
A Framework to Canonicalize Manufacturing
Service Capability Models

Boonserm Kulvatunyou1, Yunsu Lee1, 2, Nenad Ivezic1, Yun Peng2

1Systems Integration Division, National Institute of Standards and Technology
Gaithersburg, MD 20899, U.S.A.

2Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County

Baltimore, MD 21250, U.S.A.

Abstract

The ability to share precise models of suppliers’ manufacturing service capability (MSC) information is

necessary to develop reliable methods that enable OEMs to efficiently configure agile and responsive

supply chains. Currently, most suppliers use online tools to represent and share their MSC information

in proprietary ways via proprietary MSC data models. These models have limited precision and

interoperability. A semantically precise and rich reference MSC ontology can address both of these

limitations and enable development of the reliable supply chain configuration methods. To effectively

develop and deploy such a reference MSC ontology, semantic mediation between proprietary MSC

models and the reference MSC ontology will be required. An important and challenging activity within

the semantic mediation process is the mapping between a proprietary MSC data model and the

reference MSC ontology. The challenge of the mapping activity is to resolve structural and semantic

conflicts between the proprietary model and the reference ontology in a manner that is efficient and

results in mapping structures that are simple to comprehend and maintain. This paper proposes an

approach to address the challenge by preprocessing the structural representations of proprietary MSC

data models for alignment with the set of modeling conventions (i.e., ontology design patterns - ODPs)

that are also used in the reference MSC ontology. We call this preprocessing canonicalization.

Canonicalization can circumvent 1:n, n:1, or n:m mapping statements that require complex expressions

thereby simplifying the mapping activity and its resulting mapping statements. The main contribution of

this paper is the design and formalization of an ODP-based canonicalization framework and its

associated process in the context of description logic-based semantic mediation using the Ontology Web

Language (OWL).

1 Introduction
The Smart Manufacturing Leadership Coalition has concluded that manufacturing service capability

(MSC) information must be shared effectively across companies, to enable agile and optimized supply

chains (SMLC 2011). That is, MSC information must be semantically precise, sufficient, and accessible in

an interoperable way (Ameri and Dutta 2006). Currently, manufacturing companies share MSC

information through proprietary information models called MSC data models. Examples of these

proprietary MSC data models are those found in commercial supplier information sharing portals

including Mfg.com1, GlobalSpec2, and ThomasNet3.These proprietary MSC data models are

heterogeneous in their structures and data representations. In this situation, manufacturers cannot

effectively share MSC information. Researches have shown that use of the Web Ontology Language

(OWL) (W3C 2009a) reference ontology enhances access and precision of information). In particular, Ye

et al. (2007), Lu et al. (2013), and Zheng and Terpenny (2013) use Semantic Web Rule Language (SWRL)

(W3C 2004a) to link local and reference ontology, while Kulvatunyou et al. (2013) and Tsinaraki et al.

(2007) use only OWL axioms.

The OWL-based semantic mediation in Kulvatunyou et al. (2013) uses OWL reasoner and OWL mapping

axioms to inherit semantics from a semantically rich reference MSC ontology4 resulting in enhanced

semantic precision and coverage as well as semantic conflicts resolutions across proprietary MSC data

models. The OWL-based semantic mediation can enable effective sharing of MSC information because

the reference MSC ontology provides a common domain model and terminology that facilitates queries

and responses across proprietary data models. The process of mediation described in Kulvatunyou et al.

(2013) is as follows. MSC information in the proprietary MSC data models is first transformed into the

common RDF syntax (W3C 2004b) using the OWL semantics resulting in OWL-encoded proprietary MSC

model, which is then mapped to the reference ontology using OWL axioms. The description logic

inference over OWL-encoded proprietary MSC models, reference ontology, and mapping axioms results

in improved MSC information sharing.

In fact, the first step in semantic mediation of any information in OWL, including MSC information, is to

convert the proprietary information into OWL. There are typically two ways to transform proprietary

MSC data models (or any other kinds of data models) into OWL—purely syntactical or with semantic

interpretation. In the first case, generic transformation rules based on the underlying schema language

are applied to the data source. For example, in the case of relational databases, tables are transformed

into classes and columns are transformed into properties. In the other case, rules specific to data source

scheme are written by human and used for the transformation. This transformation may occur in a

single hop or two hops (in which case post-processing based on the data-source-specific rules occurs

after a syntactical transformation). The data-source-specific rules are typically derived from the view of

the data source owner without regard to other views and requirements of similar MSC information. The

key is that, in either case, the resulting models, called arbitrary OWL-encoded proprietary MSC model5,

are typically not structurally aligned with the target reference ontology as illustrated on the top of

1 http://www.mfg.com
2 http://www.globalspec.com
3 http://www.thomasnet.com
4 In this paper the term “manufacturing service capability (MSC) model” or data model generally includes both schema and
instance data. However, the reference ontology generally does not have instance data. A simple example of an instance data is
‘Company A has drilling process capability with 0.025 millimeters precision’. We use the term ‘MSC data model’ in a very
general sense to refer to any structured or semi-structured MSC information source; while the term ‘MSC model’ refers to
formally encoded information specifically in OWL.
5 By arbitrary, we mean that the MSC model inconsistently and sub-optimally uses one or more approaches to express
manufacturing information using the OWL language, whether it involves class-based, property-based, or some general
axiomatic representation that is specific proprietary view of the data.

Figure 1. Such arbitrary OWL-encoded proprietary MSC model can render the OWL mapping axioms

exceedingly complex, if at all possible, in the OWL-based semantic mediation. Technologies such as the

D2RQ (D2RQ 2012) and the W3C’s R2RML (Das et al. 2012) support both the pure syntactical as well as

the data-source-specific transformation practices.

Figure 1 should be inserted about here.

In this paper, we propose a methodology, called canonicalization, to streamline the OWL-based

semantic mediation process in order to simplify the OWL mapping axioms and circumvent OWL axioms

and reasoner limitations to produce mapping, particularly when dealing with structural differences. The

idea is that a proprietary MSC data model is first automatically transformed with a syntactical standard

rule set independent of its source data scheme; and then, with a human assistance, the canonicalization

transforms the data again using a set of design patterns before writing OWL mapping axioms against the

reference ontology. Since the design patterns used in the canonicalization are also used for the

reference ontology, the resulting canonicalized OWL-encoded proprietary MSC model is more

structurally aligned and simpler to map with the reference ontology. This proposed methodology is

illustrated at the bottom of Figure 1.

The simplification of the OWL mapping axioms will be validated on an example; and quantitative and

qualitative analyses of the simplification results will be provided. The qualitative analysis will show that

canonicalization can amend a model not originally suited for semantic mediation via OWL DL, simplify

the mapping by avoiding the need for complex OWL class expressions in the mapping axioms, and

simplify the mapping maintenance by reducing the number and complexity of mapping axioms. The

quantitative analysis will show that computational time grows cubically when a certain, yet common,

type of structural conflicts is resolved without canonicalization, as opposed to linearly when using

canonicalization.

The rest of the paper is structured as follows. In the next section, we characterize canonicalization by

the types of semantic conflicts it can address. Section 3 introduces the proposed canonicalization

framework. It is followed with Section 4, which validates the applicability and usefulness of the

framework with a running example and the qualitative and quantitative analyses. Finally, we provide

insights into related works that can enable and improve the framework upon its deployment before

giving a conclusion and remarks on the current work and our future plans.

2 Canonicalization Defined
In the context of semantic mediation, canonicalization may typically be viewed as preprocessing

otherwise diverse proprietary representations to simplify mappings. In this paper, we follow logical and

conceptual ontology design patterns (explained later in the section) in transforming the OWL-encoded

proprietary manufacturing service capability (MSC) models in order to simplify the mappings to the

reference MSC ontology.

Canonicalization in this paper is a means to avoid certain conflicts in encodings of proprietary and

reference MSC information models. Sheth and Kashyab (1992) have identified various types of

schematic differences between semantically similar objects from the relational databases perspective

(i.e., objects are tables). Park and Ram (2004) have characterized these differences into two broad

categories, namely the data-level and schema-level conflicts. Most of these conflict types can be carried

over to OWL-based models.

Data-level conflicts are differences in data domains caused by the multiple representations and

interpretations of similar data. Data-level conflicts are applicable to representation of values of OWL

data properties. Types of data-level conflicts relevant to our work include data-representation conflicts,

data-unit conflicts, and data-precision conflicts. Data-representation conflicts occur when the

semantically same values are represented differently such as 05/08/2012 and May-08-2012. The data-unit

conflicts occur when the same quantities are represented with differing units, e.g., “2 inches” and “5

centimeters”. Data-precision conflicts occur when different scaling is used, e.g., when continuous

numerical numbers between 0 and 100 are used to indicate qualities vs. when discrete scale like low,

medium, high is used.

The schema-level conflicts are subcategorized into naming conflicts, entity-identifier conflicts, schema-

isomorphism conflicts, generalization conflicts, aggregation conflicts, and schematic discrepancies.

Naming conflicts are the cases where two semantically identical concepts are named differently

(synonyms); or, when two semantically different concepts are named the same (homonyms). Naming

conflicts are applicable to OWL classes and properties as they have names. Entity-identifier conflicts can

occur when differing primary keys are used for the same entity in different databases. This can occur in

OWL when multiple class instances (individuals) with different URIs refer to the same individual.

Isomorphism conflicts are the cases where two semantically same concepts are modeled with differing

set of attributes and also differing number of attributes, e.g., Supplier(ID, GeneralPhone, SupportPhone)

and Supplier(ID, Phone), Address(Line1, Line2, Zip) and Address(Street, City, State, Zip).

Isomorphism conflicts are applicable to OWL classes in the sense that they can have differing set of

properties. Generalization conflicts are the cases where objects/classes subsume one another, e.g.,

Student(ID, Name) subsumes GraduateStudent(ID, Name). Generalization conflicts are applicable to OWL

classes and properties particularly when two models have different subsumption hierarchies.

