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Abstract 

The ability to share precise models of suppliers’ manufacturing service capability (MSC) information is 

necessary to develop reliable methods that enable OEMs to efficiently configure agile and responsive 

supply chains. Currently, most suppliers use online tools to represent and share their MSC information 

in proprietary ways via proprietary MSC data models. These models have limited precision and 

interoperability. A semantically precise and rich reference MSC ontology can address both of these 

limitations and enable development of the reliable supply chain configuration methods. To effectively 

develop and deploy such a reference MSC ontology, semantic mediation between proprietary MSC 

models and the reference MSC ontology will be required. An important and challenging activity within 

the semantic mediation process is the mapping between a proprietary MSC data model and the 

reference MSC ontology. The challenge of the mapping activity is to resolve structural and semantic 

conflicts between the proprietary model and the reference ontology in a manner that is efficient and 

results in mapping structures that are simple to comprehend and maintain. This paper proposes an 

approach to address the challenge by preprocessing the structural representations of proprietary MSC 

data models for alignment with the set of modeling conventions (i.e., ontology design patterns - ODPs) 

that are also used in the reference MSC ontology. We call this preprocessing canonicalization. 

Canonicalization can circumvent 1:n, n:1, or n:m mapping statements that require complex expressions 

thereby simplifying the mapping activity and its resulting mapping statements. The main contribution of 

this paper is the design and formalization of an ODP-based canonicalization framework and its 

associated process in the context of description logic-based semantic mediation using the Ontology Web 

Language (OWL).  

1 Introduction 
The Smart Manufacturing Leadership Coalition has concluded that manufacturing service capability 

(MSC) information must be shared effectively across companies, to enable agile and optimized supply 

chains (SMLC 2011). That is, MSC information must be semantically precise, sufficient, and accessible in 

an interoperable way (Ameri and Dutta 2006). Currently, manufacturing companies share MSC 



information through proprietary information models called MSC data models. Examples of these 

proprietary MSC data models are those found in commercial supplier information sharing portals 

including Mfg.com1, GlobalSpec2, and ThomasNet3.These proprietary MSC data models are 

heterogeneous in their structures and data representations. In this situation, manufacturers cannot 

effectively share MSC information. Researches have shown that use of the Web Ontology Language 

(OWL) (W3C 2009a) reference ontology enhances access and precision of information). In particular, Ye 

et al. (2007), Lu et al. (2013), and Zheng and Terpenny (2013) use Semantic Web Rule Language (SWRL) 

(W3C 2004a) to link local and reference ontology, while Kulvatunyou et al. (2013) and Tsinaraki et al. 

(2007) use only OWL axioms.  

The OWL-based semantic mediation in Kulvatunyou et al. (2013) uses OWL reasoner and OWL mapping 

axioms to inherit semantics from a semantically rich reference MSC ontology4 resulting in enhanced 

semantic precision and coverage as well as semantic conflicts resolutions across proprietary MSC data 

models. The OWL-based semantic mediation can enable effective sharing of MSC information because 

the reference MSC ontology provides a common domain model and terminology that facilitates queries 

and responses across proprietary data models. The process of mediation described in Kulvatunyou et al. 

(2013) is as follows. MSC information in the proprietary MSC data models is first transformed into the 

common RDF syntax (W3C 2004b) using the OWL semantics resulting in OWL-encoded proprietary MSC 

model, which is then mapped to the reference ontology using OWL axioms. The description logic 

inference over OWL-encoded proprietary MSC models, reference ontology, and mapping axioms results 

in improved MSC information sharing. 

In fact, the first step in semantic mediation of any information in OWL, including MSC information, is to 

convert the proprietary information into OWL. There are typically two ways to transform proprietary 

MSC data models (or any other kinds of data models) into OWL—purely syntactical or with semantic 

interpretation. In the first case, generic transformation rules based on the underlying schema language 

are applied to the data source. For example, in the case of relational databases, tables are transformed 

into classes and columns are transformed into properties. In the other case, rules specific to data source 

scheme are written by human and used for the transformation. This transformation may occur in a 

single hop or two hops (in which case post-processing based on the data-source-specific rules occurs 

after a syntactical transformation). The data-source-specific rules are typically derived from the view of 

the data source owner without regard to other views and requirements of similar MSC information. The 

key is that, in either case, the resulting models, called arbitrary OWL-encoded proprietary MSC model5, 

are typically not structurally aligned with the target reference ontology as illustrated on the top of 

                                                            
1 http://www.mfg.com 
2 http://www.globalspec.com 
3 http://www.thomasnet.com 
4 In this paper the term “manufacturing service capability (MSC) model” or data model generally includes both schema and 
instance data. However, the reference ontology generally does not have instance data. A simple example of an instance data is 
‘Company A has drilling process capability with 0.025 millimeters precision’. We use the term ‘MSC data model’ in a very 
general sense to refer to any structured or semi-structured MSC information source; while the term ‘MSC model’ refers to 
formally encoded information specifically in OWL.   
5 By arbitrary, we mean that the MSC model inconsistently and sub-optimally uses one or more approaches to express 
manufacturing information using the OWL language, whether it involves class-based, property-based, or some general 
axiomatic representation that is specific proprietary view of the data. 



Figure 1. Such arbitrary OWL-encoded proprietary MSC model can render the OWL mapping axioms 

exceedingly complex, if at all possible, in the OWL-based semantic mediation. Technologies such as the 

D2RQ (D2RQ 2012) and the W3C’s R2RML (Das et al. 2012) support both the pure syntactical as well as 

the data-source-specific transformation practices. 

Figure 1 should be inserted about here. 

In this paper, we propose a methodology, called canonicalization, to streamline the OWL-based 

semantic mediation process in order to simplify the OWL mapping axioms and circumvent OWL axioms 

and reasoner limitations to produce mapping, particularly when dealing with structural differences. The 

idea is that a proprietary MSC data model is first automatically transformed with a syntactical standard 

rule set independent of its source data scheme; and then, with a human assistance, the canonicalization 

transforms the data again using a set of design patterns before writing OWL mapping axioms against the 

reference ontology. Since the design patterns used in the canonicalization are also used for the 

reference ontology, the resulting canonicalized OWL-encoded proprietary MSC model is more 

structurally aligned and simpler to map with the reference ontology. This proposed methodology is 

illustrated at the bottom of Figure 1. 

The simplification of the OWL mapping axioms will be validated on an example; and quantitative and 

qualitative analyses of the simplification results will be provided. The qualitative analysis will show that 

canonicalization can amend a model not originally suited for semantic mediation via OWL DL, simplify 

the mapping by avoiding the need for complex OWL class expressions in the mapping axioms, and 

simplify the mapping maintenance by reducing the number and complexity of mapping axioms. The 

quantitative analysis will show that computational time grows cubically when a certain, yet common, 

type of structural conflicts is resolved without canonicalization, as opposed to linearly when using 

canonicalization. 

The rest of the paper is structured as follows. In the next section, we characterize canonicalization by 

the types of semantic conflicts it can address. Section 3 introduces the proposed canonicalization 

framework. It is followed with Section 4, which validates the applicability and usefulness of the 

framework with a running example and the qualitative and quantitative analyses. Finally, we provide 

insights into related works that can enable and improve the framework upon its deployment before 

giving a conclusion and remarks on the current work and our future plans. 

2 Canonicalization Defined 
In the context of semantic mediation, canonicalization may typically be viewed as preprocessing 

otherwise diverse proprietary representations to simplify mappings. In this paper, we follow logical and 

conceptual ontology design patterns (explained later in the section) in transforming the OWL-encoded 

proprietary manufacturing service capability (MSC) models in order to simplify the mappings to the 

reference MSC ontology.  

Canonicalization in this paper is a means to avoid certain conflicts in encodings of proprietary and 

reference MSC information models. Sheth and Kashyab (1992) have identified various types of 



schematic differences between semantically similar objects from the relational databases perspective 

(i.e., objects are tables). Park and Ram (2004) have characterized these differences into two broad 

categories, namely the data-level and schema-level conflicts. Most of these conflict types can be carried 

over to OWL-based models.  

Data-level conflicts are differences in data domains caused by the multiple representations and 

interpretations of similar data. Data-level conflicts are applicable to representation of values of OWL 

data properties. Types of data-level conflicts relevant to our work include data-representation conflicts, 

data-unit conflicts, and data-precision conflicts. Data-representation conflicts occur when the 

semantically same values are represented differently such as 05/08/2012 and May-08-2012. The data-unit 

conflicts occur when the same quantities are represented with differing units, e.g., “2 inches” and “5 

centimeters”. Data-precision conflicts occur when different scaling is used, e.g., when continuous 

numerical numbers between 0 and 100 are used to indicate qualities vs. when discrete scale like low, 

medium, high is used.  

