
The Normalized Risk-Averting Error Criterion for Avoiding Nonglobal Local Minima in
Training Neural NetworksI

James Ting-Ho Loa, Yichuan Guib, Yun Pengb

aDepartment of Mathematics and Statistics
bDepartment of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, Maryland 21250, USA

Abstract

The convexification method for data fitting is capable of avoiding nonglobal local minima, but suffers from two shortcomings:
The risk-averting error (RAE) criterion grows exponentially as its risk-sensitivity index λ increases, and the existing method of
determining λ is often not effective. To eliminate these shortcomings, the normalized RAE (NRAE) is herein proposed. As NRAE
is a monotone increasing function of RAE, the region without a nonglobal local minimum of NRAE expands as does that of RAE.
However, NRAE does not grow unboundedly as does RAE.

The performances of training with NRAE at a fixed λ are reported. Over a large range of the risk-sensitivity index, such training
has a high rate of achieving a global or near global minimum starting with different initial weight vectors of the neural network
under training. It is observed that at a large λ, the landscape of the NRAE is rather flat, which slows down the training to a halt. This
observation motivates the development of the NRAE-MSE method that exploits the large region of an NRAE without a nonglobal
local minimum and takes excursions from time to time for training with the standard mean squared error (MSE) to zero into a
global or near global minimum. A number of examples of approximating functions that involve fine features or unevenly-sampled
segments are used to test the method. Numerical experiments show that the NRAE-MSE training method has a success rate of
100% in all the testing trials for each example, all starting with randomly selected initial weights. The method is also applied
to classifying numerals in the well-known MNIST dataset. The new training method outperforms other methods reported in the
literature under the same operating conditions.

Keywords: Neural network, training, convexification, risk-averting error, global optimization, local minimum

1. Introduction

The local minimum problem has plagued the development
and application of the neural network approach based on the
multilayer perceptron (MLP) and its variants, and has attracted
much attention since its inception [1, 2, 4, 7, 8, 14–16, 19].
A promising method to alleviate the problem was proposed in
[11, 12]. The method employs a new type of risk-averting er-
ror (RAE) criterion that was designed to avoid nonglobal local
minima. The RAE is a transformation of the standard mean
squared error (MSE) criterion for training the MLP. The trans-
formation convexifies the MSE. More specifically, as a param-
eter, called risk-sensitivity index λ, of the RAE increases, the
convexity region of the RAE expands, thereby creating tunnels
or wormholes for a local search method such as the gradient de-
scent, conjugate gradient and quasi-Newton algorithm to avoid
nonglobal local minima.

IThis material is based upon work supported in part by the National Science
Foundation under Grant ECCS1028048, but does not necessarily reflect the
position or policy of the Government.

Email addresses: jameslo@umbc.edu (James Ting-Ho Lo),
yichgui1@umbc.edu (Yichuan Gui), ypeng@umbc.edu (Yun Peng)

The mentioned RAE Jλ(w) transforms the MSE as follows
[11]:

Jλ(w) :=
K∑

k=1

exp
(
λ
∥∥∥yk − f̂ (xk,w)

∥∥∥2
)

(1)

Note that limλ→0
1
λ

ln
[

1
K Jλ (w)

]
= Q (w). The convexification

property confirmed the effectiveness of the adaptive training
method reported in [12] in avoiding nonglobal local minima.
However, Jλ(w) is an exponential function of λ

∥∥∥yk − f̂ (xk,w)
∥∥∥2

and causes computer register overflow if the risk-sensitivity
index λ is large. Furthermore, the adaptive training method,
which starts with a very small λ and increases it gradually to
expand the convexity region, is not an existing method of se-
lecting λ.

This motivates the use of the normalized RAE (NRAE)

Cλ (w) :=
1
λ

ln
[

1
K

Jλ (w)
]

(2)

which is a strictly increasing function of Jλ(w). Therefore, the
region in Cλ (w) that has no nonglobal local minima contains
the convexity region of Jλ (w) and thus expands as does said
convexity region. The NRAE does not grow exponentially as λ
increases.

Preprint submitted to Neurocomputing June 30, 2013

To understand the NRAE Cλ(w) at various values of λ, train-
ings of multilayer perceptrons (MLPs) with Cλ(w) at fixed val-
ues of λ were performed, and the training performances were
monitored. The method of training a neural network with Cλ(w)
at a fixed λ throughout the training is called the NRAE training
method. The method was applied for a number of examples
of approximating functions with fine features and unevenly-
sampled segments specially designed to test the capability of
the NRAE training method and thereby gain understanding of
the NRAE Cλ(w). For each example of approximating a func-
tion, the NRAE training method was used with Cλ(w) at each
fixed value of λ from a number of large values of λ, a large
number of training sessions (or trials) starting with different
randomly selected initial weight vectors were carried out, and
the performance evolutions of MLPs under training during the
training sessions were recorded.

The percentage of the training sessions for each of the numer-
ical examples that are successful is 50% for the risk-sensitivity
index λ in the range of 106-108, 100% in the range of 108-109,
and 75% in the range of 109-1011, but fails to work for λ > 1011.
Here, a training session is regarded as successful if Cλ (w) and
Q (w) of the resultant MLP are less than 10−9. The smaller λ is,
the more nonglobal local minima there are. This explains the
success rate of 50% for λ in the range of 106-108. The larger
λ is, the greater the region with a nonglobal local minimum is.
However, when λ increases, the landscape of Cλ (w) gradually
“flattens”. As λ goes beyond 109, the training with Cλ (w) often
slows to a halt, accounting for the success rate of 75% for λ in
the range of 109-1011, and the success rate reducing to virtually
zero for λ > 1011.