Aggregation conflicts are the cases when a property of a class is an aggregation of properties from

multiple instances of another class. For example, the MonthlyProduction(ID, Month, Year, Item,

Quantity) is an aggregation of the DailyProduction(ID, Date, Item, Quantity). Aggregation conflicts are

applicable to OWL classes. The schematic discrepancies are the cases where information is modeled

using differing constructs – table name, attribute name, and attribute value. In OWL, the information

about a supplier providing a CNC Machining Service may be modeled using a class declaration axiom (a

supplier is a type of CNCMachiningService class), an object property assertion (e.g., the supplier has an

object property pointing to an instance of CNCMachiningService class or the supplier has an object

property pointing to a CNCMachiningService instance of a ManufacturingService class), or a data property

assertion (e.g., the supplier has a string-based property providesService pointing to

“CNCMachiningService”, the supplier has a boolean property isCNCMachiningServiceProvider with the

value true).

In our work, canonicalization is rooted in encoding the proprietary MSC data model such that it follows a

set of design patterns. Gangemi (2005) has described two types of ontology design patterns, logical and

conceptual. Logical ontology design patterns are independent of conceptualization, while conceptual

ontology design patterns are specific to a domain of classes and properties. Examples of logical ontology

design patterns are those given by the W3C Semantic Web Task Force on Ontology Engineering Patterns

including Representing Classes As Property Values on the Semantic Web, Representing Specified

Values in OWL: “value partitions” and “value sets”, and others (W3C 2005a, W3C 2005b). An

example of the conceptual ontology design pattern given in Gangemi (2005) is Participation at spatio-

temporal location. An example of the conceptual ontology design pattern related to MSC information is

Dimensional Capability Expression. The pattern recommends that dimensional capability be

represented as a class with two data properties representing minimum and maximum values. A

proprietary manufacturing service capability data model may have its part envelope size capability

represented as a text value such as “5 – 25 centimeters”. Canonicalization would convert such value

into the representation recommended by the Dimensional Capability Expression pattern.

Canonicalization in this paper focuses on resolving particular schema-level conflicts described above,

particularly the isomorphism conflicts and schematic discrepancies. Resolution of the data-level conflicts

may be incorporated into the canonicalization; however, it is out of scope of the paper.

To be more specific, we further subcategorize the isomorphism conflicts into two cases, isomorphism

conflicts with the same data precision and isomorphism conflicts with differing data precision.

Canonicalization helps avoid only the former case. The latter case may be better left to handle via the

OWL’s description logic based mapping.

The isomorphism conflicts with the same data precision are the cases where two objects contain the

same set of information. We extend this to also include the cases where data precision can be made the

same by deriving the information from within the model or external to the model. For example, the

MaximumPartSize(value) of an EDM machine can be canonicalized according to the

DimensionalCapability(minValue, maxValue) ontology design pattern to become

PartSizeCapability(minValue, maxValue) where the maxValue = value and the minValue can either be

defaulted to zero or be derived from common domain knowledge.

The isomorphism conflicts with differing data precision are the cases where two objects have differing

sets of information and that the differences cannot be derived or defaulted. For example, the

EDMService(ID, Type, SpecialService) and EDMMachiningService(ID, Type, SpecialService,

MaxPartLength) objects have differing set of information. Canonicalization does not resolve this type of

conflict. OWL DL mapping axioms can be used to merge the two set of properties given that the two

objects/concepts are equivalent.

The isomorphism conflicts and the schematic discrepancies may interact to form complex structural

conflicts. Therefore, broadly speaking in this paper canonicalization aims at resolving the structural

conflicts where the multitude of logical structures of a set of properties, their values, and axioms

belonging to a class and/or instances in one model (a proprietary MSC model) are re-organized to form a

different structure in a canonical model (a reference ontology) which follows a set of consistent design

patterns.

In this section, we have described the canonicalization from the perspective of schematic differences

resolutions. In the next section, we describe the framework to canonicalize proprietary manufacturing

service capability data models that originally may be implemented in various syntaxes such as relational

databases, XML and XML schemas (W3C 2006, W3C 2004c).

3 Canonicalization Framework
This section describes the proposed canonicalization framework. The first subsection describes

terminology related to OWL that will be used throughout the rest of the discussion.

3.1 Relevant OWL Terminologies
According to OWL 2 Structural Specification (W3C 2009b), there are three types of atomic symbols

including entities, literals, and anonymous individuals. Entities are fundamental building blocks of an

OWL ontology. They define named terms of an ontology and are uniquely identified by IRIs

(Internationalized Resource Identifiers, an identifier construct akin to Uniform Resource Identifiers –

URIs) (RFC3987). Classes, datatypes, object properties, data properties, annotation properties, and

named individuals are entities. Literals are data values such as strings or integers. They have an

associated datatype specifying how to interpret the value (lexical form). Anonymous individuals are akin

to the named individuals but with a system assigned IRI. These are blank nodes in RDF (W3C 2009b).

The main component of an OWL ontology is a set of axioms. Axioms are statements that say what is true

in the domain. Entities, literals, and anonymous individuals are used to compose an axiom. Axioms in

OWL ontology can be declaration axioms, class axioms, object property axioms, data property axioms,

datatype definitions, keys, assertions (sometimes also called facts), and annotation axioms. For the

purpose of our discussion, entities, literals, and axioms are collectively referred to as ontology artifacts.

The rest of section 3 delves into the detail of the proposed canonicalization framework.

3.2 Overview
This section describes the proposed canonicalization framework, which is outlined in Figure 2. The initial

input to the canonicalization is a proprietary MSC data model. Differing proprietary MSC data models

may use differing syntaxes such as relational databases, XML and XML schemas (XML databases). In the

first step of canonicalization process, these heterogeneous syntaxes are transformed into a common

RDF graph syntax using OWL DL vocabulary and semantics. The step should be generally automatic using

a standard transformation rules set that is independent of the MSC information semantics but specific

to the proprietary data modeling syntax. The output of this step is a source ontology6 which is an input

into the following OPCs (ontology pattern correspondence) identification step. Another input to the

OPCs identification step is the pattern library. A pattern library consists of conceptual OWL ontology

design patterns (ODPs for short) each of which indicates suitable structural pattern for an archetypical

6
 Source ontology is mapped to the Intermediate OWL-Encoded Proprietary MSC model in Figure 1.

unit of manufacturing service relations encoded in OWL DL. In this OPCs identification step,

correspondences between the fragments of source ontology and ODPs are specified (from here on,

ODPs refer specifically to OWL ODPs unless otherwise stated). This output from the OPCs identification

is called ontology pattern correspondences (OPCs). The OPCs are used to construct source ontology

patterns in the source ontology patterns generation step and also to retrieve the applicable target

ontology pattern from the pattern library. A source ontology pattern is used to retrieve from the source

ontology all matching pattern instances. A pattern instance is a source ontology fragment to be

transformed with respect to a target ontology pattern. How these artifacts are transformed is

represented by the transformation rules that are generated in the transformation rules generation step.

The final pattern transformation step applies the source ontology patterns and executes the respective

transformation rules (by using a target ontology pattern) on the source ontology to generate the

canonicalized OWL-encoded proprietary MSC model (canonicalized proprietary MSC model for short).

Subsequent sections describe ODP and each canonicalization step in more detail.

Figure 2 should be inserted about here.

3.3 OWL Ontology Design Pattern
In this paper, an ODP is a reusable successful solution to a recurrent semantic modeling problem,

written in OWL (Gangemi 2005). ODPs can be viewed as generic, small ontologies or ontology

components with explicit documentation of design rationales and best reengineering practices. Pattern-

based approach for ontology design has been gaining popularity recently because by reusing existing

tested patterns as building blocks, a domain ontology can be constructed quickly with high quality and

less conceptualization divergence. A large amount of ODPs (OWL ODPs and other language independent

patterns) have been proposed in the ontology design community (Presutti et al. 2008)7. In this paper, we

define a formal representation of ODPs as follows:

Definition 1: Archetypical Ontology is a fragment of OWL structure represented with abstract

concepts. It is a 4-tuple {E, L, AI, A}.

- E is a set of OWL entities

- L is a set of OWL literals

- AI is a set of OWL anonymous individual

- Ax is a set of OWL axioms

Definition 2: ODP is a 2-tuple {Sig, BE}

- Sig is a non-empty set representing an ontology signature

- BE is a non-empty set representing binding expressions

Definition 3: Ontology Signature is a 2-tuple {SL, SX}

- SE is a non-empty set of entity and literal parameters

- SX is a set of axioms relating members in SE

Definition 4: Binding Expressions is a 2-tuple {SE, C}

- SE is a non-empty set of entity and literal parameters, as in Definition 2

- C E U L, is a non-empty set of concepts and values assigned to the parameters in BE that

give a specific meaning to the ontology signature

An ODP8 is represented by an ODP signature and a set of binding expressions to a set of entities and

literals from the archetypical ontology. An ODP signature is a parameterized structure of an archetypical

ontology, while the binding expressions connect parameters in the ODP signature to the archetypical

entities and literals in the archetypical ontology fragment. These entities and literals are concepts and

values giving a specific meaning to the ODP signature. The entities and literals within the archetypical

ontology fragment are divided into two groups 1) conceptual and 2) representative; and only the

conceptual entities and literals are used in the binding expressions to convey the meaning of the ODP.

7
 http://www.ontologydesignpatterns.org

8 The requirement for canonicalization is that the reference ontology follows a set of ODPs. However, rationalization and
development of ODPs is out of the scope of this paper. The design of an ODP is concerned with the semantics and associated
structure to convey the semantics. The related work section points to works concerned with ODP developments and other
ODP’s information that may be of interest to store within the pattern library. In this paper, ODPs are derived from the
Manufacturing Description Language ontology (Ameri and Dutta 2006).

The representative entities and literals represent the varying part of the pattern that need to be

replaced by entities and literals from the source ontology or by defaulted values. Figure 3 and Figure 4

illustrate this through a Supplier-Service ODP example. Figure 3 shows the archetypical ontology

fragment (conceptual pattern) of the ODP, while Figure 4 shows the ODP represented by a signature and

binding expressions. With respect to the archetypical ontology fragment in Figure 3 and ODP in Figure 3,

p:Supplier, p:Profile, p:ServiceCategory, p:hasProfile and p:hasService are conceptual while

p:ServiceSubcategory, p:SupplierInstance, p:ProfileInstance, and p:CategoryInstance are

representative. Notice that only the conceptual entities are used in the binding expressions where C1, C2,

C3, OP1, and OP2 are bound (in this example there is no conceptual literal). I1, I2, I3, and C4 are not

bound because they are parameterized part of the ODP. It should be noted that the same ODP signature

may be used by multiple ODPs but with differing binding expressions. Table 1 shows the serialization of

this ODP (note that unbounded entities that are a parameterized part of the ODP simply do not have

associated binding expression).