The schema-level conflicts are subcategorized into naming conflicts, entity-identifier conflicts, schema-

isomorphism conflicts, generalization conflicts, aggregation conflicts, and schematic discrepancies. 

Naming conflicts are the cases where two semantically identical concepts are named differently 

(synonyms); or, when two semantically different concepts are named the same (homonyms). Naming 

conflicts are applicable to OWL classes and properties as they have names. Entity-identifier conflicts can 

occur when differing primary keys are used for the same entity in different databases. This can occur in 

OWL when multiple class instances (individuals) with different URIs refer to the same individual. 

Isomorphism conflicts are the cases where two semantically same concepts are modeled with differing 

set of attributes and also differing number of attributes, e.g., Supplier(ID, GeneralPhone, SupportPhone) 

and Supplier(ID, Phone), Address(Line1, Line2, Zip) and Address(Street, City, State, Zip). 

Isomorphism conflicts are applicable to OWL classes in the sense that they can have differing set of 

properties. Generalization conflicts are the cases where objects/classes subsume one another, e.g., 

Student(ID, Name) subsumes GraduateStudent(ID, Name). Generalization conflicts are applicable to OWL 

classes and properties particularly when two models have different subsumption hierarchies. 

Aggregation conflicts are the cases when a property of a class is an aggregation of properties from 

multiple instances of another class. For example, the MonthlyProduction(ID, Month, Year, Item, 

Quantity) is an aggregation of the DailyProduction(ID, Date, Item, Quantity). Aggregation conflicts are 

applicable to OWL classes. The schematic discrepancies are the cases where information is modeled 

using differing constructs – table name, attribute name, and attribute value. In OWL, the information 

about a supplier providing a CNC Machining Service may be modeled using a class declaration axiom (a 

supplier is a type of CNCMachiningService class), an object property assertion (e.g., the supplier has an 

object property pointing to an instance of CNCMachiningService class or the supplier has an object 

property pointing to a CNCMachiningService instance of a ManufacturingService class), or a data property 

assertion (e.g., the supplier has a string-based property providesService pointing to 

“CNCMachiningService”, the supplier has a boolean property isCNCMachiningServiceProvider with the 

value true). 



In our work, canonicalization is rooted in encoding the proprietary MSC data model such that it follows a 

set of design patterns. Gangemi (2005) has described two types of ontology design patterns, logical and 

conceptual. Logical ontology design patterns are independent of conceptualization, while conceptual 

ontology design patterns are specific to a domain of classes and properties. Examples of logical ontology 

design patterns are those given by the W3C Semantic Web Task Force on Ontology Engineering Patterns 

including Representing Classes As Property Values on the Semantic Web, Representing Specified 

Values in OWL: “value partitions” and “value sets”, and others (W3C 2005a, W3C 2005b). An 

example of the conceptual ontology design pattern given in Gangemi (2005) is Participation at spatio-

temporal location. An example of the conceptual ontology design pattern related to MSC information is 

Dimensional Capability Expression. The pattern recommends that dimensional capability be 

represented as a class with two data properties representing minimum and maximum values. A 

proprietary manufacturing service capability data model may have its part envelope size capability 

represented as a text value such as “5 – 25 centimeters”. Canonicalization would convert such value 

into the representation recommended by the Dimensional Capability Expression pattern. 

Canonicalization in this paper focuses on resolving particular schema-level conflicts described above, 

particularly the isomorphism conflicts and schematic discrepancies. Resolution of the data-level conflicts 

may be incorporated into the canonicalization; however, it is out of scope of the paper. 

To be more specific, we further subcategorize the isomorphism conflicts into two cases, isomorphism 

conflicts with the same data precision and isomorphism conflicts with differing data precision. 

Canonicalization helps avoid only the former case. The latter case may be better left to handle via the 

OWL’s description logic based mapping.  

The isomorphism conflicts with the same data precision are the cases where two objects contain the 

same set of information. We extend this to also include the cases where data precision can be made the 

same by deriving the information from within the model or external to the model. For example, the 

MaximumPartSize(value) of an EDM machine can be canonicalized according to the 

DimensionalCapability(minValue, maxValue) ontology design pattern to become 

PartSizeCapability(minValue, maxValue) where the maxValue = value and the minValue can either be 

defaulted to zero or be derived from common domain knowledge.  

The isomorphism conflicts with differing data precision are the cases where two objects have differing 

sets of information and that the differences cannot be derived or defaulted. For example, the 

EDMService(ID, Type, SpecialService) and EDMMachiningService(ID, Type, SpecialService, 

MaxPartLength) objects have differing set of information. Canonicalization does not resolve this type of 

conflict. OWL DL mapping axioms can be used to merge the two set of properties given that the two 

objects/concepts are equivalent. 

The isomorphism conflicts and the schematic discrepancies may interact to form complex structural 

conflicts. Therefore, broadly speaking in this paper canonicalization aims at resolving the structural 

conflicts where the multitude of logical structures of a set of properties, their values, and axioms 

belonging to a class and/or instances in one model (a proprietary MSC model) are re-organized to form a 



different structure in a canonical model (a reference ontology) which follows a set of consistent design 

patterns.  

In this section, we have described the canonicalization from the perspective of schematic differences 

resolutions. In the next section, we describe the framework to canonicalize proprietary manufacturing 

service capability data models that originally may be implemented in various syntaxes such as relational 

databases, XML and XML schemas (W3C 2006, W3C 2004c). 

3 Canonicalization Framework 
This section describes the proposed canonicalization framework. The first subsection describes 

terminology related to OWL that will be used throughout the rest of the discussion. 

3.1 Relevant OWL Terminologies 
According to OWL 2 Structural Specification (W3C 2009b), there are three types of atomic symbols 

including entities, literals, and anonymous individuals. Entities are fundamental building blocks of an 

OWL ontology. They define named terms of an ontology and are uniquely identified by IRIs 

(Internationalized Resource Identifiers, an identifier construct akin to Uniform Resource Identifiers – 

URIs) (RFC3987). Classes, datatypes, object properties, data properties, annotation properties, and 

named individuals are entities. Literals are data values such as strings or integers. They have an 

associated datatype specifying how to interpret the value (lexical form). Anonymous individuals are akin 

to the named individuals but with a system assigned IRI. These are blank nodes in RDF (W3C 2009b).  

The main component of an OWL ontology is a set of axioms. Axioms are statements that say what is true 

in the domain. Entities, literals, and anonymous individuals are used to compose an axiom. Axioms in 

OWL ontology can be declaration axioms, class axioms, object property axioms, data property axioms, 

datatype definitions, keys, assertions (sometimes also called facts), and annotation axioms. For the 

purpose of our discussion, entities, literals, and axioms are collectively referred to as ontology artifacts. 

The rest of section 3 delves into the detail of the proposed canonicalization framework. 

3.2 Overview  
This section describes the proposed canonicalization framework, which is outlined in Figure 2. The initial 

input to the canonicalization is a proprietary MSC data model. Differing proprietary MSC data models 

may use differing syntaxes such as relational databases, XML and XML schemas (XML databases). In the 

first step of canonicalization process, these heterogeneous syntaxes are transformed into a common 

RDF graph syntax using OWL DL vocabulary and semantics. The step should be generally automatic using 

a standard transformation rules set that is independent of the MSC information semantics but specific 

to the proprietary data modeling syntax. The output of this step is a source ontology6 which is an input 

into the following OPCs (ontology pattern correspondence) identification step. Another input to the 

OPCs identification step is the pattern library. A pattern library consists of conceptual OWL ontology 

design patterns (ODPs for short) each of which indicates suitable structural pattern for an archetypical 

                                                            
6
 Source ontology is mapped to the Intermediate OWL-Encoded Proprietary MSC model in Figure 1. 



unit of manufacturing service relations encoded in OWL DL. In this OPCs identification step, 

correspondences between the fragments of source ontology and ODPs are specified (from here on, 

ODPs refer specifically to OWL ODPs unless otherwise stated). This output from the OPCs identification 

is called ontology pattern correspondences (OPCs). The OPCs are used to construct source ontology 

patterns in the source ontology patterns generation step and also to retrieve the applicable target 

ontology pattern from the pattern library. A source ontology pattern is used to retrieve from the source 

ontology all matching pattern instances. A pattern instance is a source ontology fragment to be 

transformed with respect to a target ontology pattern. How these artifacts are transformed is 

represented by the transformation rules that are generated in the transformation rules generation step. 