Although the NRAE training method cannot reach a global
minimum with a 100% success rate, experiments show that it
was able to bring Cλ (w) and the corresponding Q (w) signifi-
cantly down for 106 ≤ λ ≤ 1011. This observation motivated
the following training method: After the NRAE training is per-
formed for a reasonable number of epochs (or iterations), the
training criterion is switched from Cλ (w) to the MSE Q (w). If
a global or nearly global minimum is reached in this training
excursion with the MSE, the training is successful and stopped.
Otherwise, the NRAE training resumes from the weight vector
that the MSE excursion started with and continues for another
reasonable number of iterations to be followed by another ex-
cursion with MSE. In short, the method comprises a sequence
of cycles, each cycle consisting of an NRAE training step fol-
lowed by an MSE recursion. This method is called the NRAE-
MSE training method. The method was found to succeed on all
the training sessions for all the examples at each λ in the range
106 - 1011 in our numerical experiments. In all the mentioned
training sessions, cross-validation was performed to ensure that
the MLP trained with the NRAE-MSE training method has a
good generalization capability.

Encouraged by such performances of the NRAE-MSE train-
ing method, we went ahead to test the method on classifying
numerals using the well-known MNIST dataset. Compared
with the benchmark results obtained by several commonly used
methods on the MNIST dataset under the same training condi-
tions, the performance of the NRAE-MSE training method has

better test error rates, showing a better generalization capabil-
ity, under the same experimental conditions with or without the
preprocessing for dimension reduction.

2. NRAE Criterion and Its Derivatives

In this section, we show that the computation of the NRAE
and its first-order and second-order derivatives involves only
values of manageable magnitudes whatever the risk-sensitivity
index λ is.

For notational simplicity, let

ŷk (w) := f̂ (xk,w)

εk (w) := yk − ŷk (w) .

For a vector w, let S (w) = arg maxk∈{1,...,K} ‖εk (w)‖2 which
set may contain more than one elements if a tie exists, and
M (w) = mink {k|k ∈ S (w)} which is the smallest index among
all values in the set S (w). It follows that

‖εk (w)‖2 ≤
∥∥∥εM(w) (w)

∥∥∥2
.

Let

ηk (w) := e
λ
(
‖εk(w)‖2−‖εM(w)(w)‖

2
)

then

Cλ (w) =
1
λ

ln

 1
K

eλ‖εM(w)(w)‖
2

K∑
k=1

ηk (w)

=

1
λ

ln
1
K

+
∥∥∥εM(w) (w)

∥∥∥2
+

1
λ

ln

 K∑
k=1

ηk (w)

 .
(3)

Note that the number |S (w)| of elements in S (w) may be greater
than one, and

ηk (w) ≤ 1

ln

 K∑
k=1

ηk (w)

 ≤ ln K .

Hence

Cλ (w) ≤
1
λ

ln
1
K

+
∥∥∥εM(w) (w)

∥∥∥2
+

1
λ

ln K

=
∥∥∥εM(w) (w)

∥∥∥2

and the terms in Eq. (3) are bounded by functions independent
of λ and no register overflow occurs when λ is chosen very
large.

Consider the first-order derivative,

∂Cλ (w)
∂w j

=
1

λJλ (w)
∂Jλ (w)
∂w j

=
1

λJλ (w)

−2λ
K∑

k=1

eλ‖εk(w)‖2εT
k (w)

∂ŷk (w)
∂w j

=
−2

∑K
k=1 ηk (w) εT

k (w) ∂ŷk(w)
∂w j∑K

k=1 ηk (w)

(4)

2

where
K∑

k=1

ηk (w) ≤ K∣∣∣∣∣∣∣
K∑

k=1

ηk (w) εT
k (w)

∂ŷk (w)
∂w j

∣∣∣∣∣∣∣ ≤
K∑

k=1

∣∣∣∣∣∣εT
k (w)

∂ŷk (w)
∂w j

∣∣∣∣∣∣
which is independent of λ. The computation of ∂ŷk (w)/∂w j has
the similar approach like the backpropagation (BP) [17] algo-
rithm. Hence, both the numerator and denominator of Eq. (4)
can be handled without register overflow when λ is chosen very
large.

Consider the second order derivative:

∂2Cλ (w)
∂wi∂w j

=
1

λJλ (w)
∂2Jλ (w)
∂wi∂w j

−
1

λJ2
λ (w)

∂Jλ (w)
∂wi

∂Jλ (w)
∂w j

. (5)

It is shown in [11] that

∂2Jλ (w)
∂wi∂w j

= 2λ
K∑

k=1

eλ‖εk(w)‖2
{
2λAki j (w) + Bki j (w) −Cki j (w)

}
where

Aki j (w) := εT
k (w)

∂ŷk (w)
∂wi

∂ŷT
k (w)
∂w j

εk (w)

Bki j (w) :=
∂ŷT

k (w)
∂wi

∂ŷk (w)
∂w j

Cki j (w) := εT
k (w)

∂2ŷk (w)
∂wi∂w j

are all N × N matrices, where N is the number of weights. It
follows that

1
λJλ (w)

∂2Jλ (w)
∂wi∂w j

=
2
∑K

k=1 ηk (w)
{
2λAki j (w) + Bki j (w) −Cki j (w)

}
∑K

k=1 ηk (w)
.