Figure 3 should be inserted about here.

Figure 4 should be inserted about here.

Table 1 should be inserted about here.

3.4 Transformation
The Transformation step applies the standard rule-based transformation to commonalize

heterogeneous syntaxes of proprietary MSC data models into the RDF graph syntax using OWL DL

vocabulary and semantics. The output of this step is called source ontology which corresponds to the

intermediate OWL-encoded proprietary MSC model in Figure 1.

This step can be largely automated when the proprietary MSC data model is structured information (e.g.,

RDB) as opposed to unstructured (e.g., text, HTML). Tools to support such automation are discussed in

the related work section. In our work, the proprietary MSC data models are captured in relational

databases. There are many possible mapping profiles9 to transform relational data into RDF and OWL DL

depending on specific requirements (Hert et al. 2011). In our work, minor enhancements to the default

mapping profile proposed in the D2RQ (D2RQ 2012) works well with the target databases to carry all the

manufacturing service information into OWL DL. Since the D2RQ’s default mapping profile only uses RDF

vocabulary and semantics, it is enhanced by specializing RDF vocabulary with OWL vocabulary (e.g.,

replace rdf:Class with owl:Class) and specifically replacing the generic RDF property with OWL data or

object property. The resulting mapping profile is summarized below. The mapping profile uses OWL DL

vocabulary and semantics without a need to be tailored to specific database entities. Hence, it can

transform any relational data independent of its schema.

9
 In the D2RQ framework, mapping profile is used to generate RDB-to-RDF mapping for a database schema of a relational

database. The mapping is then used to execute the RDB-to-RDF transformation on a database instance using that schema.

Relational database to OWL DL mapping profile:

1. A table is mapped as an owl:Class (class declaration).

2. A record in the RDB is mapped as an owl:NamedIndividual (class assertion) of the corresponding

class.

3. An attribute that is not a foreign key, is mapped to an owl:DataProperty (data property declaration);

and its value is mapped as a data property assertion whose literals have data types carried from the

database schema.

4. An attribute that is a foreign key attribute is mapped to an owl:ObjectProperty (object property

declaration); and its value is mapped as an object property assertion.

Figure 5 below shows an example of the transformation from a relational database table into OWL DL

source ontology using the above mapping profile. The Capability table is converted into an owl:Class

named Capability. The ID attribute is converted into owl:DataProperty named ID. The Capability_Name

attribute is converted into an owl:DataProperty, named Capability_Name. The record, which has the

value 5 as its key, is converted into an owl:NamedIndividual named Capability/5. Its ID attribute value 5

is an xsd:integer value of the ID data property. Its Capability_Name attribute value CP_EDM is an

xsd:string value of the Capability_Name data property.

Figure 5 should be inserted about here.

3.5 OPCs Identification
The purpose of the Ontology Pattern Correspondences (OPCs) Identification step is to select a unique

ODP for a specific fragment of the source ontology. The OPCs identification process starts with

establishing semantic links between entities and literals in the source ontology and the elements of the

pattern library (by matching on their intended meaning). Semantic links can be homogeneous or

heterogeneous. A homogeneous link is between the same type of entities and literals such as class-to-

class, property-to-property, individual-to-individual, and literal-to-literal. A heterogeneous link is

between different types of entities and literals such as class-to-individual, class-to-property and

property-to-individual. Links maybe of any cardinality. For instance, a part size capability may be

represented as a single concept with the literal value “5 – 25 cm” on the proprietary side, but it can be

represented as multiple concepts such as minimum part size and maximum part size in the reference

ontology. Solution to this situation would need 1:n semantic links.

Semantic links may be established manually or with assistance from an ontology matching algorithm

(which relies on the notion of semantic similarity measure). A brief discussion of ontology matching is

provided in the Related Works section. For the purpose of focusing on the canonicalization framework,

let’s assume that the user interactively establishes/disestablishes the semantic links with assistance

from an ontology matcher while there is an underlying system utilizing the links information to suggest

ODPs for a specific set of source ontology artifacts. It is at the user’s discretion to correctly select an ODP

for a particular set of ontology artifacts that results in an OPC. In the illustration below, we describe how

this may occur.

The selected ODP within an OPC is called target ontology pattern. A given ODP can be the target for

more than one set of source artifacts. For example, there can be multiple instance data that use the

same design pattern. Therefore, the source ontology artifacts within the OPC are expected to be

representative ontology artifacts. At the initiation of the OPC, some representative ontology artifacts are

readily provided based on the semantic links. In some cases, however, the set of source ontology

artifacts may be incomplete with respect to the requirements of the pattern. In the next stage – OPCs

identification completion – all the necessary representative source ontology artifacts are identified by

the user; and, structural differences between the target ontology pattern and the source ontology

artifacts within the OPC are determined. If differences exist, subsequent canonicalization steps are

necessary for that OPC. If there is no difference (i.e., they are structurally aligned), no further

canonicalization step is necessary. It should be noted that the process of creating OPCs may not be

linear and interaction with other ODPs can occur after a pattern transformation (i.e., certain entities

maybe subjected to pattern transformation several times such as when one ODP suggests to turn an

instance into a class and another ODP suggests such class to be a subclass of another class).

Figure 6 should be inserted about here.

OPCs Identification Illustration

Figure 6 shows an example source ontology. The semantic links, shown below, are established by the

user between the source ontology and the pattern library. Note that the prefix ‘s’ denotes entities and

literals from the source ontology and the prefix ‘p’ denotes entities and literals from the pattern library.

{ s:Supplier, p:Supplier, Class-to-Class }, { s:ServiceCategory, p:ServiceCategory, Class-to-Class}

Based on the matching between concepts in the semantic links and concepts in the binding expressions

of ODPs, candidate ODPs are suggested as shown in Figure 7. In this example, only the supplier-service

ODP is suggested. If multiple ODPs were suggested, the user would inspect each of the suggested ODPs

and their semantic relationships with the related source ontology artifacts (bottom part of Figure 7). The

canonicalization system can assist the user during this semantic relations inspection by identifying paths

(starting from the shortest one) between the matching source ontology artifacts (in this case the

s:Supplier and s:ServiceCategory). Once the user selects a suggested ODP, an ontology patterns

correspondence is initiated to capture information related to the suggestion, such as opc1 shown in

Table 2. Notice that in the initial stage of the OPC1, parts of the representative artifacts are identified

from the semantic links. They don’t form a complete source ontology (graph) fragment (i.e., the

s:Supplier and s:ServiceCategory are not connected).

Figure 7 should be inserted about here.

In the last stage – the OPC identification completion stage – the user identifies all the representative

source ontology artifacts for opc1 and determines whether opc1 requires subsequent canonicalization

steps. The resulting representative source ontology artifacts are shown in Table 3 that gives a complete

source ontology fragment. Notice that only s:SupplierA and s:EDM instances are identified as

representative source ontology artifacts; other service categories and instances exist in the example

source ontology, such as s:SupplierB and s:Machining (see Figure 6), that also match this pattern and

need an application of this ODP. These other instances will be identified via the source ontology pattern

created in the next canonicalization step. By analyzing the graph structures, user can determine that

OPC1 is an OPCs identification output, which requires subsequent canonicalization steps because the

logical structure of source ontology artifacts is different from that in the Supplier-Service ODP. The

reasons are 1) schematic discrepancy, i.e., the source ontology represents the semantic service category

s:EDM as an instance of the s:ServiceCategory class while the Supplier-Service ODP represents any

semantic service category (p:ServiceSubcategories) as a subclass of the p:ServiceCategory class; and 2)

isomorphism conflict, e.g., s:SupplierA has a direct connection to the s:EDM service category via the

s:hasMachiningService object property in the source ontology while the p:SupplierInstance has an

indirect connection to the p:CategoryInstance through the p:hasProfile, p:ProfileInstance, and

p:hasService.

Table 2 should be inserted about here.

Table 3 should be inserted about here.

3.6 Source Ontology Patterns Generation
A source ontology pattern in an OPC is used to retrieve all pattern instances, each of which is a source

ontology fragment containing a set of source ontology artifacts that will be transformed according to the

respective target ontology pattern. In other words, a source ontology pattern is a set of parameterized

representative source ontology artifacts within an OPC (this is analogous to a regular expression but it is

an ontology graph). More specifically, a source ontology pattern consists of a signature and a set of

binding expressions. The signature is a parameterized ontology structure. Binding expressions indicate

the fixed part of the ontology structure by connecting parameters in the signature to the entities and

literals in the source ontology artifacts. The parameters that are unbound are the variable part of the

structure. Together the signature and binding expressions must be sufficient to be converted into a

query that retrieves a collection of variable parts of the ontology structure. Each member of the

collection together with the fixed part of the source ontology pattern makes up a pattern instance. The

query must retrieve all pattern instances from the source ontology. At the end of the source ontology

patterns generation step, source ontology patterns are defined for each OPC output from the OPCs

identification step.

Figure 8 should be inserted about here.

The source ontology patterns generation step can be largely automated. Based on the representative

source ontology artifact identified in the OPC, the source ontology signature can be derived. All possible

binding expression can be generated, which the user can confirm. Specific binding expressions can be

recommended based on the semantic links established in the OPCs identification step. That is,

parameters in the source ontology signature that are linked to the fixed part of the target ontology

pattern will also be suggested to be fixed (i.e., bounded by the binding expressions). The query

generation can be automated based on PATOMAT pattern-based ontology transformation described in

the Related Works section (Svab-Zamazal et al 2009, Svab-Zamazal and Svatek 2011).

Figure 8 shows a graphical representation of an exemplary source ontology pattern, SP1. Table 4 shows

its serialization. It is a pattern devised for the representative source ontology artifacts in OPC1 shown in

Table 3 above. In this example, the binding expressions indicate that C1, C2, and OP1 are bound to

constants, while I1 and I2 are unbound. That is, I1 and I2 will be used to retrieve all instances of the

classes Supplier and ServiceCategory matching this pattern.

Figure 9 shows the SPARQL query (W3C 2008) automatically constructed using the source ontology

pattern definition. Unbound variables I1 and I2 are outputs of the query, while axioms and binding

expressions make up the condition (i.e., WHERE clause) of the query.

Table 4 should be inserted about here.

Figure 9 should be inserted about here.

