

i

l

R y R y R yR
L Y

P y P y P yP Y
  , 

       where iY is the variable set of 
iR , and l is the     

             number of distinct instantiations for iY ; 

3.2 Construct CPT of iV  with likelihood ratio ( )iL Y ; 

3.3 Set the state of iV to true; 

4. Apply one iteration of E-IPFP with 
R and the updat-

ed BN as input, i.e., 

4.1 Do I-projection for the current probability distri-

bution 1( )kP X on each constraint jR in 
R : 

1

1

( )
( ) ( )

( )

j

j

k k j

k

R Y
P X P X

P Y




  , 

     where jY is the variable set of 
jR , and X is the     

  set of all variables in G ; 

4.2 Form and apply the structure constraint: 

1

1

( ) ( | )
n

k k i i

i

P X P X 



 , 

  where ( , )i i sX G  ; 

5. Repeat step 3 and step 4 until the JPD of the updated 

BN does not change; 

6. Return ' ' '( , )S PG G G , where '

SG is the updated struc-

ture after adding nodes to
SG , and '

PG is the CPTs for 

the nodes in '

SG . 

 

6 Experiments and Results 

 
 Our experiments are based on the BN shown in Figure 3, 

and constraint set { 1, 2, 3},R R RR where 1( , , )R A C E = 

 0.1368,0.2232,0.03,0.03,0.1672,0.2728,0.07,0.07 , 2R  

( , )B C =  0.6,0.1,0.2,0.1 and 3( , , )R C D E = (0.228,0.372,   

0.076,0.124,0.04,0.04,0.06,0.06). 

 

 
 
 
 
 
 
 
 

Figure 3: A 5 Node BN 

 First we run the INCIDENT algorithm to discover the 

structural inconsistencies. { 1, 2}R R R , { 3}R R and 

DL= {< 1R , A , C ,  >, < 1R , A , E ,  >, 

< 1R , A , C ,{ }E >, < 2R , B , C , >} are returned as the 

output of INCIDENT. Then we run AddNode+E-IPFP to 

integrate constraints in R . The BN structure has been up-

dated as in Figure 4 after adding nodes for constraints 

in 
R . 

 

 

 

 

 

    

 

 

Figure 4: Modified BN Structure 



 Table 1 gives the performance comparison for different 

methods. From the table we can see that E-IPFP-SMOOTH 

does not add any extra nodes to the existing BN. But its I-

aggregate is not 0. AddNode+E-IPFP adds extra nodes to 

the existing BN. But it has 0 I-aggregate. Table 1 includes 

experiment results for two more efficient variations of 

AddNode+E-IPFP. AddNode+Merge first merges the con-

straints in 
R into a single constraint using IPFP algorithm, 

and then adds a single node to the existing BN for the 

merged constraint. AddNode+Fatorization first decompos-

es each constraint in R into sub-constraints according to 

the independencies among its variables, and then merges 

the sub-constraints that are structural inconsistent with the 

existing BN, and at the end adds a single node to the exist-

ing BN for the merged constraint. 

Table 1: Experiment Result with 5 Node BN 

 

 

 

 

 To further compare the performance of the different ver-

sions of our methods and get a sense of their scalability, we 

have conducted experiments with an artificially composed 

BN of 10 discrete variables. The input constraint set con-

sists of 3 consistent constraints and 3 structural incon-

sistent constraints. The results are given in Table 2 below. 

AddNode+Merge and AddNode+Fatorization have better 

performance than AddNode+E-IPFP on large BN because 

these two methods add fewer nodes to the existing BN. 