Recalling that

∂Jλ (w)
∂w j

= −2λ
K∑

k=1

eλ‖εk(w)‖2εT
k (w)

∂ŷk (w)
∂w j

we obtain
1

λJ2
λ (w)

∂Jλ (w)
∂wi

∂Jλ (w)
∂w j

=
4λ

(∑K
k=1 ηk (w) εT

k (w) ∂ŷk(w)
∂wi

)
∑K

k=1 ηk (w)

·

(∑K
k=1 ηk (w) εT

k (w) ∂ŷk(w)
∂w j

)
∑K

k=1 ηk (w)
.

Notice that 0 < ηk (w) ≤ 1. Hence, the Hessian matrix[
∂2Cλ (w)/∂wi∂w j

]
can be evaluated when λ is chosen very

large without causing register overflow in computers.

3. The NRAE-MSE training Method

The NRAE-MSE training method is described in the pseu-
docode, Algorithm 1. In applying the algorithm, we first select
a value of λ in the range 106 - 1011, select positive integers L
and M, which are to be defined later on, and select an initial
weight vector w∗C for the MLP under training at random. The
weight vectors computed in the NRAE training step and MSE
excursion are denoted as wC and wQ, respectively. The method
then repeats the following two steps:

1. The NRAE training step: Starting with w∗C , use Cλ (w)
with the selected λ to train the MLP for L iterations. Each
iteration replaces the current weight vector at the begin-
ning of the iteration with the resultant weight vector as the
current weight vector. The current weight vector at the end
of the L-th iteration is stored as w∗C .

2. The MSE excursion: Starting with w∗C , use Q (w) to train
the MLP for M iterations. In the process of the M iter-
ations, if Q (w) is less than or equal to a preset positive
number ε, or if a cross-validation test shows that an over-
fitting of the training data occurs, stop the entire NRAE-
MSE training. Otherwise, complete performing the M it-
erations, store the current weight vector as w∗Q, and return
to the step 1.

Algorithm 1 NRAE-MSE Training Method
Require: initialize the weight vector w randomly, choose L,

M, λ >> 1
1: w∗C ← w
2: while Q(w∗Q) > ε or the overfitting is not detected do
3: wC(1)← w∗C
4: for l = 1 to L do {Step 1: the NRAE training}
5: compute the gradient of Cλ(w) at wC(l)
6: update wC(l) to wC(l + 1)
7: end for
8: w∗C ← wC(L),wQ(1)← w∗C
9: for m = 1 to M do {Step 2: the MSE excursion}

10: compute the gradient of Q(w) at wQ(m)
11: update wQ(m) to wQ(m + 1)
12: end for
13: w∗Q ← wQ(M)
14: end while
15: return the optimal weight vector w∗Q

4. Numerical Experiments

In this section, four examples of approximating functions de-
signed to have nonglobal local minima and one example of
recognizing handwritten numerals using a real-world dataset,
MNIST, are used to demonstrate the effectiveness of the pro-
posed NRAE-based training methods. Several general param-
eters in training MLPs are chosen with the aid of sugges-
tions in [10]: each synaptic weight in a weight vector is ran-
domly selected from a uniform distribution between −2.4/Fi

3

0 4.5
−0.5

1.5

(a) Three-notch

0 1
−0.6

1.2

(b) Fine Features

0 1.5
−0.8

1.2

(c) Unevenly-sampled Segments

0

6

0
0

1

(d) Unevenly-sampled Square

Figure 1: Target functions for function approximation examples in Section 4.1. Numbers on the horizontal and vertical axes in each subfigure represent the input
and output of the function, respectively. From Fig. 1(a) to Fig. 1(c), red dots denote to the target training data. In Fig. 1(d), different colors (blue or red) are used to
distinguish different output values (0 or 1) of the function on vertical axis.

and 2.4/Fi, where Fi is the number of input neurons of the con-
nected unit; all input and output values defined in the train-
ing data are normalized into [−1, 1]; the activation function in
each training neuron is chosen as the hyperbolic tangent func-
tion ϕ(v) = atanh(bv), where a = 1.7159 and b = 2/3.

4.1. Function Approximation

4.1.1. Experimental Design
Four target functions in this experiment are designed to have

nonglobal local minima, which are intended to test the capabil-
ity of the NRAE-based training method for avoiding nonglobal
local minima. For approximating a target function, ten different
initial weight vectors of an MLP with a certain architecture are
randomly chosen. Starting with each such initial weight vector,
one standard MSE training, one NRAE training and one NRAE-
MSE training session are performed. These 3 training sessions
for one and the same initial weight vector are called a training
group. The corresponding 2 values of Q(w) of the MLP result-
ing from the 2 NRAE-based training methods are recorded for
comparing to the Q(w) of the MLP resulting from the standard
MSE training. In all the training sessions, the derivatives of the
MLP are computed by backpropagation, and the MLP weights
are updated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[3, 5, 6, 18] method.

In order to test the capability of the NRAE-MSE training
to tolerate noise in the training data, ten additional training
groups are formed for those four function approximation ex-
amples with noises added to the target outputs in the training
data. The level of the noises added is specified by the signal-
to-noise ratio (SNR), which is 10 times the natural logarithm
of the ratio of the sum of squares of the target outputs O and
the sum of squares of the noises E. Here, noises used in our
experiments are the Gaussian white noises, and the SNR is
10 log10 22 = 6dB. The same training strategies used for noise-
less data are used for noisy data for each function approxima-
tion example.