3.7 Transformation Rules Generation
In this process, a transformation rule (TR) is generated for each OPC. A TR consists of pattern

transformation rules (PTRs). A PTR specifies relations between parameters in the source and target

ontology patterns within a particular OPC. These relations describe how the source ontology pattern

should be transformed according to the target ontology pattern. Each relation in a PTR is a 3-tuple

including source column, target column, and transformation expression column. The source column

indicates one or more entities or literals in the source ontology pattern that will be transformed using a

parameter from the pattern signature. The target column indicates the entity or literal in the target

ontology pattern into which the source column will be transformed using a parameter from the pattern

signature. Either the source column or target column can be null but not both. The last column,

transformation expression column, indicates the specific names/IRIs to be used for the target in the

output. The value can be a parameter from the target ontology pattern signature, a fixed value, or a

string expression.

Transformation Type-1: same artifact type transformation (e.g., Class-to-Class, Instance-to-

Instance)

Transformation Type-2: different artifact types transformation and n:1 transformation (e.g.,

Class-to-Instance, Property-to-Class, Classes-to-Class)

Transformation Type-3: Artifact removal transformation (e.g., source ontology pattern signature

has a class A that does not have a correspondence in the target ontology pattern signature

entity)

Transformation Type-4: Artifact creation transformation (e.g., source ontology pattern signature

does not have the class A which is defined in the target ontology pattern)

Each PTR can be one of the three transformation types as listed below. Transformation types can be

automatically determined based on source and target columns and handled automatically by the

canonicalization infrastructure.

Similar to the OPCs identification step, the transformation rule generation step may be done manually

or with assistance from an ontology matching algorithm. However, in this case the scope of the match is

more specific to only ontology artifacts in the representative source ontology and in the archetypical

ontology of the target ontology pattern.

Table 5 below shows an example transformation rule, TR1, for OPC1. OPC1 consists of source and target

ontology pattern shown in Figure 8 and Figure 4. It requires 10 PTRs.

Table 5 should be inserted about here.

3.8 Pattern Transformation
Pattern transformation executes transformation rules on the source ontology. The resulting

transformation is the OWL DL encoding of the canonicalized OWL-encoded proprietary MSC model

(canonicalized proprietary MSC model for short). The canonicalized proprietary MSC model is expected

to be structurally aligned with an OWL DL-based reference MSC ontology that is also constructed based

on the same pattern library. The pattern transformation of an OPC is divided into two sub-processes,

pattern instances detection and transformation rule application. The whole process can be automated

based on the aforementioned PATOMAT work.

The pattern instances detection process applies the source ontology pattern to find all pattern instances.

A pattern instance is a set of source ontology’s entities and literals to be transformed by a

transformation rule. For example, the SPARQL query generated from the source ontology pattern shown

in Figure 9 will retrieve all pattern instances for OPC1. Two pattern instances should be returned for the

source ontology in Figure 6.

The transformation rule application process applies the transformation rule on the retrieved source

ontology’s entities and literals in the pattern instances. The output entities and literals provide all the

necessary elements to establish the set of axioms in the target ontology pattern. After the pattern

transformation executes all the transformation rules on the source ontology, the canonicalized

proprietary MSC model is obtained as the final output. Next, canonicalization of an exemplary

proprietary MSC data model is provided to validate the applicability of this framework.

4 Canonicalization Example
In this section, the canonicalization framework is demonstrated on a realistic example. We first describe

inputs to the canonicalization process including a pattern library and a proprietary MSC data model

which is captured in a relational database. We then walk through each process step in the

canonicalization framework. After obtaining the canonicalized proprietary MSC model, we will show

how it simplifies the mapping in section 5.

4.1 Pattern Library
In this example, we assume a hypothetical pattern library, which consists of four ODPs including

Supplier-Service, Service-LengthCapability, Service-Categorization, and LengthCapability. Figure 10

illustrates the definitions of these ODPs.

Figure 10 should be inserted about here.

4.2 Proprietary MSC Data Model
Figure 11 below shows a set of relational tables in a proprietary MSC data model. It represents how

supplier, service, service category, and part length capability are represented and related in a

proprietary way.

Figure 11 should be inserted about here.

4.3 Transformation
Transformation of a table without a foreign key into OWL DL source ontology involves creating only a

class, named individuals, data properties, and assertions. Figure 12 below illustrates this transformation

using the Supplier table. The Supplier table is converted into an owl:Class named s:Supplier. The

record, which has the value Supplier_3 as its ID, is converted into an owl:NamedIndividual named

s:Supplier_3. Its ID attribute value Supplier_3 becomes an xsd:String value of the s:Supplier_ID

data property.

Figure 12 should be inserted about here.

Transformation of a table with foreign keys involves creating a class, named individuals, object

properties, data properties, and assertions. Figure 13 illustrates the transformation using one of the

records in the SupplierService table. The table is converted into an owl:Class named s:SupplierService.

The record, which has 5 as its ID, is converted into owl:NamedIndividual named s:SS_3_4. Its ID attribute

value 5 is an xsd:integer value of the s:SupplierService_ID data property. This table has two foreign key

attributes including SupplierID and ServiceID, which are respectively primary keys of the Supplier table

and Service table. These two foreign key attributes are converted into two owl:ObjectProperty

declarations, namely s:SupplierService_SupplierID and s:SupplierService_ServiceID. These object

properties are used to connect the s:SupplierService individuals to owl:NamedIndividual converted from

the records in the Supplier and Service tables as shown in the figure.

Figure 13 should be inserted about here.

Figure 14 shows the source ontology, which is the output from the transformation of the proprietary

MSC data model. The figure includes transformation of s:Supplier_3 and s:Supplier_6 records in the

Supplier table and related records in other tables as highlighted in Figure 11. The rest of the

canonicalization illustration will be based on this data.

Figure 14 should be inserted about here.

4.4 OPCs Identification
At OPCs identification time, first, the semantic links are established between the source ontology and

the pattern library as shown below. For example, the user has linked s:EDM and s:Moldmaking with the

p:ServiceCategory as they semantically mean service category in the proprietary manufacturing service

capability model. With these semantic links and the ODPs’ binding expressions, the ODPs that are

related to these terms are retrieved and the OPCs are initialized as shown in Table 6. Note that the OPC3

is initialized not just by using the semantic links but also using logical inference, because s:EDM is linked

to p:ServiceCategory and not to p:Service as in the Service-LengthCapability’s binding expression.

However, as shown in Figure 10, the Service-Categorization ODP illustrates that an instance of

p:Service is an instance of p:ServiceCategory as well. Thus, s:EDM is indirectly linked to the p:Service;

and the OPC3 can be initialized even though s:EDM has no direct semantic link to p:Service.

{ s:Supplier, p:Supplier, Class-to-Class }, { s:Service, p:Service, Class-to-Class }, { s:EDM,

p:ServiceCategory, Class-to-Class }, { s:PartLength, p:LengthCapability, Class-to-Class },

{ s:Moldmaking, p:ServiceCategory, Class-to-Class }

In the next step, all the representative source ontology artifacts are identified for the OPCs. The results

are shown in Table 7. At this point we can identify that the logical structure of each source ontology

artifact differs from its corresponding ODP. Thus, OPC1, OPC2, OPC3, OPC4 and OPC5 are the OPCs output

from the OPCs identification on which subsequent canonicalization steps will be performed.

Table 6 should be inserted about here.

Table 7 should be inserted about here.

4.5 Source Ontology Patterns Generation
With all the representative source ontology artifacts identified in the OPCs, source ontology patterns

can be generated. Figure 15 shows a graphical representation of the source ontology patterns based on

the source ontology artifacts in Table 7.

Figure 15 should be inserted about here.

4.6 Transformation Rules Generation
With the source and target ontology patterns captured in the OPCs, pattern transformation rules (PTRs)

can be created for each OPC. Figure 16 visualizes the PTR relationships between the source ontology

pattern SP1 and the target ontology pattern Supplier-Service ODP in OPC1. Table 8 shows the details.

PTR1.1 and PTR1.2 state that s:C1 and s:C3 in the SP1 should be respectively transformed into the same

artifact type p:C1 and p:C2 in the Supplier-Service ODP; and hence, they are type-1 transformations.

PTR1.3 and PTR1.4 state that s:L1 and s:L2 in the SP1 on the other hand should be respectively

transformed into differing artifact types p:I1 and p:I2 in the Supplier-Service ODP; and hence, they are

type-2 transformations. PTR1.1 to PTR1.4 use the names/IRIs from the source ontology. Type-4

transformation is needed in PTR1.5 to create the relationship between p:I1 and p:I2 using the new

object property p:OP1. Since type-4 transformation creates a new artifact and there is no source

ontology entity corresponding to p:OP1, the name p:hasService from the ODP is used as shown in the

Transformation Expression column. Lastly, PTR1.6 to PTR1.12 removes the unwanted artifacts with the

type-3 transformation. Associated axioms can also be automatically removed.

Figure 16 should be inserted about here.

Table 8 should be inserted about here.

Transformation rules for OPC2, OPC3 and OPC4 are denoted by TR2, TR3, and TR4, respectively. Their PTRs

only need to deal with structural pattern detections and entity transformations similar to those of OPC1

and consequently can be created in the same way. PTRs for OPC5, however, need to additionally deal

with literal value pattern detections and transformations. This is because the LengthCapability ODP has

two data properties including p:hasMin and p:hasMax. However, the SP5 source ontology pattern has one

data property that represents the part length capability min and max values with a single literal value

such like “6cm – 48cm”. Figure 17 illustrates the situation.

Figure 17 should be inserted about here.

To deal with this situation, a literal value pattern is defined with the following regular expression.

 ([0-9]+)cm - ([0-9]+)cm

The first group in the regular expression, which is embraced by the first set of parentheses, corresponds

to the minimum part length value and is assigned to the variable s:G1. The second group in the regular

expression, which is embraced by the second set of parentheses, corresponds to the maximum part

length value and is assigned to the variable s:G2. This literal value pattern detection is used for PTR5.3

and PTR5.4 as indicated by their usages of s:G1 and s:G2 in Table 10.

Table 9 should be inserted about here.

4.7 Pattern Transformation
The pattern transformation process is a final step of the canonicalization and it executes transformation

rules on the source ontology for each OPC. Table 11 below summarizes the current state of the OPCs

that provide sufficient information to execute the pattern transformation.

Table 10 should be inserted about here.

Below we illustrate the pattern transformation on OPC1, which is divided into two sub-processes, the

pattern instances detection and pattern transformation rules application, as follows.