The final pattern transformation step applies the source ontology patterns and executes the respective 

transformation rules (by using a target ontology pattern) on the source ontology to generate the 

canonicalized OWL-encoded proprietary MSC model (canonicalized proprietary MSC model for short).  

Subsequent sections describe ODP and each canonicalization step in more detail.   

Figure 2 should be inserted about here. 

  



3.3 OWL Ontology Design Pattern  
In this paper, an ODP is a reusable successful solution to a recurrent semantic modeling problem, 

written in OWL (Gangemi 2005). ODPs can be viewed as generic, small ontologies or ontology 

components with explicit documentation of design rationales and best reengineering practices. Pattern-

based approach for ontology design has been gaining popularity recently because by reusing existing 

tested patterns as building blocks, a domain ontology can be constructed quickly with high quality and 

less conceptualization divergence. A large amount of ODPs (OWL ODPs and other language independent 

patterns) have been proposed in the ontology design community (Presutti et al. 2008)7. In this paper, we 

define a formal representation of ODPs as follows:  

Definition 1: Archetypical Ontology is a fragment of OWL structure represented with abstract 

concepts. It is a 4-tuple {E, L, AI, A}.  

- E is a set of OWL entities 

- L is a set of OWL literals 

- AI is a set of OWL anonymous individual 

- Ax is a set of OWL axioms 

Definition 2: ODP is a 2-tuple {Sig, BE} 

- Sig is a non-empty set representing an ontology signature 

- BE is a non-empty set representing binding expressions 
 

Definition 3: Ontology Signature is a 2-tuple {SL, SX} 

- SE is a non-empty set of entity and literal parameters 

- SX is a set of axioms relating members in SE 
 

Definition 4: Binding Expressions is a 2-tuple {SE, C} 

- SE is a non-empty set of entity and literal parameters, as in Definition 2 

- C  E U L, is a non-empty set of concepts and values assigned to the parameters in BE that 

give a specific meaning to the ontology signature 

 

An ODP8 is represented by an ODP signature and a set of binding expressions to a set of entities and 

literals from the archetypical ontology. An ODP signature is a parameterized structure of an archetypical 

ontology, while the binding expressions connect parameters in the ODP signature to the archetypical 

entities and literals in the archetypical ontology fragment. These entities and literals are concepts and 

values giving a specific meaning to the ODP signature. The entities and literals within the archetypical 

ontology fragment are divided into two groups 1) conceptual and 2) representative; and only the 

conceptual entities and literals are used in the binding expressions to convey the meaning of the ODP. 

                                                            
7
 http://www.ontologydesignpatterns.org 

8 The requirement for canonicalization is that the reference ontology follows a set of ODPs. However, rationalization and 
development of ODPs is out of the scope of this paper. The design of an ODP is concerned with the semantics and associated 
structure to convey the semantics. The related work section points to works concerned with ODP developments and other 
ODP’s information that may be of interest to store within the pattern library. In this paper, ODPs are derived from the 
Manufacturing Description Language ontology (Ameri and Dutta 2006). 



The representative entities and literals represent the varying part of the pattern that need to be 

replaced by entities and literals from the source ontology or by defaulted values. Figure 3 and Figure 4 

illustrate this through a Supplier-Service ODP example. Figure 3 shows the archetypical ontology 

fragment (conceptual pattern) of the ODP, while Figure 4 shows the ODP represented by a signature and 

binding expressions. With respect to the archetypical ontology fragment in Figure 3 and ODP in Figure 3, 

p:Supplier, p:Profile, p:ServiceCategory, p:hasProfile and p:hasService are conceptual while 

p:ServiceSubcategory, p:SupplierInstance, p:ProfileInstance, and p:CategoryInstance are 

representative. Notice that only the conceptual entities are used in the binding expressions where C1, C2, 

C3, OP1, and OP2 are bound (in this example there is no conceptual literal). I1, I2, I3, and C4 are not 

bound because they are parameterized part of the ODP. It should be noted that the same ODP signature 

may be used by multiple ODPs but with differing binding expressions. Table 1 shows the serialization of 

this ODP (note that unbounded entities that are a parameterized part of the ODP simply do not have 

associated binding expression). 

Figure 3 should be inserted about here.  

Figure 4 should be inserted about here. 

Table 1 should be inserted about here.  

3.4 Transformation 
The Transformation step applies the standard rule-based transformation to commonalize 

heterogeneous syntaxes of proprietary MSC data models into the RDF graph syntax using OWL DL 

vocabulary and semantics. The output of this step is called source ontology which corresponds to the 

intermediate OWL-encoded proprietary MSC model in Figure 1.  

This step can be largely automated when the proprietary MSC data model is structured information (e.g., 

RDB) as opposed to unstructured (e.g., text, HTML). Tools to support such automation are discussed in 

the related work section. In our work, the proprietary MSC data models are captured in relational 

databases. There are many possible mapping profiles9 to transform relational data into RDF and OWL DL 

depending on specific requirements (Hert et al. 2011). In our work, minor enhancements to the default 

mapping profile proposed in the D2RQ (D2RQ 2012) works well with the target databases to carry all the 

manufacturing service information into OWL DL. Since the D2RQ’s default mapping profile only uses RDF 

vocabulary and semantics, it is enhanced by specializing RDF vocabulary with OWL vocabulary (e.g., 

replace rdf:Class with owl:Class) and specifically replacing the generic RDF property with OWL data or 

object property. The resulting mapping profile is summarized below. The mapping profile uses OWL DL 

vocabulary and semantics without a need to be tailored to specific database entities. Hence, it can 

transform any relational data independent of its schema. 

  

                                                            
9
 In the D2RQ framework, mapping profile is used to generate RDB-to-RDF mapping for a database schema of a relational 

database. The mapping is then used to execute the RDB-to-RDF transformation on a database instance using that schema. 



Relational database to OWL DL mapping profile: 

1. A table is mapped as an owl:Class (class declaration).  

2. A record in the RDB is mapped as an owl:NamedIndividual (class assertion) of the corresponding 

class. 

3. An attribute that is not a foreign key, is mapped to an owl:DataProperty (data property declaration); 

and its value is mapped as a data property assertion whose literals have data types carried from the 

database schema. 

4. An attribute that is a foreign key attribute is mapped to an owl:ObjectProperty (object property 

declaration); and its value is mapped as an object property assertion. 

Figure 5 below shows an example of the transformation from a relational database table into OWL DL 

source ontology using the above mapping profile. The Capability table is converted into an owl:Class 

named Capability. The ID attribute is converted into owl:DataProperty named ID. The Capability_Name 

attribute is converted into an owl:DataProperty, named Capability_Name. The record, which has the 

value 5 as its key, is converted into an owl:NamedIndividual named Capability/5. Its ID attribute value 5 

is an xsd:integer value of the ID data property. Its Capability_Name attribute value CP_EDM is an 

xsd:string value of the Capability_Name data property.   

Figure 5 should be inserted about here. 

3.5 OPCs Identification 
The purpose of the Ontology Pattern Correspondences (OPCs) Identification step is to select a unique 

ODP for a specific fragment of the source ontology. The OPCs identification process starts with 

establishing semantic links between entities and literals in the source ontology and the elements of the 

pattern library (by matching on their intended meaning). Semantic links can be homogeneous or 

heterogeneous. A homogeneous link is between the same type of entities and literals such as class-to-

class, property-to-property, individual-to-individual, and literal-to-literal. A heterogeneous link is 

between different types of entities and literals such as class-to-individual, class-to-property and 

property-to-individual. Links maybe of any cardinality. For instance, a part size capability may be 

represented as a single concept with the literal value “5 – 25 cm” on the proprietary side, but it can be 

represented as multiple concepts such as minimum part size and maximum part size in the reference 

ontology. Solution to this situation would need 1:n semantic links.  

Semantic links may be established manually or with assistance from an ontology matching algorithm 

(which relies on the notion of semantic similarity measure). A brief discussion of ontology matching is 

provided in the Related Works section. For the purpose of focusing on the canonicalization framework, 

let’s assume that the user interactively establishes/disestablishes the semantic links with assistance 

from an ontology matcher while there is an underlying system utilizing the links information to suggest 

ODPs for a specific set of source ontology artifacts. It is at the user’s discretion to correctly select an ODP 

for a particular set of ontology artifacts that results in an OPC. In the illustration below, we describe how 

this may occur.  