We use cross-validation for inducing and testing generaliza-
tion capabilities in all the MSE and NRAE-MSE trainings with
noisy data. The size of cross-validation data is one half of that
of the training data, and each cross-validation data is randomly
selected from the target function without overlapping with the
training data.

In each of our sessions of training with the MSE or the NRAE
method, the maximum number of training epochs is set equal to
106. The NRAE-MSE method may be considered as compris-
ing a sequence of cycles, each cycle consisting of an NRAE
training step followed by an MSE training recursion. The max-
imum number of cycles is set equal to 50 in our experiments.
The number of training epochs in the NRAE training step and
that in the MSE training excursion in a cycle are denoted by L
and M respectively. In our experiments with the NRAE-MSE
method, we set L = 1 × 104 and M = 1 × 104. Therefore,
the maximum number of training epochs including those in the
NRAE training steps and the MSE recursion is 106, which is
equal to the number of epochs in the MSE training as well as
the NRAE training.

We present our experimental results in this paper for seven
large λ values from 106 − 1011, which are 106, 107, 108, 109,
1010 and 1011. For every example, each λ value is used to per-
form ten training groups each with one random initial weight
vector, one NRAE training session, and one NRAE-MSE train-
ing session using the same initial weight vector for the given
λ.

Target functions used in function approximation examples
are presented in Fig. 1. Definitions of target functions with
training and cross-validation data, and MLP architectures for
the experiments are described as following:

Three-notch A function with three notches is defined by

y = f (x) =

0 if x ∈ [0, 1.0] ∪ [2.2, 2.3] ∪ [3.5, 4.5]
0.25 if x ∈ [2.8, 3.0]
0.5 if x ∈ [1.5, 1.7]
1 otherwise

(6)
where x ∈ X = [0, 4.5]. For the training data, input values
xk are selected by randomly sampling 2000 different numbers
from a uniform distribution on X, and corresponding output val-
ues yk are computed by Eq. (6). Then, a training dataset of
2000 (xk, yk) pairs is obtained. For the cross-validation data, in-
put values xk are selected by randomly sampling 1000 different
numbers from a uniform distribution on X, and corresponding
output values yk are also computed by Eq. (6). Then, a cross-
validation dataset of 1000 (xk, yk) pairs is obtained. Here, the
training dataset and the cross-validation dataset are indepen-
dent and non-overlapping. MLPs with the 1:16:1 architecture
are used in all the training sessions for noiseless or noisy data.

4

Fine Features A smooth function with two fine features as
spikes is defined by

y = f (x) = g
(
x,

1
6
,

1
2
,

1
6

)
+ g

(
x,

1
64
,

1
4
,

1
128

)
+ g

(
x,

1
64
,

11
20
,

1
128

) (7)

where x ∈ X = [0, 1], and g is defined as

g (x, α, µ, σ) =
α
√

2πσ
cos

(
(x − µ)π

σ

)
exp

(
−

(x − µ)2

2σ2

)
. (8)

For the training data, input values xk are selected by randomly
sampling 2000 different numbers from a uniform distribution
on X, and corresponding output values yk are computed by
Eq. (7). Then, a training dataset of 2000 (xk, yk) pairs is ob-
tained. For the cross-validation data, input values xk are se-
lected by randomly sampling 1000 different numbers from a
uniform distribution on X, and corresponding output values yk

are computed by Eq. (7). Then, a cross-validation dataset of
1000 (xk, yk) pairs is obtained. Here, the training dataset and the
cross-validation dataset are independent and non-overlapping.
MLPs with the 1:14:1 architecture are used in all the training
sessions for noiseless or noisy data.

Unevenly-sampled Segments A smooth function with two
unevenly-sampled segments is defined by

y = f (x) = g
(
x,

1
5
,

1
4
,

1
12

)
+ g

(
x,

1
5
,

3
4
,

1
12

)
+ g

(
x,

1
64
,

5
4
,

1
12

) (9)

where x ∈ X = [0, 1.5] and g is defined in Eq. (8). For the
training data, input values xk are collected by using 50 grid
points from a uniform grid on [0, 0.5], 50 grid points from a
uniform grid on [1.0, 1.5], and 2000 grid points from a uni-
form grid on (0.5, 1.0). Corresponding output values yk are
computed by Eq. (9). These form a training dataset of 2100
(xk, yk) input/output pairs. For the cross-validation data, input
values xk are collected by using 25 grid points from a uniform
grid on [0, 0.5], 25 grid points from a uniform grid on [1.0, 1.5],
and 1000 grid points from a uniform grid on (0.5, 1.0). Corre-
sponding output values yk are computed by Eq. (9). These form
a cross-validation dataset of 1050 (xk, yk) input/output pairs.
Here, the training dataset and the cross-validation dataset are
independent and non-overlapping. MLPs with the 1:12:1 archi-
tecture are used in all the training sessions for noiseless or noisy
data.