The pattern instances detection sub-process uses the SPARQL query generated from the source

ontology pattern SP1 to find instances of a source ontology pattern to be transformed. The SPARQL

query generated from SP1 is shown in Figure 18. It retrieves all the pattern instances, which contain

source ontology entities and literals as shown in Table 11. Two pattern instances are returned in this

example, based on the source ontology in Figure 14.

Figure 18 should be inserted about here.

Table 11 should be inserted about here.

The pattern transformation rules application sub-process applies PTRs on the retrieved entities and

literals. Table 12 shows the result of applying PTRs in TR1 (Table 8) on the SPI1.1 query result shown in

Table 11 (note that some SP1 variables are bound to constants and are not shown in Table 11). Figure 19

shows the final output of the canonicalization process from executing pattern transformation on OPC1 to

OPC5.

Table 12 should be inserted about here.

Figure 19 should be inserted about here.

5 Analysis
This section provides qualitative and quantitative analyses to demonstrate that canonicalization enables

simplified OWL mapping axioms, shorter reasoning time, and better semantic mediation results.

Specifically, the analyses show the benefits canonicalization can provide to the last step, OWL Mapping

& Inference, in the OWL-based semantic mediation process shown in Figure 1. It should be noted,

however, that the analyses are not intended to show, nor do they prove, that the whole semantic

mediation process is shortened with canonicalization.

Two cases are used in the analyses to show the canonicalization impacts. Case 1 is the OWL mapping

between a canonicalized proprietary MSC model and the reference MSC ontology. Case 2 is the OWL

mapping between a non-canonicalized proprietary MSC model and the reference MSC ontology. The

non-canonicalized proprietary MSC model is an OWL-encoded proprietary MSC model using the RDB

automatic conversion profile described in section 0, i.e., it is the source ontology. As such, it does not

follow the ODPs used by the reference MSC ontology. On the other hand, the canonicalized proprietary

MSC model follows the same ODPs used by the reference MSC ontology. It is the result of performing

the transformations of the non-canonicalized schema and the corresponding data that are described in

Section 4. The next two subsections provide a detailed discussion of these analyses.

5.1 Qualitative Analysis
The qualitative analysis compares the OWL mapping statement complexity, mappability, and query

behavior of the two cases. Queries, which use only terminologies from the reference MSC ontology, are

used in the analysis. Since the queries use only terminologies and structures from the reference MSC

ontology to retrieve information encoded in the proprietary terminologies and structures, they verify

what semantic mediation has occurred.

MSC information related to Supplier_3 in the proprietary MSC data model shown in Figure 11 is used for

this illustration. The MSC information has two features including the service category and part length

capability. The queries Q1 and Q2 in Figure 20 contain conditions for these two features; hence, they are

sufficient to verify the semantic mediation related to these two features. These queries are encoded in

OWL DL query language (W3C 2009c) with the reference ontology terminology and structure. The

expected results from both queries are Supplier_3.

Figure 20 should be inserted about here.

Figure 21 should be inserted about here.

First, we analyze Case 1: OWL mapping between a canonicalized proprietary MSC model and the

reference MSC ontology. On the left side of Figure 21 is the canonicalized proprietary MSC model of

Supplier_3 information and on the right side is the reference MSC ontology. The dotted lines in the

figure depict all the necessary mapping axioms between the two models via either the

owl:equivalentClass or owl:equivalentProperty predicate. These axioms are sufficient for both Q1 and

Q2 to successfully return the desired results. Notice that both the subjects and objects of the mapping

axioms are simply a single class or property name without the need for complex OWL class or property

expressions (W3C 2009b). This is because both models follow the same set of ODPs and are structurally

aligned.

Next we analyze Case 2: OWL mapping between the non-canonicalized proprietary MSC model (i.e.,

source ontology) and the reference MSC ontology. Figure 22 illustrates this case. In this analysis, it is

assumed that the non-canonicalized proprietary MSC model is syntactically and automatically

transformed from its RDB representation. This is shown on the left side of the figure with Supplier_3

information; and on the right side is the reference MSC ontology. Unlike the previous case, simple class-

to-class and property-to-property mapping axioms are insufficient to enable Q1 and Q2 in this case.

Specifically, there are two issues and they are highlighted in the shaded areas connected by the double

arrow lines in the figure. First there is a need to map between differing OWL ontology artifact types,

specifically from a literal “6cm to 48cm” to two OWL data properties mo:hasMin and mo:hasMax. This is

related to the part length information and is needed to enable Q1; however, this is not mappable within

OWL DL.

The other issue is that there is a need to bridge the views between two different structures representing

the concept of supplier having an EDM manufacturing service. (Also, note that the non-canonicalized

model has a rather more complex structure than that in the reference MSC ontology.) Such bridging is

necessary to enable Q2. This is achieved by the mapping class technique (Kulvatunyou et al. 2013). The

required mapping class EDMSupplier is shown in Table 13. Mapping class is a defined-class with multiple

necessary and sufficient conditions (owl:equivalentClass axioms). Each condition uses terms from a

single terminology set and requires an OWL class expression as an object in the axiom. In this case,

mapping class axioms are the A1 and A2 axioms in Table 13. Although these mapping class axioms

enable Q2 to return the desired results, the query behavior associated with mapping class approach is

somewhat restricted. The reason is that the bridge between the views is limited to the view (i.e., class

expressions) provided in the axioms. For example, the EDMSupplier mapping class in A1 bridges view is

related only to mo:Supplier and mo:hasService. If a new target of the query is related to, say, mo:Factory

and mo:hasService, another mapping class will be needed. Moreover, the number of mapping classes

grows proportionally with the number of service categories, as can be seen that A1 and A2 only address

one service category.

All-in-all, this analysis shows that canonicalization before OWL mapping can circumvent OWL DL

limitations, can simplify the mappings by avoiding the need for OWL class expression in the mapping

class, and can simplify the mapping maintenance by reducing the number and complexity of mapping

axioms. The quantitative analysis in the next section will show another benefit of canonicalization by

demonstrating that the growing number of mapping classes due to the growing number of service

categories has a negative impact on the OWL inference time.

Figure 22 should be inserted about here.

Table 13 should be inserted about here.

5.2 Quantitative Analysis
The quantitative analysis compares the OWL inference time as influenced by the two types of mapping

to reference ontology: using canonicalized vs. non-canonicalized proprietary MSC models. Specifically,

we study the impact of the number of mapping classes on the amount of time required to complete the

OWL DL reasoning process required by the OWL-based semantic mediation. The reasoning process

includes four tasks including loading, consistency checking, classification, and realization as described in

(MINDSWAP 2012). Brief descriptions of these tasks are provided below. All the reasoning are

performed with Pellet version 2.2.2 (Clark and Parsia 2012) on a Dell Precision WorkStation T5500 with

Intel Xeon E5504 2.00GHz (8 CPUs) and 2GB of main memory.

Reasoning task:

1. Loading loads an RDF model to the reasoner.

2. Consistency checking ensures that an ontology does not contain any contradictory facts. OWL
Abstract Syntax & Semantics document provides a formal definition of ontology consistency that the
reasoner uses. In DL terminology, this is the operation to check the consistency of an ABox with
respect to a TBox.

3. Classification computes the subclass relation between each named class to create the class
hierarchy.

4. Realization finds the most specific classes that an individual belongs to; in other words, it computes
the direct types for each of the individuals.

In this analysis, only part of the MSC information from the previous section that is related to the

supplier’s service declaration is used. We also show, in this case, that even if a human applies additional

rule-based transformation to the syntactically transformed MSC information, it may still not be

structurally aligned with the reference ontology and cause a reasoning inefficiency. Figure 23 shows this

additional lift-up based on the proprietary view. It shows that a single relationship via the

s:provideService object property and the s:EDM instance of the s:Service class replaces the whole

complex structure to declare the EDM (Electro-discharge Machining) service capability. This modeling

pattern, which represents service category as an instance of the service class, is abstracted out with

polymorphic names for several declarations of service capabilities in the left side of Figure 25. The

reference ontology, on the other hand, represents each service category as a subclass of the service

class. Different sets of mapping axioms are then required in the case of canonicalized and non-

canonicalized proprietary MSC model as shown in the middle of Figure 24 and Figure 25, respectively.

Figure 23 should be inserted about here.

Since the canonicalized proprietary MSC model is structurally aligned with the reference MSC ontology,

the service categories s:C1 to s:Cn are modeled the same way with OWL classes, mo:C1 to mo:Cn. As a

result, the mapping consists of only simple class-to-class and property-to-property equivalence mapping

axioms as shown in the figure. On the other hand, different modeling patterns between the non-

canonicalized proprietary MSC model and the reference ontology necessitate the mapping classes.

Differing mapping classes are required for C1 to Cn. Generally, an additional mapping class is needed for

each additional service category. For the quantitative analysis, we perform 10 semantic mediation

experiments and compare reasoning times between the two cases by incrementing the number of

service categories by 10 for each experiment up to 100 (n = 100).

Figure 24 should be inserted about here.

Figure 25 should be inserted about here.

Table 14 shows the reasoning times in the canonicalization case. It can be seen that the increase in the

number of service categories has little impact on the consistency checking and classification times, while

minor increases can be observed on the loading and realization times. Table 15 shows the reasoning

times in the non-canonicalization. In this case, the classification and realization times are significantly

affected by the increase in the number of service categories; while the loading and consistency checking

times are marginally increased. The graph in Figure 26 concludes that the total reasoning time in the

non-canonicalization case grows cubically with the number of service category classes versus linearly in

the canonicalization case. This finding suggests that canonicalization can play a significant role in a

practical deployment of OWL DL-based semantic mediation when there are structural conflicts.

Table 14 should be inserted about here.

Table 15 should be inserted about here.

Figure 26 should be inserted about here.

6 Related Works
There are five steps in the framework for canonicalization shown in Figure 2 including the

transformation, OPCs identification, source ontology patterns generation, transformation rules

generation and pattern transformation. In this section, we discuss the works that are relevant to

enabling these steps.

The transformation step transforms heterogeneous syntaxes of data into a common RDF syntax using

OWL DL vocabulary. Currently, there are abundantly many tools to support RDB-to-RDF transformations.