The selected ODP within an OPC is called target ontology pattern. A given ODP can be the target for 

more than one set of source artifacts. For example, there can be multiple instance data that use the 

same design pattern. Therefore, the source ontology artifacts within the OPC are expected to be 

representative ontology artifacts. At the initiation of the OPC, some representative ontology artifacts are 

readily provided based on the semantic links. In some cases, however, the set of source ontology 

artifacts may be incomplete with respect to the requirements of the pattern. In the next stage – OPCs 

identification completion – all the necessary representative source ontology artifacts are identified by 

the user; and, structural differences between the target ontology pattern and the source ontology 

artifacts within the OPC are determined. If differences exist, subsequent canonicalization steps are 

necessary for that OPC. If there is no difference (i.e., they are structurally aligned), no further 

canonicalization step is necessary. It should be noted that the process of creating OPCs may not be 

linear and interaction with other ODPs can occur after a pattern transformation (i.e., certain entities 

maybe subjected to pattern transformation several times such as when one ODP suggests to turn an 

instance into a class and another ODP suggests such class to be a subclass of another class). 

Figure 6 should be inserted about here. 

OPCs Identification Illustration 

Figure 6 shows an example source ontology. The semantic links, shown below, are established by the 

user between the source ontology and the pattern library. Note that the prefix ‘s’ denotes entities and 

literals from the source ontology and the prefix ‘p’ denotes entities and literals from the pattern library. 

{ s:Supplier, p:Supplier, Class-to-Class }, { s:ServiceCategory, p:ServiceCategory, Class-to-Class} 

Based on the matching between concepts in the semantic links and concepts in the binding expressions 

of ODPs, candidate ODPs are suggested as shown in Figure 7. In this example, only the supplier-service 

ODP is suggested. If multiple ODPs were suggested, the user would inspect each of the suggested ODPs 

and their semantic relationships with the related source ontology artifacts (bottom part of Figure 7). The 

canonicalization system can assist the user during this semantic relations inspection by identifying paths 

(starting from the shortest one) between the matching source ontology artifacts (in this case the 

s:Supplier and s:ServiceCategory). Once the user selects a suggested ODP, an ontology patterns 

correspondence is initiated to capture information related to the suggestion, such as opc1 shown in 

Table 2. Notice that in the initial stage of the OPC1, parts of the representative artifacts are identified 

from the semantic links. They don’t form a complete source ontology (graph) fragment (i.e., the 

s:Supplier and s:ServiceCategory are not connected).  

Figure 7 should be inserted about here. 

In the last stage – the OPC identification completion stage – the user identifies all the representative 

source ontology artifacts for opc1 and determines whether opc1 requires subsequent canonicalization 

steps. The resulting representative source ontology artifacts are shown in Table 3 that gives a complete 



source ontology fragment. Notice that only s:SupplierA and s:EDM instances are identified as 

representative source ontology artifacts; other service categories and instances exist in the example 

source ontology, such as s:SupplierB and s:Machining (see Figure 6), that also match this pattern and 

need an application of this ODP. These other instances will be identified via the source ontology pattern 

created in the next canonicalization step. By analyzing the graph structures, user can determine that 

OPC1 is an OPCs identification output, which requires subsequent canonicalization steps because the 

logical structure of source ontology artifacts is different from that in the Supplier-Service ODP. The 

reasons are 1) schematic discrepancy, i.e., the source ontology represents the semantic service category 

s:EDM as an instance of the s:ServiceCategory class while the Supplier-Service ODP represents any 

semantic service category (p:ServiceSubcategories) as a subclass of the p:ServiceCategory class; and 2) 

isomorphism conflict, e.g., s:SupplierA has a direct connection to the s:EDM service category via the 

s:hasMachiningService object property in the source ontology while the p:SupplierInstance has an 

indirect connection to the p:CategoryInstance through the p:hasProfile, p:ProfileInstance, and 

p:hasService.  

Table 2 should be inserted about here. 

Table 3 should be inserted about here. 

3.6 Source Ontology Patterns Generation 
A source ontology pattern in an OPC is used to retrieve all pattern instances, each of which is a source 

ontology fragment containing a set of source ontology artifacts that will be transformed according to the 

respective target ontology pattern. In other words, a source ontology pattern is a set of parameterized 

representative source ontology artifacts within an OPC (this is analogous to a regular expression but it is 

an ontology graph). More specifically, a source ontology pattern consists of a signature and a set of 

binding expressions. The signature is a parameterized ontology structure. Binding expressions indicate 

the fixed part of the ontology structure by connecting parameters in the signature to the entities and 

literals in the source ontology artifacts. The parameters that are unbound are the variable part of the 

structure. Together the signature and binding expressions must be sufficient to be converted into a 

query that retrieves a collection of variable parts of the ontology structure. Each member of the 

collection together with the fixed part of the source ontology pattern makes up a pattern instance. The 

query must retrieve all pattern instances from the source ontology. At the end of the source ontology 

patterns generation step, source ontology patterns are defined for each OPC output from the OPCs 

identification step. 

Figure 8 should be inserted about here. 

The source ontology patterns generation step can be largely automated. Based on the representative 

source ontology artifact identified in the OPC, the source ontology signature can be derived. All possible 

binding expression can be generated, which the user can confirm. Specific binding expressions can be 

recommended based on the semantic links established in the OPCs identification step. That is, 

parameters in the source ontology signature that are linked to the fixed part of the target ontology 

pattern will also be suggested to be fixed (i.e., bounded by the binding expressions). The query 



generation can be automated based on PATOMAT pattern-based ontology transformation described in 

the Related Works section (Svab-Zamazal et al 2009, Svab-Zamazal and Svatek 2011). 

Figure 8 shows a graphical representation of an exemplary source ontology pattern, SP1. Table 4 shows 

its serialization. It is a pattern devised for the representative source ontology artifacts in OPC1 shown in 

Table 3 above. In this example, the binding expressions indicate that C1, C2, and OP1 are bound to 

constants, while I1 and I2 are unbound. That is, I1 and I2 will be used to retrieve all instances of the 

classes Supplier and ServiceCategory matching this pattern.  

Figure 9 shows the SPARQL query (W3C 2008) automatically constructed using the source ontology 

pattern definition. Unbound variables I1 and I2 are outputs of the query, while axioms and binding 

expressions make up the condition (i.e., WHERE clause) of the query. 

Table 4 should be inserted about here. 

Figure 9 should be inserted about here. 

3.7 Transformation Rules Generation 
In this process, a transformation rule (TR) is generated for each OPC. A TR consists of pattern 

transformation rules (PTRs). A PTR specifies relations between parameters in the source and target 

ontology patterns within a particular OPC. These relations describe how the source ontology pattern 

should be transformed according to the target ontology pattern. Each relation in a PTR is a 3-tuple 

including source column, target column, and transformation expression column. The source column 

indicates one or more entities or literals in the source ontology pattern that will be transformed using a 

parameter from the pattern signature. The target column indicates the entity or literal in the target 

ontology pattern into which the source column will be transformed using a parameter from the pattern 

signature. Either the source column or target column can be null but not both. The last column, 

transformation expression column, indicates the specific names/IRIs to be used for the target in the 

output. The value can be a parameter from the target ontology pattern signature, a fixed value, or a 

string expression. 

Transformation Type-1: same artifact type transformation (e.g., Class-to-Class, Instance-to-

Instance) 

Transformation Type-2: different artifact types transformation and n:1 transformation (e.g., 

Class-to-Instance, Property-to-Class, Classes-to-Class) 

Transformation Type-3: Artifact removal transformation (e.g., source ontology pattern signature 

has a class A that does not have a correspondence in the target ontology pattern signature 

entity) 

Transformation Type-4: Artifact creation transformation (e.g., source ontology pattern signature 

does not have the class A which is defined in the target ontology pattern) 

 



Each PTR can be one of the three transformation types as listed below. Transformation types can be 

automatically determined based on source and target columns and handled automatically by the 

canonicalization infrastructure. 

Similar to the OPCs identification step, the transformation rule generation step may be done manually 

or with assistance from an ontology matching algorithm. However, in this case the scope of the match is 

more specific to only ontology artifacts in the representative source ontology and in the archetypical 

ontology of the target ontology pattern.  

Table 5 below shows an example transformation rule, TR1, for OPC1. OPC1 consists of source and target 

ontology pattern shown in Figure 8 and Figure 4. It requires 10 PTRs.  

Table 5 should be inserted about here. 

3.8 Pattern Transformation 
Pattern transformation executes transformation rules on the source ontology. The resulting 

transformation is the OWL DL encoding of the canonicalized OWL-encoded proprietary MSC model 

(canonicalized proprietary MSC model for short). The canonicalized proprietary MSC model is expected 

to be structurally aligned with an OWL DL-based reference MSC ontology that is also constructed based 

on the same pattern library. The pattern transformation of an OPC is divided into two sub-processes, 

pattern instances detection and transformation rule application. The whole process can be automated 

based on the aforementioned PATOMAT work. 