Unevenly-sampled Square A three-dimensional function,
which has a letter ‘L’ shape and an unevenly-sampled square
raised from a plane, is defined on [0, 6] × [0, 6] by

z = f (x, y) =

1 if x ∈ [1.0, 5.5] and y ∈ [1.0, 2.0]
1 if x ∈ [1.0, 2.0] and y ∈ [2.0, 5.5]
1 if x ∈ [3.0, 5.5] and y ∈ [3.0, 5.5]
0 otherwise

(10)

In the training data, input values xk and yk are the 289 grid
points from the uniform grid on (2.5, 6]× (2.5, 6] and 2522 grid
points from the uniform grid on [0, 6]×[0, 6]−(2.5, 6]×(2.5, 6].
Corresponding output values zk are computed by Eq. (10).
These form a training dataset of 2811 (xk, yk) pairs. In the cross-
validation data, input values xk and yk are the 144 grid points
from the uniform grid on (2.5, 6]× (2.5, 6] and 1261 grid points
from the uniform grid on [0, 6]× [0, 6]− (2.5, 6]× (2.5, 6]. Cor-
responding output values zk are computed by Eq. (10). These
form a cross-validation dataset of 1405 (xk, yk) pairs. Here, the
training dataset and the cross-validation dataset are indepen-
dent and non-overlapping. MLPs with the 2:6:3:1 architecture
are used in all the training sessions for noiseless or noisy data.

4.1.2. Result and Discussion
Since we have four function approximation examples, ten

sets of initial weights, seven λ values, and datasets with or with-
out noises, we have a total of 4 × 10 × 7 × 2 = 560 trials for the
NRAE-MSE training method, 4×10×7×1 = 280 trials for the
NRAE training method, and 4 × 10 × 2 = 80 trials for the MSE
training method. Because of the page limit, we are unable to
show all the experimental results here, but we present two com-
parisons to demonstrate the effectiveness of the NRAE-based
training methods as following:

Comparison 1 The three-notch function approximation with
noiseless data is chosen as an example to present performances
of the NRAE-based training methods over all random initial
weight vectors and λ values we tested.

1. Learning curves of the NRAE training sessions presented
in Fig. 2 as compared with those of the MSE training
sessions show that the NRAE training method with a
sufficiently large λ greatly outperforms the MSE train-
ing method, and actually reaches a global or near global
minimum because the approximation error is nearly zero.
Since the three-notch target function is designed to have
nonglobal local minima, the learning curves in Fig. 2 in-
dicate that training with the NRAE training criterion with
a sufficiently large λ has the capability to avoid nonglobal
local minima, while training with MSE does not.

2. In some of our training trials, training with the NRAE cri-
terion fails to reach a global or near global minimum. Ta-
ble 1 presents all test results of the NRAE and NRAE-
MSE training method with different values of λ and initial
weights. It shows that in several training sessions with
λ = 106, 107, 1010 and 1011, training with NRAE is un-
able to do better than the training with MSE. However, the
training with the NRAE-MSE method consistently out-
performs the training with MSE in all trials with different
sets of initial weights and with all the values of λ under
test. It indicates that the NRAE-MSE training method,
which switches the training criterion between the NRAE
and the MSE, is a significant improvement over the NRAE
training method.

3. Ignoring the MSE excursions involved, the NRAE-MSE
training is simply an NRAE training. Therefore, the per-

5

0 1 2 3

x 10
4

10
−2

10
−1

10
0

MSE

(a) MSE

0 1 2 3 4 5

x 10
5

10
−10

10
−5

10
0

10
5

NRAE MSE

(b) NRAE (λ = 106)

0 1 2 3 4

x 10
5

10
−10

10
−5

10
0

10
5

NRAE MSE

(c) NRAE (λ = 107)

0 1 2 3 4 5 6 7

x 10
5

10
−10

10
−5

10
0

10
5

NRAE MSE

(d) NRAE (λ = 108)

0 1 2 3 4 5 6

x 10
5

10
−10

10
−5

10
0

10
5

NRAE MSE

(e) NRAE (λ = 109)

0 0.5 1 1.5
10

−8

10
−6

10
−4

10
−2

10
0

10
2

NRAE MSE

x 10
6

(f) NRAE (λ = 1010)

0 1 2 3 4 5

x 10
6

10
−6

10
−4

10
−2

10
0

10
2

NRAE MSE

(g) NRAE (λ = 1011)

Figure 2: Learning Curves for the three-notch function approximation with the MSE and NRAE training. For Fig. 2(a), red dash lines represent the MSE training.
From Fig. 2(b) to Fig. 2(g), blue solid lines represent the NRAE training and red dash lines are the corresponding curves respect to MSE values. Numbers on the
horizontal axis are numbers of training epochs. Numbers on the vertical axis are values of training errors which are converted to the logarithmic numbers with
respect to base 10. All training sessions are converged at the end of the shown curves.

6

Three-notch Set of Initial Weights

Function Approximation 1 2 3 4 5 6 7 8 9 10

MSE 1.05 × 10−1 1.94 × 10−2 1.11 × 10−4 1.35 × 10−2 1.46 × 10−1 1.01 × 10−1 7.54 × 10−4 5.42 × 10−3 5.41 × 10−3 8.97 × 10−2

λ = 106
NRAE 7.14 × 10−8 8.04 × 10−2 4.55 × 10−2 8.36 × 10−7 9.25 × 10−1 8.25 × 10−3 9.36 × 10−8 7.16 × 10−8 1.43 × 10−2 5.23 × 10−9

NRAE-MSE 1.47 × 10−5 3.68 × 10−4 1.99 × 10−5 3.25 × 10−4 2.54 × 10−4 1.62 × 10−4 1.24 × 10−4 9.27 × 10−5 6.83 × 10−4 4.85 × 10−4

λ = 107
NRAE 4.25 × 10−8 2.86 × 10−2 3.86 × 10−2 9.14 × 10−4 8.04 × 10−7 4.27 × 10−2 3.01 × 10−9 9.02 × 10−8 9.72 × 10−3 7.08 × 10−7