Table 2: Experiment Result with 10 Node BN 

 

 

 

 

7 Conclusions 

 
 In this paper we propose several methods to integrate 

structural inconsistent constraints into a BN. The methods 

first identify the structural inconsistencies between the 

constraint and the existing BN, and then overcome the 

identified structural inconsistencies by adding nodes to the 

existing BN in a way similar to the virtual evidence meth-

od. Experiments show that the proposed methods have an 

advantage in incorporating new structural information. We 

look forward to applying the framework and related meth-

ods to update a BN built for a demand-supply network with 

uncertain demand-reply relations. The information used to 

update this BN may require adding new demand-supply re-

lations to the existing BN. This is important in supply 

chain management to better satisfy the needs of the cus-

tomers. Our future work also includes improving the per-

formance of our methods so they can be easily applied to 

industry problems modeled with large BNs. 

 

References 

 
[1] H. Chan and A. Darwiche. 2005. On the Revision of Proba-

bilistic Beliefs using Uncertain Evidence. Artificial Intelli-

gence, 67–90. 

[2] I. Csiszar. 1975. I-divergence Geometry of Probability Dis-

tributions and Minimization Problems. The Annuals of Prob-

ability, 3(1): 146–158. 

[3] D. Geiger, T Verma and J. Pearl. 1990.  Identifying Inde-

pendence in Bayesian Networks. Networks, 20: 507–534. 

[4] R.Kruithof. 1937. Telefoonverkeersrekening. De Ingenieur, 

52: 15–25. 

[5] S. Kullback and R.A. Leibler. 1951. On Information and Suf-

ficiency. Ann. Math. Statis, 22: 79–86. 

[6] R. Pan, Y. Peng and Z. Ding. 2006. Belief Update in Bayesi-

an Networks Using Uncertain Evidence. In Proceedings of 

the IEEE International Conference on Tools with Artificial 

Intelligence, 13–15. 

[7] J. Pearl. 1988. Probabilistic Reasoning in Intelligent Sys-

tems: Networks of Plausible Inference. San Mateo: Morgan 

Kaufman. 

[8] J. Pearl. 1990. Jeffery’s Rule, Passage of Experience, and 

Neo-Bayesianism. Knowledge Representation and Defeasi-

ble Reasoning. H.E.  Kyburg, Jr., R.P. Loui, and G.N. Carl-

son, Eds. Boston: Kluwer Academic Publishers. 

[9] Y. Peng and Z. Ding. 2005. Modifying Bayesian Networks 

by Probability Constraints. In Proc. 21st Conference on Un-

certainty in Artificial Intelligence. Edinburgh. 

[10] Y. Peng, Z. Ding, S. Zhang and R. Pan. 2012. Bayesian 

Network Revision with Probabilistic Constraints. Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 317–337. 

[11] Y. Peng and S. Zhang. 2010. Integrating Probability Con-

straints into Bayesian Nets. In Proceedings of 9th European 

Conference on Artificial Intelligence (ECAI2010), Lisbon, 

Portugal. 

[12] Y. Peng, S. Zhang and R. Pan. 2010. Bayesian Network Rea-

soning with Uncertainty Evidences. International Journal of 

Uncertainty, Fuzziness and Knowledge-Based Systems, 18(5): 

539–564. 

[13] M. Valtorta, Y. Kim and J. Vomlel. 2002.  Soft Evidential 

Update for Probabilistic Multiagent Systems. International 

Journal of Approximate Reasoning, 29(1): 71–106. 

[14] J. Vomlel. 1999. Methods of Probabilistic Knowledge Inte-

gration. Ph.D. diss., Department of Cybernetics, Faculty of 

Electrical Engineering, Czech Technical University. 

[15] J. Vomlel. 2003. Integrating Inconsistent Data in a Probabil-

istic Model. Journal of Applied Non-Classical Logics, 14(3): 

1–20. 

[16] S. Zhang and Y. Peng. 2008. An Efficient Method for Proba-

bilistic Knowledge Integration. In Proceedings of The 20th 

IEEE International Conference on Tools with Artificial Intel-

ligence (ICTAI-2008), Nov. 3–5. Dayton, Ohio. 

http://www.csee.umbc.edu/~ypeng/Publications/2005/UAI-Final.pdf
http://www.csee.umbc.edu/~ypeng/Publications/2005/UAI-Final.pdf