The pattern instances detection process applies the source ontology pattern to find all pattern instances. 

A pattern instance is a set of source ontology’s entities and literals to be transformed by a 

transformation rule. For example, the SPARQL query generated from the source ontology pattern shown 

in Figure 9 will retrieve all pattern instances for OPC1. Two pattern instances should be returned for the 

source ontology in Figure 6. 

The transformation rule application process applies the transformation rule on the retrieved source 

ontology’s entities and literals in the pattern instances. The output entities and literals provide all the 

necessary elements to establish the set of axioms in the target ontology pattern. After the pattern 

transformation executes all the transformation rules on the source ontology, the canonicalized 

proprietary MSC model is obtained as the final output. Next, canonicalization of an exemplary 

proprietary MSC data model is provided to validate the applicability of this framework. 

4 Canonicalization Example 
In this section, the canonicalization framework is demonstrated on a realistic example. We first describe 

inputs to the canonicalization process including a pattern library and a proprietary MSC data model 

which is captured in a relational database. We then walk through each process step in the 

canonicalization framework. After obtaining the canonicalized proprietary MSC model, we will show 

how it simplifies the mapping in section 5.  



4.1 Pattern Library 
In this example, we assume a hypothetical pattern library, which consists of four ODPs including 

Supplier-Service, Service-LengthCapability, Service-Categorization, and LengthCapability. Figure 10 

illustrates the definitions of these ODPs.  

Figure 10 should be inserted about here. 

4.2 Proprietary MSC Data Model 
Figure 11 below shows a set of relational tables in a proprietary MSC data model. It represents how 

supplier, service, service category, and part length capability are represented and related in a 

proprietary way.  

Figure 11 should be inserted about here. 

4.3 Transformation 
Transformation of a table without a foreign key into OWL DL source ontology involves creating only a 

class, named individuals, data properties, and assertions. Figure 12 below illustrates this transformation 

using the Supplier table. The Supplier table is converted into an owl:Class named s:Supplier. The 

record, which has the value Supplier_3 as its ID, is converted into an owl:NamedIndividual named 

s:Supplier_3. Its ID attribute value Supplier_3 becomes an xsd:String value of the s:Supplier_ID 

data property. 

Figure 12 should be inserted about here. 

Transformation of a table with foreign keys involves creating a class, named individuals, object 

properties, data properties, and assertions. Figure 13 illustrates the transformation using one of the 

records in the SupplierService table. The table is converted into an owl:Class named s:SupplierService. 

The record, which has 5 as its ID, is converted into owl:NamedIndividual named s:SS_3_4. Its ID attribute 

value 5 is an xsd:integer value of the s:SupplierService_ID data property. This table has two foreign key 

attributes including SupplierID and ServiceID, which are respectively primary keys of the Supplier table 

and Service table. These two foreign key attributes are converted into two owl:ObjectProperty 

declarations, namely s:SupplierService_SupplierID and s:SupplierService_ServiceID. These object 

properties are used to connect the s:SupplierService individuals to owl:NamedIndividual converted from 

the records in the Supplier and Service tables as shown in the figure. 

Figure 13 should be inserted about here. 

Figure 14 shows the source ontology, which is the output from the transformation of the proprietary 

MSC data model. The figure includes transformation of s:Supplier_3 and s:Supplier_6 records in the 

Supplier table and related records in other tables as highlighted in Figure 11. The rest of the 

canonicalization illustration will be based on this data. 

Figure 14 should be inserted about here. 



4.4 OPCs Identification 
At OPCs identification time, first, the semantic links are established between the source ontology and 

the pattern library as shown below. For example, the user has linked s:EDM and s:Moldmaking with the 

p:ServiceCategory as they semantically mean service category in the proprietary manufacturing service 

capability model. With these semantic links and the ODPs’ binding expressions, the ODPs that are 

related to these terms are retrieved and the OPCs are initialized as shown in Table 6. Note that the OPC3 

is initialized not just by using the semantic links but also using logical inference, because s:EDM is linked 

to p:ServiceCategory and not to p:Service as in the Service-LengthCapability’s binding expression. 

However, as shown in Figure 10, the Service-Categorization ODP illustrates that an instance of 

p:Service is an instance of p:ServiceCategory as well. Thus, s:EDM is indirectly linked to the p:Service; 

and the OPC3 can be initialized even though s:EDM has no direct semantic link to p:Service.  

{ s:Supplier, p:Supplier, Class-to-Class }, { s:Service, p:Service, Class-to-Class }, { s:EDM, 

p:ServiceCategory, Class-to-Class }, { s:PartLength, p:LengthCapability, Class-to-Class }, 

{ s:Moldmaking, p:ServiceCategory, Class-to-Class } 

In the next step, all the representative source ontology artifacts are identified for the OPCs. The results 

are shown in Table 7. At this point we can identify that the logical structure of each source ontology 

artifact differs from its corresponding ODP. Thus, OPC1, OPC2, OPC3, OPC4 and OPC5 are the OPCs output 

from the OPCs identification on which subsequent canonicalization steps will be performed. 

Table 6 should be inserted about here. 

Table 7 should be inserted about here. 

4.5 Source Ontology Patterns Generation 
With all the representative source ontology artifacts identified in the OPCs, source ontology patterns 

can be generated. Figure 15 shows a graphical representation of the source ontology patterns based on 

the source ontology artifacts in Table 7.  

Figure 15 should be inserted about here.   

4.6 Transformation Rules Generation 
With the source and target ontology patterns captured in the OPCs, pattern transformation rules (PTRs) 

can be created for each OPC. Figure 16 visualizes the PTR relationships between the source ontology 

pattern SP1 and the target ontology pattern Supplier-Service ODP in OPC1. Table 8 shows the details. 

PTR1.1 and PTR1.2 state that s:C1 and s:C3 in the SP1 should be respectively transformed into the same 

artifact type p:C1 and p:C2 in the Supplier-Service ODP; and hence, they are type-1 transformations.  

PTR1.3 and PTR1.4 state that s:L1 and s:L2 in the SP1 on the other hand should be respectively 

transformed into differing artifact types p:I1 and p:I2 in the Supplier-Service ODP; and hence, they are 

type-2 transformations. PTR1.1 to PTR1.4 use the names/IRIs from the source ontology. Type-4 

transformation is needed in PTR1.5 to create the relationship between p:I1 and p:I2 using the new 

object property p:OP1. Since type-4 transformation creates a new artifact and there is no source 



ontology entity corresponding to p:OP1, the name p:hasService from the ODP is used as shown in the 

Transformation Expression column. Lastly, PTR1.6 to PTR1.12 removes the unwanted artifacts with the 

type-3 transformation. Associated axioms can also be automatically removed. 

Figure 16 should be inserted about here. 

Table 8 should be inserted about here. 

Transformation rules for OPC2, OPC3 and OPC4 are denoted by TR2, TR3, and TR4, respectively. Their PTRs 

only need to deal with structural pattern detections and entity transformations similar to those of OPC1 

and consequently can be created in the same way. PTRs for OPC5, however, need to additionally deal 

with literal value pattern detections and transformations. This is because the LengthCapability ODP has 

two data properties including p:hasMin and p:hasMax. However, the SP5 source ontology pattern has one 

data property that represents the part length capability min and max values with a single literal value 

such like “6cm – 48cm”. Figure 17 illustrates the situation. 

Figure 17 should be inserted about here. 

To deal with this situation, a literal value pattern is defined with the following regular expression. 

 ([0-9]+)cm - ([0-9]+)cm 

The first group in the regular expression, which is embraced by the first set of parentheses, corresponds 

to the minimum part length value and is assigned to the variable s:G1. The second group in the regular 

expression, which is embraced by the second set of parentheses, corresponds to the maximum part 

length value and is assigned to the variable s:G2. This literal value pattern detection is used for PTR5.3 

and PTR5.4 as indicated by their usages of s:G1 and s:G2 in Table 10. 

Table 9 should be inserted about here. 

4.7 Pattern Transformation 
The pattern transformation process is a final step of the canonicalization and it executes transformation 

rules on the source ontology for each OPC. Table 11 below summarizes the current state of the OPCs 

that provide sufficient information to execute the pattern transformation. 

Table 10 should be inserted about here. 

Below we illustrate the pattern transformation on OPC1, which is divided into two sub-processes, the 

pattern instances detection and pattern transformation rules application, as follows.  

The pattern instances detection sub-process uses the SPARQL query generated from the source 

ontology pattern SP1 to find instances of a source ontology pattern to be transformed. The SPARQL 

query generated from SP1 is shown in Figure 18. It retrieves all the pattern instances, which contain 

source ontology entities and literals as shown in Table 11. Two pattern instances are returned in this 

example, based on the source ontology in Figure 14. 