NRAE-MSE 1.35 × 10−5 1.57 × 10−5 1.58 × 10−5 2.48 × 10−5 2.06 × 10−4 1.54 × 10−5 7.96 × 10−5 5.05 × 10−5 2.75 × 10−4 3.99 × 10−4

λ = 108
NRAE 4.73 × 10−9 8.48 × 10−8 1.95 × 10−8 1.53 × 10−7 9.54 × 10−7 7.64 × 10−7 5.26 × 10−7 2.89 × 10−8 1.74 × 10−7 6.54 × 10−7

NRAE-MSE 4.75 × 10−6 5.99 × 10−8 9.00 × 10−9 7.57 × 10−7 5.56 × 10−7 1.69 × 10−6 7.29 × 10−8 2.26 × 10−8 6.74 × 10−8 9.54 × 10−6

λ = 109
NRAE 3.52 × 10−8 7.57 × 10−9 4.64 × 10−7 7.23 × 10−7 5.54 × 10−8 8.66 × 10−7 3.80 × 10−9 4.52 × 10−9 7.37 × 10−8 9.36 × 10−7

NRAE-MSE 1.86 × 10−7 6.66 × 10−8 1.34 × 10−10 4.83 × 10−8 4.46 × 10−7 4.63 × 10−7 1.63 × 10−8 9.35 × 10−9 4.05 × 10−8 1.35 × 10−7

λ = 1010
NRAE 8.43 × 10−8 1.88 × 10−2 8.78 × 10−3 3.65 × 10−6 1.17 × 10−6 3.76 × 10−5 2.01 × 10−3 7.94 × 10−5 5.68 × 10−7 1.94 × 10−6

NRAE-MSE 7.33 × 10−8 1.96 × 10−8 9.34 × 10−11 1.24 × 10−8 7.53 × 10−8 2.63 × 10−7 1.74 × 10−8 4.23 × 10−9 1.72 × 10−8 3.78 × 10−8

λ = 1011
NRAE 2.00 × 10−6 6.07 × 10−6 1.87 × 10−3 2.16 × 10−4 3.53 × 10−5 9.85 × 10−2 2.02 × 10−5 4.39 × 10−5 1.28 × 10−5 1.27 × 10−7

NRAE-MSE 2.57 × 10−8 2.16 × 10−8 5.50 × 10−11 7.24 × 10−9 2.54 × 10−8 1.12 × 10−7 3.24 × 10−8 3.21 × 10−9 9.63 × 10−9 7.78 × 10−8

Table 1: Training errors of different training methods on the three-notch function approximation with noiseless data in Section 4.1. The row highlighted by the italic
font is the MSE training results as a baseline, and the row highlighted by the bold font is the best NRAE-MSE training results among all tests.

formance of the NRAE-MSE training is at least as good
as the NRAE training. In Table 1, some NRAE-MSE
training errors are larger than the corresponding NRAE
training errors when λ = 106, because the total num-
ber of training epochs in all the NRAE training steps in
the NRAE-MSE training is smaller than the total num-
ber of the training epochs completed by the NRAE train-
ing method in our experiments. We note that even with
a small total number of NRAE training steps, the NRAE-
MSE training errors are still lower than their correspond-
ing MSE training errors for all the randomly selected ini-
tial weight vectors and all the values of λ tested.

Comparison 2 We choose λ = 106 for all the function approx-
imation examples to compare the NRAE-MSE training method
to the standard MSE training method over all random initial
weight vectors on training data with or without noise.

1. Experimental results obtained from one of the ten initial
weight vectors are illustrated in Fig. 3. It shows that the
NRAE-MSE training captures all the significant features
and under-sampled segments of the target functions in
our experiments with or without noisy data involved, but
the MSE training misses all the fine features and under-
sampled segments in the target functions in those exam-
ples. The results obtained for noisy data are presented in
Fig. 3.

2. The NRAE-MSE training method is shown to be able to
deal with a high level of noise in the training data. In
spite of the noise, the MLP resulting from the NRAE-
MSE training still captures the fine features and under-
sampled segments of the target function and at the same

time maintains a high generalization level.

3. In Fig. 4, it shows that the MLPs obtained by the NRAE-
MSE training method outperform all their corresponding
MLPs obtained by the MSE training method regardless
of the initial weight vectors. Because the training perfor-
mance of the NRAE-MSE training method is insensitive
to the selection of the initial weight vector of the MLP un-
der training, multiple training sessions for the selection of
the best resultant MLP is unnecessary.

4.2. Handwritten Digit Recognition using the MNIST Dataset

To test the capability of the NRAE-MSE training method
to train a large MLP on a large real-world dataset, it is used
to train an MLP for classifying handwritten numerals on the
MNIST dataset [9]. The MNIST dataset is commonly used as
a benchmark to compare performances of different classifiers,
including many neural networks. The MNIST dataset contains
60,000 training samples and 10,000 test samples of handwrit-
ten numerals. Each sample has 784 features which are obtained
from a 28×28 black and white image. Each feature value is the
anti-aliasing normalized gray level of the corresponding pixel
in an image.