The W3C RDB2RDF Incubator group has presented a survey on these tools such as D2RQ, Oracle

Database 11g, Virtuoso’s RDF View, Metatomix Semantic Platform, RDBtoOnto, SquirrelRDF, TopBraid

Composor and Triplify (Satya et al. 2009). We have investigated D2RQ in particular. It provides a

mapping language to create a mapping profile between a relational database schema and RDFS/OWL

ontologies. Its software platform can execute the mapping profile to create an RDF representation of a

corresponding relational database (Bizer 2003, Bizer and Seaborne 2004, and D2RQ 2012). All-in-all, we

have found that the D2RQ is capable of supporting the automatic transformation via the mapping profile

outlined in section 3.1.

The OPCs identification process starts with establishing semantic links between entities and literals in

the source ontology and the archetypical entities and literals in the pattern library. This stage requires

ODPs that have been developed beforehand. With regard to the ODPs development, there have been

recent research works that were supported by the NeOn project10. In particular, the deliverable D2.5.1

(Presutti et al. 2008) provides a methodology to create ODPs. In addition, works related to pattern

library includes Suárez-Figueroa et al. (2007) and Presutti et al. (2008). Suárez-Figueroa et al. (2007)

have presented a general template for describing ODPs and an initial repository of OWL-based ODPs.

Presutti et al. (2008) have classified ODPs into structural, correspondence, reasoning, presentation, and

lexico-syntactic and content and have also specified functional requirements of a repository for ODPs. A

repository following such specification has been implemented on-line at the Ontology Design Patterns

wiki page11.

Manually establishing the terminological links in the OPC identification can become cumbersome when

the information sources in the source ontology and pattern library are large. Hence, ontology matching

algorithms which suggest candidates for terminological links can be useful. Shvaiko and Euzenat (2011)

have summarized and analyzed works in ontology matching in the past decade. Applications of ontology

matching algorithms have been largely focused on achieving full ontology mapping or alignment, which

the authors have indicated that there are still open issues, particularly the ability to match across entity

types (i.e., to match across structural conflicts). However, matching task such like in the OPCs

identification outlined in our canonicalization framework calls for terminology matches without an

indication of structural relationship. Therefore, we hypothesize that ontology matching algorithms

would be suitable to the OPCs identification task. This will be a topic of future work.

These last three canonicalization steps can be collectively supported by a pattern-based ontology

transformation solution. Key enablers for the pattern-based ontology transformations are pattern

transformation definition, pattern instances detection engine, and pattern transformation engine.

PATOMAT project (Svab-Zamazal et al 2009, Svab-Zamazal and Svatek 2011) provides workable methods

and tools that include these key enablers. It provides a well-defined XML schema for the pattern

transformation definition (including pattern definitions and transformation rules). For pattern instances

detection engine, PATOMAT provides the functionality to generate SPARQL query from the pattern

transformation definition. Its pattern transformation engine uses OPPL application interface (OPPL

2012) for pattern transformation. PATOMAT also has the TPEditor component which is a graphical user

10

 http://www.neon-project.org/
11 http://www.ontologydesignpatterns.org

interface-based editor of source and target ontology patterns and associated transformation rules. The

output of the TPEditor is an XML instance file conformed to the PATOMAT’s XML schema for pattern

transformation definition. Our analysis has indicated that some enhancements to PATOMAT functions

are necessary to fully support the proposed canonicalization framework. First, PATOMAT does not deal

with the representative artifacts which represent the varying parts of the source ontology pattern. Thus,

even in the case that there are multiple pattern instances that use the same source ontology pattern,

recursive transformation rule applications on those pattern instances do not occur. Second, PATOMAT

does not provide any computer-assisted method to generate source ontology patterns and to retrieve

reusable target ontology pattern. All the patterns need to be defined manually at present. Lastly, the

literal values may contain important concepts within the resulting RDB-to-OWL transformation.

However, there is no facility to deal with literal value pattern detections and transformations at present.

7 Conclusion and Future Works
In acquiring manufacturing services, the customer is confronted with a number of diverse supplier

databases with different structures, terminologies, and query languages. Using a semantic mediation

approach – providing a common reference ontology for accurately mapping source information into that

and other forms – can simplify the customer’s problem. This in-turn enables easier reconfiguration of a

supply chain, leading to a better supply chain performance.

We have shown in earlier work that the OWL language is suitable for capturing both the reference

ontology and the underlying ontologies for the supplier data schemas. It has also shown that an OWL

reasoner can be used to perform the semantic information transformations involved in answering the

customer queries.

OWL-based semantic mediation that seeks to address all kinds of semantic conflicts in a single

transformation step requires mapping statements that use complex expressions. This makes the use of

the DL reasoner for the transformations complex and computationally expensive, and it does not always

completely render the source information.

This paper describes a novel approach to semantic mediation by decomposing the mapping task into

two steps: the first step resolves the structural conflicts between the source schemas and the reference

ontology using a “canonicalization” transformation; and the second step addresses other conflicts via

OWL DL mapping axioms. We presented a detailed framework to achieve the canonicalization, and we

demonstrated its applicability using a realistic example of a proprietary manufacturing service capability

database.

We presented qualitative and quantitative analyses of the impact of canonicalization on the mapping

task. The qualitative analysis shows that canonicalization can circumvent OWL DL limitations, simplify

the OWL mapping axiom by avoiding the need for complex OWL class expressions in the mapping

axioms, and simplify the mapping maintenance by reducing the number and complexity of mapping

axioms. The quantitative analysis shows that OWL reasoning time grows cubically when OWL DL axioms

are used to resolve a common type of structural conflict, while the reasoning time for the

canonicalization approach grows linearly.

The primary contribution of this research is the formalization of the canonicalization process in a

framework that encompasses complementary work in syntactical data transformation, ontology design

patterns, ontology matching, and pattern-based ontology transformation. In addition, the paper outlines

a novel approach to representing reusable conceptual ontology design patterns and capturing the

ontology pattern correspondences (OPCs) in the source ontology.

In terms of future work, we are developing an implementation to support the proposed framework. This

includes: the pattern library storage which supports the proposed conceptual ontology design pattern

representation; a computer-assisted OPC identification environment that employs ontology-matching

algorithms; and a software component that help the user manage the ontology pattern correspondence

throughout the canonicalization process. Enhancements to the existing pattern transformation engine

are also needed as outlined in the related work. Our further work also includes developing a

methodology for deriving ontology design patterns for the manufacturing service capability information.

DISCLAIMER

Certain commercial software products are identified in this paper. These products were used only for

demonstration purposes. This use does not imply approval or endorsement by NIST, nor does it imply

these products are necessarily the best available for the purpose.

References

Ameri F. and Dutta, D. (2006), An Upper Ontology for Manufacturing Service Description, ASME

International Design Engineering Technical Conferences & Computers and Information in Engineering

Conference, Philadelphia, 10 – 13.

Bizer, C. (2003), D2R MAP : A Database to RDF Mapping Language, Proceedings of the 12th International

World Wide Web Conference, Budapest, HUNGARY, 2003.

Bizer, C., Seaborne, A. (2004), D2RQ–treating non-RDF databases as virtual RDF graphs, Proceedings of

3rd International Semantic Web Conference (Hiroshima, Japan, 2004), S.A. McIlraith, D. Plexousakis, F.

van Harmelen, Eds., Springer, Lecture Note in Computer Sciences 3298.

Clark and Parsia LLC (2012), Pellet: OWL 2 Reasoner for Java version 2.2.2, available online at

http://clarkparsia.com/pellet/, accessed September 2012.

Das, S., Sundara, S., and Cyganiak (2012), R. R2RML: RDB to RDF mapping language. World Wide Web

Consortium, Recommendation REC-r2rml-20120927, September 2012.

D2RQ framework version 0.8.1, Accessing Relational Databases as Virtual RDF Graphs, available online at

http://d2rq.org/, accessed September 2012.

Gangemi, A. (2005), Ontology Design Patterns for Semantic Web Content, International Semantic Web

Conference, Springer-Verlag Lecture Note in Computer Sciences 3729, pp. 262–276.

Hert, M., Reif, G., Gall, H. C. (2011), A Comparison of RDB-to-RDF Mapping Languages, Proceedings of

the International Conference on Semantic Systems, Graz, Austria, 2011.

Kulvatunyou, B.S., Ivezic, N., Lee, Y., Shin, J. (2013), An Analysis of OWL-based Semantic Mediation

Approaches to Enhance Manufacturing Service Capability Models, to appear in International Journal of

Computer Integrated Manufacturing, available online at http://www.nist.gov/publication-portal.cfm#.

Lu, Y., Panetto, H., Ni, Y., and Gu, X. (2013) Ontology alignment for networked enterprise information

system interoperability in supply chain environment, International Journal of Computer Integrated

Manufacturing, Vol. 26(1-2), pp. 140-151.

MINDSWAP - Maryland Information and Network Dynamics Lab Semantic Web Agents Project (2012),

Pellet Performance Report, available online at

http://www.mindswap.org/2003/pellet/performance.shtml, accessed September 2012.

OPPL - Ontology Pre-Processor Language version 2 (2012), available at http://oppl2.sourceforge.net/,

accessed September 2012.

Park, J., and Ram, S. (2004), Information Systems Interoperability: What Lies Beneath?, ACM

Transactions on Information Systems, Vol. 22(4), pp. 595-632.

Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M.C., Montiel-Ponsoda, E.,

Poveda, M. (2008), NeOn Project Delivery - D2.5.1. A Library of Ontology Design Patterns: reusable

solutions for collaborative design of networked ontologies.

RFC3987 - Request for Comments: 3987 (January 2005), Internationalized Resource Identifiers (IRIs),

available online at http://www.ietf.org/rfc/rfc3987.txt.

Satya, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, T., Auer, S., Sequeda, J., and Ezzat, A. (2009), A

Survey of Current Approaches for Mapping of Relational Databases to RDF, W3C RDB2RDF Incubator

Group, available online at http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

Sheth, A. P., and Kashyap, V. (1992), So far (schematically), yet so near (semantically), Proceedings of the

IFIP WG2.6 Database Semantics Conference on Interoperable Database Systems (DS-5, Lorne, Victoria,

Australia, Nov. 16–20), Hsiao, D. K., Neuhold, E. J., and Sacks-Davis, R., Eds., 283–312.

Shvaiko, P., Euzenat, J. (2011), Ontology matching: state of the art and future challenges, IEEE

Transactions on Knowledge and Data Engineering, 99.