Figure 18 should be inserted about here. 



Table 11 should be inserted about here. 

The pattern transformation rules application sub-process applies PTRs on the retrieved entities and 

literals. Table 12 shows the result of applying PTRs in TR1 (Table 8) on the SPI1.1 query result shown in 

Table 11 (note that some SP1 variables are bound to constants and are not shown in Table 11). Figure 19 

shows the final output of the canonicalization process from executing pattern transformation on OPC1 to 

OPC5.  

Table 12 should be inserted about here. 

Figure 19 should be inserted about here. 

5 Analysis 
This section provides qualitative and quantitative analyses to demonstrate that canonicalization enables 

simplified OWL mapping axioms, shorter reasoning time, and better semantic mediation results. 

Specifically, the analyses show the benefits canonicalization can provide to the last step, OWL Mapping 

& Inference, in the OWL-based semantic mediation process shown in Figure 1. It should be noted, 

however, that the analyses are not intended to show, nor do they prove, that the whole semantic 

mediation process is shortened with canonicalization.  

Two cases are used in the analyses to show the canonicalization impacts. Case 1 is the OWL mapping 

between a canonicalized proprietary MSC model and the reference MSC ontology. Case 2 is the OWL 

mapping between a non-canonicalized proprietary MSC model and the reference MSC ontology. The 

non-canonicalized proprietary MSC model is an OWL-encoded proprietary MSC model using the RDB 

automatic conversion profile described in section 0, i.e., it is the source ontology. As such, it does not 

follow the ODPs used by the reference MSC ontology. On the other hand, the canonicalized proprietary 

MSC model follows the same ODPs used by the reference MSC ontology. It is the result of performing 

the transformations of the non-canonicalized schema and the corresponding data that are described in 

Section 4. The next two subsections provide a detailed discussion of these analyses. 

5.1 Qualitative Analysis 
The qualitative analysis compares the OWL mapping statement complexity, mappability, and query 

behavior of the two cases. Queries, which use only terminologies from the reference MSC ontology, are 

used in the analysis. Since the queries use only terminologies and structures from the reference MSC 

ontology to retrieve information encoded in the proprietary terminologies and structures, they verify 

what semantic mediation has occurred.  

MSC information related to Supplier_3 in the proprietary MSC data model shown in Figure 11 is used for 

this illustration. The MSC information has two features including the service category and part length 

capability. The queries Q1 and Q2 in Figure 20 contain conditions for these two features; hence, they are 

sufficient to verify the semantic mediation related to these two features. These queries are encoded in 

OWL DL query language (W3C 2009c) with the reference ontology terminology and structure. The 

expected results from both queries are Supplier_3. 



Figure 20 should be inserted about here. 

Figure 21 should be inserted about here. 

First, we analyze Case 1: OWL mapping between a canonicalized proprietary MSC model and the 

reference MSC ontology. On the left side of Figure 21 is the canonicalized proprietary MSC model of 

Supplier_3 information and on the right side is the reference MSC ontology. The dotted lines in the 

figure depict all the necessary mapping axioms between the two models via either the 

owl:equivalentClass or owl:equivalentProperty predicate. These axioms are sufficient for both Q1 and 

Q2 to successfully return the desired results. Notice that both the subjects and objects of the mapping 

axioms are simply a single class or property name without the need for complex OWL class or property 

expressions (W3C 2009b). This is because both models follow the same set of ODPs and are structurally 

aligned. 

Next we analyze Case 2: OWL mapping between the non-canonicalized proprietary MSC model (i.e., 

source ontology) and the reference MSC ontology. Figure 22 illustrates this case. In this analysis, it is 

assumed that the non-canonicalized proprietary MSC model is syntactically and automatically 

transformed from its RDB representation. This is shown on the left side of the figure with Supplier_3 

information; and on the right side is the reference MSC ontology. Unlike the previous case, simple class-

to-class and property-to-property mapping axioms are insufficient to enable Q1 and Q2 in this case. 

Specifically, there are two issues and they are highlighted in the shaded areas connected by the double 

arrow lines in the figure. First there is a need to map between differing OWL ontology artifact types, 

specifically from a literal “6cm to 48cm” to two OWL data properties mo:hasMin and mo:hasMax. This is 

related to the part length information and is needed to enable Q1; however, this is not mappable within 

OWL DL.  

The other issue is that there is a need to bridge the views between two different structures representing 

the concept of supplier having an EDM manufacturing service. (Also, note that the non-canonicalized 

model has a rather more complex structure than that in the reference MSC ontology.) Such bridging is 

necessary to enable Q2. This is achieved by the mapping class technique (Kulvatunyou et al. 2013). The 

required mapping class EDMSupplier is shown in Table 13. Mapping class is a defined-class with multiple 

necessary and sufficient conditions (owl:equivalentClass axioms). Each condition uses terms from a 

single terminology set and requires an OWL class expression as an object in the axiom. In this case, 

mapping class axioms are the A1 and A2 axioms in Table 13. Although these mapping class axioms 

enable Q2 to return the desired results, the query behavior associated with mapping class approach is 

somewhat restricted. The reason is that the bridge between the views is limited to the view (i.e., class 

expressions) provided in the axioms. For example, the EDMSupplier mapping class in A1 bridges view is 

related only to mo:Supplier and mo:hasService. If a new target of the query is related to, say, mo:Factory 

and mo:hasService, another mapping class will be needed. Moreover, the number of mapping classes 

grows proportionally with the number of service categories, as can be seen that A1 and A2 only address 

one service category.  



All-in-all, this analysis shows that canonicalization before OWL mapping can circumvent OWL DL 

limitations, can simplify the mappings by avoiding the need for OWL class expression in the mapping 

class, and can simplify the mapping maintenance by reducing the number and complexity of mapping 

axioms. The quantitative analysis in the next section will show another benefit of canonicalization by 

demonstrating that the growing number of mapping classes due to the growing number of service 

categories has a negative impact on the OWL inference time. 

Figure 22 should be inserted about here. 

Table 13 should be inserted about here. 

5.2 Quantitative Analysis 
The quantitative analysis compares the OWL inference time as influenced by the two types of mapping 

to reference ontology: using canonicalized vs. non-canonicalized proprietary MSC models. Specifically, 

we study the impact of the number of mapping classes on the amount of time required to complete the 

OWL DL reasoning process required by the OWL-based semantic mediation. The reasoning process 

includes four tasks including loading, consistency checking, classification, and realization as described in 

(MINDSWAP 2012). Brief descriptions of these tasks are provided below. All the reasoning are 

performed with Pellet version 2.2.2 (Clark and Parsia 2012) on a Dell Precision WorkStation T5500 with 

Intel Xeon E5504 2.00GHz (8 CPUs) and 2GB of main memory. 

Reasoning task: 

1. Loading loads an RDF model to the reasoner. 

2. Consistency checking ensures that an ontology does not contain any contradictory facts. OWL 
Abstract Syntax & Semantics document provides a formal definition of ontology consistency that the 
reasoner uses. In DL terminology, this is the operation to check the consistency of an ABox with 
respect to a TBox. 

3. Classification computes the subclass relation between each named class to create the class 
hierarchy.  

4. Realization finds the most specific classes that an individual belongs to; in other words, it computes 
the direct types for each of the individuals.  

In this analysis, only part of the MSC information from the previous section that is related to the 

supplier’s service declaration is used. We also show, in this case, that even if a human applies additional 

rule-based transformation to the syntactically transformed MSC information, it may still not be 

structurally aligned with the reference ontology and cause a reasoning inefficiency. Figure 23 shows this 

additional lift-up based on the proprietary view. It shows that a single relationship via the 

s:provideService object property and the s:EDM instance of the s:Service class replaces the whole 

complex structure to declare the EDM (Electro-discharge Machining) service capability. This modeling 

pattern, which represents service category as an instance of the service class, is abstracted out with 

polymorphic names for several declarations of service capabilities in the left side of Figure 25. The 

reference ontology, on the other hand, represents each service category as a subclass of the service 



class. Different sets of mapping axioms are then required in the case of canonicalized and non-

canonicalized proprietary MSC model as shown in the middle of Figure 24 and Figure 25, respectively. 

Figure 23 should be inserted about here. 

Since the canonicalized proprietary MSC model is structurally aligned with the reference MSC ontology, 

the service categories s:C1 to s:Cn are modeled the same way with OWL classes, mo:C1 to mo:Cn. As a 

result, the mapping consists of only simple class-to-class and property-to-property equivalence mapping 

axioms as shown in the figure. On the other hand, different modeling patterns between the non-

canonicalized proprietary MSC model and the reference ontology necessitate the mapping classes. 