In our experiments, we test both a transformed and the orig-
inal MNIST dataset: For the transformed MNIST dataset, we
use the principle component analysis (PCA) to reduce the di-
mensionality of each image in the original MNIST data from
784 to 40 (principle components), and then apply both the
standard MSE training method and the NRAE-MSE training
method to train a two-layer MLP with the architecture of
40:300:10. Each of the ten output nodes is associated with one
of the ten numerals, 1, 2, ..., 9, and 0. For the original MNIST

7

0 4.5
−0.5

1.5

(a) MSE

0 4.5
−0.5

1.5

(b) NRAE-MSE

0 4.5
−1.0

2.5

(c) MSE

0 4.5
−1.0

2.5

(d) NRAE-MSE

0 1.0
−0.6

1.2

(e) MSE

0 1.0
−0.6

1.2

(f) NRAE-MSE

0 1.0
−0.8

1.2

(g) MSE

0 1.0
−0.8

1.2

(h) NRAE-MSE

0 1.5
−0.8

1.2

(i) MSE

0 1.5
−0.8

1.2

(j) NRAE-MSE

0 1.5
−1.5

1.5

(k) MSE

0 1.5
−1.5

1.5

(l) NRAE-MSE

0

6

0
0

1

(m) MSE

0

6

0
0

1

(n) NRAE-MSE

0

6

0
−1

1

(o) MSE

0

6

0
−1

1

(p) NRAE-MSE

Figure 3: Fitting plots for function approximation examples in Section 4.1. For each example, the MSE and NRAE-MSE training method use the same set of initial
weights. All NRAE-MSE training sessions presented here are performed with λ = 106. The first two columns describe functions trained with noiseless data, and
the last two columns show functions trained with noisy data. Numbers on the horizontal and vertical axes in each subfigure represent the input and output of the
function, respectively. From Fig. 3(a) to Fig. 3(l), red dots denote target training samples, and blue dash lines are MLP approximated function plots. From Fig. 3(m)
to Fig. 3(p), only MLP approximated function plots are shown by using blue and red colors to distinguish different output values of the functions on vertical axes.

8

1 2 3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

10
0

Set of Initial Weights

T
ra

in
in

g
 E

rr
o

r

MSE NRAE−MSE MSE with Noise NRAE−MSE with Noise

(a) Three-notch

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

Set of Initial Weights

T
ra

in
in

g
 E

rr
o

r

MSE NRAE−MSE MSE with Noise NRAE−MSE with Noise

(b) Fine Features

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

Set of Initial Weights

T
ra

in
in

g
 E

rr
o

r

MSE NRAE−MSE MSE with Noise NRAE−MSE with Noise

(c) Unevenly-sampled Segments

1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

Set of Initial Weights

T
ra

in
in

g
 E

rr
o

r

MSE NRAE−MSE MSE with Noise NRAE−MSE with Noise

(d) Unevenly-sampled Square

Figure 4: Training errors of ten different initial weight vectors for function approximation examples in Section 4.1. All NRAE-MSE training sessions presented
here are performed with λ = 106. Colors and symbols denote different training methods of the MSE (red square) and NRAE-MSE (blue triangle). Solid and dash
lines represent different training sessions with noiseless and noisy data, respectively. In order to clearly show differences between MSE values obtained by the MSE
and NRAE-MSE training, actual numbers in all vertical axes are converted to logarithmic numbers with respect to base 10.

dataset, we do the same with a two-layer MLP with the archi-
tecture of 784:300:10.

For the training of the MLP, the target value of an output node
is 1 if the input is the numeral associated with the node, and is
−1 otherwise. After the MLP is trained, the numeral associated
with the output node of the MLP outputting the highest value
among the ten output nodes is selected as the result of classify-
ing the input image. The classification accuracy of the trained
MLP is defined to be the percentage of test images that are cor-
rectly classified in the test dataset. We perform the standard
gradient descent (GD) optimization method with a momentum
term to update weights in a pairwise training mode, which is
also called an online training mode, or a sequential training
mode. We set the learning rate and the momentum term of
the GD method equal to 0.001 and 0.9, respectively. In all the
NRAE-MSE training sessions, we set L = 500 in the NRAE
training and M = 500 in the MSE excursion. The maximum
number of iterations of the NRAE-MSE training is limited to
10. Therefore, the maximum number of training epochs includ-
ing both the NRAE training sessions and the MSE excursions
is 104. We set λ = 103, 104, 105 and 106 to see the effect of the
value of λ on the NRAE-MSE training.

Five different initial weight vectors for each chosen value
of λ are used in testing. Table 2 presents the best and the
worst classification results obtained by the NRAE-MSE train-
ing method among all our tests as well as some benchmark
results on the MNIST dataset. All NRAE-MSE training ses-

sions apply the early-stopping rule to detect the overfitting and
stop the training. The total number of epochs of the NRAE-
MSE training in all of our experiments is less than 2000. The
experimental results show that the MLP classifier trained by
the NRAE-MSE method has a better generalization capability
than many benchmark classifiers on the MNIST dataset with
or without the PCA applied. Based on our experiments, the
NRAE-MSE training method consistently achieves a lower test
error rate than the MSE training method in the same settings of
MLPs on the MNIST dataset. It confirms that the NRAE-MSE
training method has no difficulty in scaling up for a complex
real-world problem. More specifically, the method has the abil-
ity to avoid nonglobal local minima and maintain a high level
of generalization. Moreover, the worst test error rates obtained
by the NRAE-MSE training method among all our tests are still
better than the MSE training results. We stress that the NRAE-
MSE training can provide satisfactory generalization results on
any random initial weight vectors, requiring no multiple trials.