SMLC - Smart Manufacturing Leadership Coalition (2011), Implementing 21st Century Smart

Manufacturing, Workshop Summary Report, June 24, 2011, available online at https://smart-process-

manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf.

Svab-Zamazal O., Svatek V., Scharffe F., David J. (2009), Detection and Transformation of Ontology

Patterns, Knowledge Discovery, Knowledge Engineering and Knowledge Management, Revised Selected

Papers from IC3K. Springer CCIS no.128, 2011, 210–223

Svab-Zamazal O. and Svatek V. (2011), OWL Matching Patterns Backed by Naming and Ontology Patterns,

Znalosti, 10th Czecho-Slovak Knowledge Technology Conference, Stara Lesna, Slovakia.

Tsinaraki C., Polydoros, P., and Christodoulakis S. (2004), Interoperability support for Ontology-based

Video Retrieval Applications, Image and Video Retrieval. Springer LNCS 3115, pp. 582-591.

Wang, G., Wong, T. N., & Wang, X. (2013). An ontology based approach to organize multi-agent assisted

supply chain negotiations. Computers & Industrial Engineering. doi:10.1016/j.cie.2012.06.018.

W3C - World Wide Web Consortium (2004a), SWRL: A Semantic Web Rule Language, May 21, 2004,

available online at http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

W3C - World Wide Web Consortium (2004b), Resource Description Framework (RDF): Concepts and

Abstract Syntax, February 10, 2004, available online at http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/.

W3C - World Wide Web Consortium (2004c), XML Schema, Parts 0, 1, and 2 (Second Edition), October

28, 2004, available online at http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-

1/, and http://www.w3.org/TR/xmlschema-2/.

W3C - World Wide Web Consortium (2005a), Representing Classes As Property Values on the Semantic

Web, April 5, 2005, available online at http://www.w3.org/TR/swbp-classes-as-values/

W3C - World Wide Web Consortium (2005b), Representing Specified Values in OWL: "value partitions"

and "value sets", May 17 2005, available online at http://www.w3.org/TR/swbp-specified-values/

W3C – World Wide Web Consortium (2006), Extensible Markup Language (XML) 1.1, August 16, 2006,

available online at http://www.w3.org/TR/xml11/

W3C - World Wide Web Consortium (2008), SPARQL Query Language for RDF, January 15, 2008,

available online at http://www.w3.org/TR/rdf-sparql-query/

W3C - World Wide Web Consortium (2009a), OWL 2 Web Ontology Language, October 27, 2009,

available online at http://www.w3.org/TR/owl2-overview/.

W3C - World Wide Web Consortium (2009b), OWL 2 Web Ontology Language Structural Specification

and Functional-Style Syntax, October 27, 2009, available online at http://www.w3.org/TR/owl2-syntax/

W3C – World Wide Web Consortium (2009c), OWL 2 Web Ontology Language Manchester Syntax W3C

Working Group Note, October 27, 2009, available online at http://www.w3.org/TR/owl2-manchester-

syntax/.

http://www.w3.org/TR/swbp-specified-values/

Ye, Y., Yang, D., Jiang, Z., and Tong, L. (2007), An Ontology-Based Architecture for Implementing

Semantic Integration of Supply-Chain Management, International Journal of Computer Integrated

Manufacturing, Vol. 21(1), pp. 1–18.

Zheng, L., Terpenny, J. (2013). A hybrid ontology approach for integration of obsolescence information.

Computers & Industrial Engineering. doi:10.1016/j.cie.2013.02.011.

A Framework to Canonicalize Manufacturing
Service Capability Models

Figure 1: Typical (top) and proposed (bottom) process to OWL-based semantic mediation between

proprietary MSC data models and Reference ontology (dark grey boxes typically require human

involvement and are not fully automated)

Figure 2: Canonicalization framework

Figure 3: Archetypical ontology of the Supplier-Service ODP

ODP Name/Description ODP Signature Binding Expression

Supplier-service:

Supplier declares a

service it provides

and models a semantic

service category as a

(descendant) subclass

of the abstract

ServiceCategory class

C1 = p:Supplier

C2 = p:Profile

C3 = p:ServiceCategory

OP1 = p:hasProfile

OP2 = p:hasService

Unbounded Entities:

C4, I1, I2, I3

Figure 4: Supplier-Service ODP example

Figure 5: Transformation example

Figure 6: An example source ontology

Figure 7: OPC identification process

ID Source Ontology Signature Binding Expression

SP1

C1 = s:Supplier

C2 = s:ServiceCategory

OP1 = s:hasMachiningService

Unbounded Entities: I1, I2

Figure 8: Graphical representation of the source ontology pattern for OPC1 (Table 3Error! Reference

source not found.)

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX s: <http://www.nist.gov/el/sid/msnm/PortalB.owl#>

SELECT ?I1, ?I2

 WHERE {

 ?I1 rdf:type s:Supplier .

 ?I2 rdf:type s:ServiceCategory .

 ?I1 s:hasMachiningService ?I2 .

}

Figure 9: Source ontology pattern SPARQL query

ODP Name/Description Signature Binding Expression

Supplier-Service:

Supplier declares a

service it provides

C1 = p:Supplier

C2 = p:Service

OP1 = p:hasService

Unbounded Entities: I1, I2

Service-

LengthCapability:

A service declares a

length capability

value range, e.g, part

envelop size, min/max

acceptable diameter

C1 = p:Service

C2 = p:LengthCapability

OP1 = p:hasLengthCapability

Unbounded Entities: I1, I2

Service-

Categorization:

Classify a service

into a service

category

C1 = p:Service

C2 = p:ServiceCategory

Unbounded Entities: I1

LengthCapability:

A length capability

representation, e.g.,

part envelop size,

min/max acceptable

diameter

C1 = p:LengthCapability

DP1 = p:hasMax

DP2 = p:hasMin

Unbounded Entities: I1, L1,

L2

Figure 10: Pattern library

Figure 11: Proprietary manufacturing service capability data model

Figure 12: Standard rule-based OWL DL encoding of the Supplier table

Figure 13: Standard rule-based OWL DL encoding of the SupplierService table

Figure 14: Source ontology

ID Source Ontology Signature Binding Expression

SP1

C1 = s:Supplier

C2 = s:SuplierService

C3 = s:Service

OP1 = s:SupplierService_SupplierID

OP2 = s:SupplierService_ServiceID

DP1 = s:Supplier_ID

DP2 = s:Service_Name

Unbounded Entities: I1, I2, I3, L1, L2

SP2

C1 = s:Service

C2 = s:EDM

OP1 = s:EDM_ServiceID

DP1 = s:Service_Name

Unbounded Entities: I1, I2, L1

SP3

C1 = s:Service

C2 = s:Moldmaking

OP1 = s:Moldmaking_ServiceID

DP1 = s:Service_Name

Unbounded Entities: I1, I2, L1

SP4

C1 = s:EDM

C2 = s:EDMPartLength

C3 = s:PartLength

OP1 = s:EDMPartlength_EDMID

OP2 = s:EDMPartLengnth_PartLengthID

DP1 = s:PartLength_Value

Unbounded Entities: I1, I2, L1

SP5

C1 = s:PartLength

DP1 = s:PartLength_Value

Unbounded Entities: L1

Figure 15: Graphical representations of the source ontology patterns

Figure 16: PTRs between the source and target ontology patterns in OPC1

Figure 17: Literal value pattern detection

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX s: <http://www.nist.gov/el/sid/msnm/PortalB.owl#>

SELECT distinct *

 WHERE {

 ?I1 rdf:type s:Supplier .

 ?I2 rdf:type s:SupplierService .

 ?I3 rdf:type s:Service .

 ?I2 s:SupplierService_SupplierID ?I1 .

 ?I2 s:SupplierService_ServiceID ?I3 .

 ?I1 s:Supplier_ID ?L1 .

 ?I3 s:Service_Name ?L2 .

 }

Figure 18: SPARQL query generated from SP1

Figure 19: Canonicalized proprietary MSC model

Note: Terms in the reference MSC ontology are denoted by the prefix, ‘mo’.

Q1: Identify suppliers having the ElectroDischargeMachiningService which has minimum 6cm

and maximum 48cm as part length capability value (using only terms from the reference MSC
ontology.)

OWL DL Query => mo:Supplier and mo:hasService some (mo:ElectroDischargeMachiningService

and mo:hasLengthCapability some (mo:PartLengthCapability and ((mo:hasMin value

6^^xsd:double) and (mo:hasMax value 48^^xsd:double))))

Q2: Identify suppliers having the ElectroDischargeMachiningService (using only terms from

reference MSC ontology.)

OWL DL Query => mo:Supplier and mo:hasService some mo:ElectroDischargeMachiningService

Figure 20: Desired query behavior to demonstrate the OWL-based semantic mediation

Figure 21: Qualitative analysis of OWL mapping after canonicalization

Figure 22: Qualitative analysis of OWL mapping without canonicalization

Figure 23: Additional rule-based transformation applied to the syntactically transformed MSC

information

Figure 24: Quantitative analysis of OWL mapping inference after canonicalization

Figure 25: Quantitative analysis of OWL mapping inference without canonicalization

Figure 26: Aggregated reasoning performances of two cases

A Framework to Canonicalize Manufacturing
Service Capability Models

Table 1: Serialization of the Supplier-Service ODP in

Entity

Literal Axiom Binding Expression Class Indi
vidual

Object
Property

Data
Property

Data
type

C1

C2

C3

C4

I1

I2

I3

OP1

OP2

- - - (I1, rdf:type, C1)

(I2, rdf:type, C2)

(C4, rdfs:subClassOf,C3)

(I3, rdf:type, C4)

(I1, OP1, I2)

(I2, OP2, I3)

C1 = p:Supplier

C2 = p:Profile

C3 = p:ServiceCategory

OP1 = p:hasProfile

OP2 = p:hasService

Table 2: Initial ontology patterns correspondence

OPC ID

Source Ontology Pattern
Target Ontology

Pattern
Artifact type Representative Artifact

OPC1

Class s:Supplier, s:ServiceCategory

Supplier-Service

Individual

ObjectProperty

DataProperty

Datatype

Literalal

Axiom

Table 3: Ontology patterns correspondence output from the OPCs identification

OPC ID

Source Ontology Pattern
Target Ontology

Pattern
Artifact type Representative Artifact

OPC1

Class s:Supplier, s:ServiceCategory

Supplier-Service

Individual s:SupplierA,s:EDM

ObjectProperty s:hasMachiningService

DataProperty

Datatype

Literalal

Axiom (s:SupplierA, s:hasMachiningService, s:EDM)