Differing mapping classes are required for C1 to Cn. Generally, an additional mapping class is needed for 

each additional service category. For the quantitative analysis, we perform 10 semantic mediation 

experiments and compare reasoning times between the two cases by incrementing the number of 

service categories by 10 for each experiment up to 100 (n = 100). 

Figure 24 should be inserted about here. 

Figure 25 should be inserted about here. 

Table 14 shows the reasoning times in the canonicalization case. It can be seen that the increase in the 

number of service categories has little impact on the consistency checking and classification times, while 

minor increases can be observed on the loading and realization times. Table 15 shows the reasoning 

times in the non-canonicalization. In this case, the classification and realization times are significantly 

affected by the increase in the number of service categories; while the loading and consistency checking 

times are marginally increased. The graph in Figure 26 concludes that the total reasoning time in the 

non-canonicalization case grows cubically with the number of service category classes versus linearly in 

the canonicalization case. This finding suggests that canonicalization can play a significant role in a 

practical deployment of OWL DL-based semantic mediation when there are structural conflicts. 

Table 14 should be inserted about here. 

Table 15 should be inserted about here. 

Figure 26 should be inserted about here. 

6 Related Works 
There are five steps in the framework for canonicalization shown in Figure 2 including the 

transformation, OPCs identification, source ontology patterns generation, transformation rules 

generation and pattern transformation. In this section, we discuss the works that are relevant to 

enabling these steps. 

The transformation step transforms heterogeneous syntaxes of data into a common RDF syntax using 

OWL DL vocabulary. Currently, there are abundantly many tools to support RDB-to-RDF transformations. 

The W3C RDB2RDF Incubator group has presented a survey on these tools such as D2RQ, Oracle 



Database 11g, Virtuoso’s RDF View, Metatomix Semantic Platform, RDBtoOnto, SquirrelRDF, TopBraid 

Composor and Triplify (Satya et al. 2009). We have investigated D2RQ in particular. It provides a 

mapping language to create a mapping profile between a relational database schema and RDFS/OWL 

ontologies. Its software platform can execute the mapping profile to create an RDF representation of a 

corresponding relational database (Bizer 2003, Bizer and Seaborne 2004, and D2RQ 2012). All-in-all, we 

have found that the D2RQ is capable of supporting the automatic transformation via the mapping profile 

outlined in section 3.1. 

The OPCs identification process starts with establishing semantic links between entities and literals in 

the source ontology and the archetypical entities and literals in the pattern library. This stage requires 

ODPs that have been developed beforehand. With regard to the ODPs development, there have been 

recent research works that were supported by the NeOn project10. In particular, the deliverable D2.5.1 

(Presutti et al. 2008) provides a methodology to create ODPs. In addition, works related to pattern 

library includes Suárez-Figueroa et al. (2007) and Presutti et al. (2008). Suárez-Figueroa et al. (2007) 

have presented a general template for describing ODPs and an initial repository of OWL-based ODPs. 

Presutti et al. (2008) have classified ODPs into structural, correspondence, reasoning, presentation, and 

lexico-syntactic and content and have also specified functional requirements of a repository for ODPs. A 

repository following such specification has been implemented on-line at the Ontology Design Patterns 

wiki page11. 

Manually establishing the terminological links in the OPC identification can become cumbersome when 

the information sources in the source ontology and pattern library are large. Hence, ontology matching 

algorithms which suggest candidates for terminological links can be useful. Shvaiko and Euzenat (2011) 

have summarized and analyzed works in ontology matching in the past decade. Applications of ontology 

matching algorithms have been largely focused on achieving full ontology mapping or alignment, which 

the authors have indicated that there are still open issues, particularly the ability to match across entity 

types (i.e., to match across structural conflicts). However, matching task such like in the OPCs 

identification outlined in our canonicalization framework calls for terminology matches without an 

indication of structural relationship. Therefore, we hypothesize that ontology matching algorithms 

would be suitable to the OPCs identification task. This will be a topic of future work. 

These last three canonicalization steps can be collectively supported by a pattern-based ontology 

transformation solution. Key enablers for the pattern-based ontology transformations are pattern 

transformation definition, pattern instances detection engine, and pattern transformation engine. 

PATOMAT project (Svab-Zamazal et al 2009, Svab-Zamazal and Svatek 2011) provides workable methods 

and tools that include these key enablers. It provides a well-defined XML schema for the pattern 

transformation definition (including pattern definitions and transformation rules). For pattern instances 

detection engine, PATOMAT provides the functionality to generate SPARQL query from the pattern 

transformation definition. Its pattern transformation engine uses OPPL application interface (OPPL 

2012) for pattern transformation. PATOMAT also has the TPEditor component which is a graphical user 
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 http://www.neon-project.org/ 
11 http://www.ontologydesignpatterns.org 



interface-based editor of source and target ontology patterns and associated transformation rules. The 

output of the TPEditor is an XML instance file conformed to the PATOMAT’s XML schema for pattern 

transformation definition. Our analysis has indicated that some enhancements to PATOMAT functions 

are necessary to fully support the proposed canonicalization framework. First, PATOMAT does not deal 

with the representative artifacts which represent the varying parts of the source ontology pattern. Thus, 

even in the case that there are multiple pattern instances that use the same source ontology pattern, 

recursive transformation rule applications on those pattern instances do not occur. Second, PATOMAT 

does not provide any computer-assisted method to generate source ontology patterns and to retrieve 

reusable target ontology pattern. All the patterns need to be defined manually at present. Lastly, the 

literal values may contain important concepts within the resulting RDB-to-OWL transformation. 

However, there is no facility to deal with literal value pattern detections and transformations at present. 

7 Conclusion and Future Works 
In acquiring manufacturing services, the customer is confronted with a number of diverse supplier 

databases with different structures, terminologies, and query languages. Using a semantic mediation 

approach – providing a common reference ontology for accurately mapping source information into that 

and other forms – can simplify the customer’s problem. This in-turn enables easier reconfiguration of a 

supply chain, leading to a better supply chain performance. 

We have shown in earlier work that the OWL language is suitable for capturing both the reference 

ontology and the underlying ontologies for the supplier data schemas. It has also shown that an OWL 

reasoner can be used to perform the semantic information transformations involved in answering the 

customer queries.  

OWL-based semantic mediation that seeks to address all kinds of semantic conflicts in a single 

transformation step requires mapping statements that use complex expressions. This makes the use of 

the DL reasoner for the transformations complex and computationally expensive, and it does not always 

completely render the source information.  

This paper describes a novel approach to semantic mediation by decomposing the mapping task into 

two steps: the first step resolves the structural conflicts between the source schemas and the reference 

ontology using a “canonicalization” transformation; and the second step addresses other conflicts via 

OWL DL mapping axioms. We presented a detailed framework to achieve the canonicalization, and we 

demonstrated its applicability using a realistic example of a proprietary manufacturing service capability 

database.  

We presented qualitative and quantitative analyses of the impact of canonicalization on the mapping 

task. The qualitative analysis shows that canonicalization can circumvent OWL DL limitations, simplify 

the OWL mapping axiom by avoiding the need for complex OWL class expressions in the mapping 

axioms, and simplify the mapping maintenance by reducing the number and complexity of mapping 

axioms. The quantitative analysis shows that OWL reasoning time grows cubically when OWL DL axioms 



are used to resolve a common type of structural conflict, while the reasoning time for the 

canonicalization approach grows linearly. 

The primary contribution of this research is the formalization of the canonicalization process in a 

framework that encompasses complementary work in syntactical data transformation, ontology design 

patterns, ontology matching, and pattern-based ontology transformation. In addition, the paper outlines 

a novel approach to representing reusable conceptual ontology design patterns and capturing the 

ontology pattern correspondences (OPCs) in the source ontology. 

In terms of future work, we are developing an implementation to support the proposed framework. This 

includes: the pattern library storage which supports the proposed conceptual ontology design pattern 

representation; a computer-assisted OPC identification environment that employs ontology-matching 

algorithms; and a software component that help the user manage the ontology pattern correspondence 

throughout the canonicalization process. Enhancements to the existing pattern transformation engine 

are also needed as outlined in the related work. Our further work also includes developing a 

methodology for deriving ontology design patterns for the manufacturing service capability information.  