5. Conclusion

The normalized risk-averting error (NRAE) criterion is pro-
posed for training neural networks to overcome the local min-
imum problem, which has plagued the development and appli-
cation of neural networks. The region in which NRAE does not
have a nonglobal local minimum contains the convexity region
of the risk-averting error (RAE), which is known to expand as

9

MNIST Dataset Classifier Test Error Rate (%)

With PCA

Quadratic classifier 3.30∗

2-layer MLP 40:300:10, MSE training 3.84

2-layer MLP 40:300:10, NRAE-MSE training (worst) 3.02
2-layer MLP 40:300:10, NRAE-MSE training (best) 2.79

Without PCA

Linear classifier (1-layer MLP) 12.00∗

K-nearest-neighbors, Euclidean (L2) 5.00∗

2-layer MLP 784:300:10, MSE training 4.70∗

2-layer MLP 784:300:10, NRAE-MSE training (worst) 4.61
2-layer MLP 784:300:10, NRAE-MSE training (best) 4.58

Table 2: Test error rates of the MNIST dataset for different classifiers. Results marked by asterisks are benchmark results which are available at the MNIST website:
http://yann.lecun.com/exdb/mnist/index.html. Results highlighted by bold fonts are achieved by the NRAE-MSE training method. The best and the worst test error
rates of the NRAE-MSE training method among all our tests are achieved when λ = 106 and λ = 103, respectively.

its risk-sensitivity index λ increases. The NRAE does not grow
exponentially like the way of the risk-averting error (RAE) does
as their risk-sensitivity index λ increases. This allows the use
of greater values of λ at larger regions in which the NRAE do
not have a nonglobal local minimum. Therefore, the NRAE cri-
terion is better suited for overcoming the nonglobal local mini-
mum problem in practice for training neural networks.

Insights to the properties of the NRAE were gained in exper-
iments of training neural networks with the NRAE at each of a
large number of values of λ. It was found that as λ increases, the
landscape of the NRAE grows flatter, which causes the training
slower and sometimes stops short of reaching a global or near
global minimum especially when λ exceeds 109.

To balance between a greater λ to avoid nonglobal local min-
ima and a smaller λ to avoid excessive slow-down or stop-short
of the training, the NRAE-MSE training method was devel-
oped. The method trains with an NRAE at a fixed λ, but takes
a recursion to train with the MSE from time to time. Whenever
the training with the NRAE brings the neural network weights
to within an “attraction basin” of a global or near global mini-
mum, the recursion of training with the MSE zeros into it.

The NRAE-MSE training method succeeded each time in all
trials of training neural networks with randomly selected initial
weights in each of our numerical examples of approximating
functions with fine features or unevenly-sampled segments spe-
cially designed to create undesirable local minima of the stan-
dard MSE criterion that are hard for a training method to es-
cape from. Most real-world applications are not expected to be
so “vicious”. In our numerical tests, the risk-sensitivity index λ
lies in the range 106-1011.

To show that the NRAE-MSE training method can be scaled
up to a complex real-world problem, it was used to train an
MLP for classifying handwritten numerals on the well-known
MNIST dataset. The NRAE-MSE training method outper-
formed the prior methods. It is appropriate to point out that, the
NRAE-MSE method succeeded with a single set of randomly
selected initial weights. No multiple trials are necessary.

References

[1] E. Aarts, J. Korst, The Neuron, Oxford University Press, 1989.
[2] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New

York, NY, 2006.
[3] C.G. Broyden, The convergence of a class of double-rank minimization

algorithms, Journal of the Institute of Mathematics and Its Applications 6
(1970) 76–90.

[4] K.L. Du, M. Swamy, Neural Networks in a Softcomputing Framework,
Springer, New York, NY, 2006.

[5] R. Fletcher, A new approach to variable metric algorithms, Computer
Journal 13 (1970) 317–322.

[6] D. Goldfarb, A family of variable metric updates derived by variational
means, Mathematics of Computation 24 (1970) 23–26.

[7] M.H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press,
Cambridge, Massachusetts, 1995.

[8] S. Haykin, Neural Networks and Learning Machines, Prentice Hall, Up-
per Saddle River, New Jersey, third edition, 2008.

[9] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-
plied to document recognition, IEEE 86 (1998) 2278–2324.

[10] Y. LeCun, L. Bottou, G.B. Orr, K.R. Muller, Efficient backprop, Lecture
Notes in Computer Science in Neural Networks: Tricks of the Trade 1524
(1998) 9–50.

[11] J.T.-H. Lo, Convexification for data fitting, Journal of Global Optimiza-
tion 46 (2010) 307–315.

[12] J.T.-H. Lo, D. Bassu, An adaptive method of training multilayer percep-
trons, in: Proceedings of the International Joint Conference on Neural
Networks (IJCNN’01), volume 3, pp. 2013–2018.

[13] J.T-.H. Lo, Y. Gui, Y. Peng, Overcoming the local-minimum problem in
training multilayer perceptrons with the NRAE training method, in: Pro-
ceedings of the 9th International Conference on Advances in Neural Net-
works (ISNN’12), volume Part I, pp. 440–447.

[14] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams, third edition, Springer, New York, 1999.

[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University
Press, New York, NY, third edition, 2007.

[16] J.C. Principe, N.R. Euliano, W.C. Lefebvre, Neural and Adaptive Sys-
tems: Fundamentals through Simulations, John Wiley and Sons, Inc.,
New York, 2000.

[17] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by
back-propagating errors, Nature 323 (1986) 533–536.

[18] D.F. Shanno, Conditioning of quasi-newton methods for function mini-
mization, Mathematics of Computation 24 (1970) 647–656.

[19] J.M. Zurada, Introduction to Artificial Neural Networks, West Publishing
Company, St. Paul, MN, 1992.

10