Table 4: Serialization of the source ontology pattern SP1 in Figure 8

Entity

Literal Axiom Binding Expression
Class

Individ

uals

Object

Property

Data

Property

Data

type

C1,C2 I1, I2, OP1 - - -

I1 rdf:type C1

I2 rdf:type C2

I1 OP1 I2

C1: S:Supplier

C2: S:ServiceCategory

OP1:

s:hasMachiningService

Table 5: An exemplary transformation rule TR1 for OPC1

PTR ID
Source Ontology

Pattern

Target Ontology

Pattern

Transformation

type

Transformation

Expression

PTR1.1 s:C1 p:C1 Type-1 s:C1

PTR1.2 s:C2 p:C3 Type-1 s:C2

PTR1.3 s:I1 p:I1 Type-1 s:I1

PTR1.4 s:I2 p:C4 Type-2 s:I2

PTR1.5 s:OP1 - Type-3 -

PTR1.6 - p:C2 Type-4 p:C2

PTR1.7 - p:I2 Type-4 p:I2

PTR1.8 - p:I3 Type-4 p:I3

PTR1.9 - p:OP1 Type-4 p:OP1

PTR1.10 - p:OP2 Type-4 p:OP2

Table 6: Initial ontology pattern correspondences

OPC ID
Source Ontology Pattern

Target Ontology Pattern

Artifact type Source Ontology Artifact

OPC1 Class s:Supplier, s:Service Supplier-Service

OPC2 Class s:Service,s:EDM Service-Categorization

OPC3 Class s:EDM, s:PartLength Service-LengthCapability

OPC4 Class s:PartLength LengthCapability

OPC5 Class s:Service, s:Moldmaking Service-Categorization

Table 7: Source & target ontology pattern correspondences output from the OPCs identification

OPC ID
Source Ontology Pattern Target

Ontology

Pattern Artifact type Source Ontology Artifact

OPC1 Class s:Supplier, s:SuplierService, s:Service Supplier-

Service
Individual s:Supplier_3, s:SS_3_4, s:Service_4

Object Property s:SupplierService_SupplierID,s:SupplierService_ServiceID

Data Property s:Supplier_ID, s:Service_Name

Datatype xsd:string

Literalal “Supplier_3”, “S3_EDM_Service”

Axiom (s:Supplier_3, rdf:type, s:Supplier),

(s:SS_3_4, rdf:type, s:SuplierService),

(s:SS_3_4, s:SupplierService_SupplierID, s:Supplier_3),

(s:SS_3_4, s:SupplierService_ServiceID, s:Service_4),

(s:Supplier_3, s:Supplier_ID, “Supplier_3”),

(s:Service_4, s:Service_Name, “S3_EDM_Service”)

OPC2 Class s:Service, s:EDM Service-

Categoriza

tion

Individual s:Service_4, s:EDMService_3

Object Property s:EDM_ServiceID

Data Property s:Service_Name

Datatype xsd:string

Literalal “S3_EDM_Service”

Axiom (s:Service_4, rdf:type, s:Service), (s:EDMService_3, rdf:type,

s:EDM), (s:Service_4, s:Service_Name, “S3_EDM_Service”)

(s:EDMService_3, s:EDM_ServiceID, s:Service_4)

OPC3 Class s:Service, s:Moldmaking Service-

Categoriza

tion
Individual s:Service_9, s:MoldmakingService_3

Object Property s:Moldmaking_ServiceID

Data Property s:Service_Name

Datatype xsd:string

Literalal “S6_Moldmaking_Service”

Axiom (s:Service_9, rdf:type, s:Service),

(s:Service_9, s:Service_Name, “S6_Moldmaking_Service”),

(s:MoldmakingService_3, rdf:type, s:Moldmaking),

(s:MoldmakingService_3, s:Moldmaking_ServiceID, s:Service_9)

OPC4 Class s:EDM, s:PartLength, s:EDMPartLength Service-

Length

Capability

Individual s:EDMService_3, s:EP_3_4, s:PartLength_4

Object Property s:EDMPartlength_EDMID, s:EDMPartLengnth_PartLengthID

Data Property s:PartLength_Value

Datatype xsd:string

Literalal “6cm – 48cm”

Axiom (s:EDMService_3, rdf:type, s:EDM), (s:PartLength_4, rdf:type,

s:PartLength), (s:EP_3_4, rdf:type, s:EDMPartLength),

(s:EP_3_4, s:EDMPartLengnth_PartLengthID,s:PartLength_4),

(s:EP_3_4, s:EDMPartlength_EDMID, s:EDMService_3)

OPC5 Class s:PartLength Length

Capability Individual s:PartLength_4

Object Property -

Data Property s:PartLength_Value

Datatype xsd:string

Literalal “6cm – 48cm”

Axiom (s:PartLength_4, rdf:type, s:PartLength), (s:PartLength_4,

s:PartLength_Value, “6cm – 48cm”)

Table 8: Transformation rule for OPC1

Rule

ID
PTR ID

Source Ontology

Pattern Variable

Target Ontology

Pattern Variable

Transformation

type

Transformation

Expression

TR1 PTR1.1 s:C1 p:C1 Type-1 s:C1

PTR1.2 s:C3 p:C2 Type-1 s:C3

PTR1.3 s:L1 P:I1 Type-2 s:L1

PTR1.4 s:L2 P:I2 Type-2 s:L1

 PTR1.5 - p:OP1 Type-4 p:hasService

PTR1.6 s:I1 - Type-3 -

PTR1.7 s:I2 - Type-3 -

PTR1.8 s:I3 - Type-3 -

PTR1.9 s:OP1 - Type-3 -

PTR1.10 s:OP2 - Type-3 -

PTR1.11 s:DP1 - Type-3 -

PTR1.12 s:DP2 - Type-3 -

PTR1.13 s:C2 - Type-3 -

Table 9: Transformation rule

Rule

ID
PTR ID

Source Ontology

Pattern

Target Ontology

Pattern

Transformation

type

Transformation

Expression

TR5

PTR5.1 s:C1 p:C1 Type-1 s:C1

PTR5.2 s:I1 p:I1 Type-1 s:I1

PTR5.3 s:L1 p:L1 Type-2 s:G1

PTR5.4 s:L1 P:L2 Type-2 s:G2

PTR5.5 - p:DP1 Type-4 p:hasMin

PTR5.6 - p:DP2 Type-4 p:hasMax

PTR5.7 s:DP1 - Type-3 -

Table 10: OPCs information ready for the pattern transformation

OPC ID
Source Ontology

Pattern
Target Ontology Pattern Transformation Rule

OPC1 SP1 Supplier-Service TR1

 OPC2 SP2 Service-Categorization TR2

OPC3 SP3 Service-Categorization TR3

OPC4 SP4 Service-LengthCapability TR4

OPC5 SP5 LengthCapability TR5

Table 11: Occurrences of SP1 in the source ontology derived from SP1 query

SP1

Instance ID
I1 I2 I3 L1 L2

SPI1.1 s:Supplier_3 s:SS_3_4 s:Service_4 “Supplier_3” “S3_EDM_Service”

SPI1.2 s:Supplier_6 s:SS_6_9 s:Service_9 “Supplier_6” “S6_Moldmaking_Service”

Table 12: Results of TR1 application on SPI1.1 pattern instance

PTR ID
SP1

Variables
Source Ontology Artifacts

Transformation

Type

Result

Name Type

PTR1.1 s:C1 s:Supplier Type-1 s:Supplier Class

PTR1.2 s:C3 s:Service Type-1 s:Service Class

PTR1.3 s:L1 “Supplier_3” Type-2 s:Supplier_3 Individual

PTR1.4 s:L2
“S3_EDM_Service”

Type-2
s:S3_EDM_Servic

e

Individual

PTR1.5 - - Type-4
s:hasService Object

Property

PTR1.6 s:I1 s:Supplier_3 Type-3 - -

PTR1.7 s:I2 s:SS_3_4 Type-3 - -

PTR1.8 s:I3 s:Service_4 Type-3 - -

PTR1.9 s:OP1 s:SupplierService_SupplierID Type-3 - -

PTR1.10 s:OP2 s:SupplierService_ServiceID Type-3 - -

PTR1.11 s:DP1 s:Supplier_ID Type-3 - -

PTR1.12 s:DP2 s:Service_Name Type-3 - -

PTR1.13 s:C2 s:SupplierService Type-3 - -

Table 13: Mapping class axioms

Mapping

Class

Axiom

ID
Mapping Class Axioms

EDMSupplier

A1
mo:Supplier and

 mo:hasService some mo:ElectroDischargeMachiningService

A2

s:Supplier and inverse s:SupplierService_SupplierID

some (s:SupplierService and s:SupplierService_ServiceID

some (s:Service and inverse s:EDM_ServiceID some s:EDM))

Table 14: Reasoning times in the canonicalization case (all times are in second)

Number of
Service Category

Classes

Loading
Time

Consistency
Checking Time

Classification Time
Realization

Time
Total Time

10 0.005 0.001 0.001 0.001 0.008

20 0.006 0.001 0.001 0.002 0.010

30 0.009 0.002 0.001 0.003 0.015

40 0.01 0.001 0.001 0.007 0.019

50 0.012 0.002 0.001 0.009 0.024

60 0.013 0.003 0.001 0.012 0.029

70 0.016 0.002 0.001 0.017 0.036

80 0.02 0.005 0.001 0.023 0.049

90 0.022 0.004 0.001 0.026 0.053

100 0.024 0.005 0.002 0.031 0.062

Table 15: Reasoning times in the non-canonicalization case (all times are in second)

Number of Service
Category
Classes

Loading
Time

Consistency
Checking Time

Classification
Time

Realization
Time

Total Time

10 0.031 0.031 0.203 0.062 0.327

20 0.047 0.032 1.67 0.391 2.14

30 0.062 0.047 10.744 2.17 13.023

40 0.063 0.156 38.508 6.184 44.911

50 0.047 0.25 91.101 13.039 104.437

60 0.062 0.343 185.847 24.81 211.062

70 0.062 0.421 339.18 44.652 384.315

80 0.078 0.687 573.335 78.936 653.036

90 0.078 0.796 948.925 124.508 1074.307

100 0.078 1.046 1505.469 183.522 1690.115