DISCLAIMER 

Certain commercial software products are identified in this paper. These products were used only for 

demonstration purposes. This use does not imply approval or endorsement by NIST, nor does it imply 

these products are necessarily the best available for the purpose. 
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A Framework to Canonicalize Manufacturing 
Service Capability Models  

 

Figure 1: Typical (top) and proposed (bottom) process to OWL-based semantic mediation between 

proprietary MSC data models and Reference ontology (dark grey boxes typically require human 

involvement and are not fully automated) 

 

Figure 2: Canonicalization framework 



 

Figure 3: Archetypical ontology of the Supplier-Service ODP 

ODP Name/Description ODP Signature Binding Expression 

Supplier-service: 

Supplier declares a 

service it provides 

and models a semantic 

service category as a 

(descendant) subclass 

of the abstract 

ServiceCategory class 

 

C1 = p:Supplier 

C2 = p:Profile 

C3 = p:ServiceCategory 

OP1 = p:hasProfile 

OP2 = p:hasService 

 

Unbounded Entities: 

C4, I1, I2, I3 

Figure 4: Supplier-Service ODP example 

 

Figure 5: Transformation example 



 

Figure 6: An example source ontology 

 

Figure 7: OPC identification process 

ID Source Ontology Signature Binding Expression 

SP1 

 

C1 = s:Supplier 

C2 = s:ServiceCategory 

OP1 = s:hasMachiningService  

Unbounded Entities: I1, I2 

Figure 8: Graphical representation of the source ontology pattern for OPC1 (Table 3Error! Reference 

source not found.) 

 

 



PREFIX rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX s: <http://www.nist.gov/el/sid/msnm/PortalB.owl#> 

 

SELECT ?I1, ?I2  

    WHERE { 

        ?I1 rdf:type s:Supplier . 

        ?I2 rdf:type s:ServiceCategory . 

        ?I1 s:hasMachiningService ?I2 . 

} 

Figure 9: Source ontology pattern SPARQL query 

ODP Name/Description Signature Binding Expression 

Supplier-Service: 

Supplier declares a 

service it provides 

 

 

 

C1 = p:Supplier 

C2 = p:Service 

OP1 = p:hasService 

Unbounded Entities: I1, I2 

Service-

LengthCapability: 

A service declares a 

length capability 

value range, e.g, part 

envelop size, min/max 

acceptable diameter 

C1 = p:Service 

C2 = p:LengthCapability 

OP1 = p:hasLengthCapability 

Unbounded Entities: I1, I2 

Service-

Categorization: 

Classify a service 

into a service 

category 
 

C1 = p:Service 

C2 = p:ServiceCategory 

Unbounded Entities: I1 

LengthCapability: 

A length capability 

representation, e.g., 

part envelop size, 

min/max acceptable 

diameter 

 

C1 = p:LengthCapability 

DP1 = p:hasMax 

DP2 = p:hasMin 

Unbounded Entities: I1, L1, 

L2 

Figure 10: Pattern library 

    

  



 

Figure 11: Proprietary manufacturing service capability data model 

 

Figure 12: Standard rule-based OWL DL encoding of the Supplier table  



  

Figure 13: Standard rule-based OWL DL encoding of the SupplierService table 

 

Figure 14: Source ontology 

  



ID Source Ontology Signature Binding Expression 

SP1 

 

 

C1 = s:Supplier 

C2 = s:SuplierService 

C3 = s:Service 

OP1 = s:SupplierService_SupplierID 

OP2 = s:SupplierService_ServiceID 

DP1 = s:Supplier_ID 

DP2 = s:Service_Name 

Unbounded Entities: I1, I2, I3, L1, L2 

SP2 

 

 

C1 = s:Service 

C2 = s:EDM 

OP1 = s:EDM_ServiceID 

DP1 = s:Service_Name 

Unbounded Entities: I1, I2, L1 

SP3 

C1 = s:Service 

C2 = s:Moldmaking 

OP1 = s:Moldmaking_ServiceID 

DP1 = s:Service_Name 

Unbounded Entities: I1, I2, L1 

SP4 

 

 

C1 = s:EDM 

C2 = s:EDMPartLength 

C3 = s:PartLength 

OP1 = s:EDMPartlength_EDMID 

OP2 = s:EDMPartLengnth_PartLengthID 

DP1 = s:PartLength_Value 

Unbounded Entities: I1, I2, L1 

SP5 

 

 

 

C1 = s:PartLength 

DP1 = s:PartLength_Value 

Unbounded Entities: L1 

Figure 15: Graphical representations of the source ontology patterns 



 

Figure 16: PTRs between the source and target ontology patterns in OPC1 

 

Figure 17: Literal value pattern detection 

  



PREFIX rdf:  http://www.w3.org/1999/02/22-rdf-syntax-ns# 

PREFIX s:  <http://www.nist.gov/el/sid/msnm/PortalB.owl#> 

 

SELECT distinct *  

    WHERE { 

        ?I1 rdf:type s:Supplier . 

        ?I2 rdf:type s:SupplierService . 

        ?I3 rdf:type s:Service . 

        ?I2 s:SupplierService_SupplierID ?I1 . 

        ?I2 s:SupplierService_ServiceID ?I3 . 

        ?I1 s:Supplier_ID ?L1 . 

        ?I3 s:Service_Name ?L2 . 

    } 

Figure 18: SPARQL query generated from SP1 

 

Figure 19: Canonicalized proprietary MSC model 

Note: Terms in the reference MSC ontology are denoted by the prefix, ‘mo’. 

Q1: Identify suppliers having the ElectroDischargeMachiningService which has minimum 6cm 

and maximum 48cm as part length capability value (using only terms from the reference MSC 
ontology.) 

 

 

OWL DL Query => mo:Supplier and mo:hasService some (mo:ElectroDischargeMachiningService 

and mo:hasLengthCapability some (mo:PartLengthCapability and ((mo:hasMin value 

6^^xsd:double) and (mo:hasMax value 48^^xsd:double)))) 

Q2: Identify suppliers having the ElectroDischargeMachiningService (using only terms from 

reference MSC ontology.) 

 

OWL DL Query => mo:Supplier and mo:hasService some mo:ElectroDischargeMachiningService 

 

Figure 20: Desired query behavior to demonstrate the OWL-based semantic mediation 



 

Figure 21: Qualitative analysis of OWL mapping after canonicalization 

 

Figure 22: Qualitative analysis of OWL mapping without canonicalization 



 

Figure 23: Additional rule-based transformation applied to the syntactically transformed MSC 

information 

 

Figure 24: Quantitative analysis of OWL mapping inference after canonicalization 



 

Figure 25: Quantitative analysis of OWL mapping inference without canonicalization 

 

Figure 26: Aggregated reasoning performances of two cases 
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Table 1: Serialization of the Supplier-Service ODP in  

Entity 

Literal Axiom Binding Expression Class Indi 
vidual 

Object 
Property 

Data 
Property 

Data 
type 

C1 

C2 

C3 

C4 

I1 

I2 

I3 

OP1 

OP2 

- - - (I1, rdf:type, C1) 

(I2, rdf:type, C2) 

(C4, rdfs:subClassOf,C3) 

(I3, rdf:type, C4) 

(I1, OP1, I2) 

(I2, OP2, I3) 

C1 = p:Supplier 

C2 = p:Profile 

C3 = p:ServiceCategory 

OP1 = p:hasProfile 

OP2 = p:hasService  

 

Table 2: Initial ontology patterns correspondence 

OPC ID 

Source Ontology Pattern 
Target Ontology 

Pattern 
Artifact type Representative Artifact 

OPC1 

Class s:Supplier, s:ServiceCategory 

Supplier-Service 

Individual  

ObjectProperty  

DataProperty  

Datatype  

Literalal  

Axiom  

Table 3: Ontology patterns correspondence output from the OPCs identification 

OPC ID 

Source Ontology Pattern 
Target Ontology 

Pattern 
Artifact type Representative Artifact 

OPC1 

Class s:Supplier, s:ServiceCategory 

Supplier-Service 

Individual s:SupplierA,s:EDM 

ObjectProperty s:hasMachiningService 

DataProperty  

Datatype  

Literalal  

Axiom (s:SupplierA, s:hasMachiningService, s:EDM) 

 

  



Table 4: Serialization of the source ontology pattern SP1 in Figure 8 

Entity 

Literal Axiom Binding Expression 
Class 

Individ

uals 

Object 

Property 

Data 

Property 

Data 

type 

C1,C2 I1, I2, OP1 - - - 

I1 rdf:type C1 

I2 rdf:type C2 

I1 OP1 I2 

C1: S:Supplier 

C2: S:ServiceCategory 

OP1: 

s:hasMachiningService 

 

Table 5: An exemplary transformation rule TR1 for OPC1 

PTR ID 
Source Ontology  

Pattern 

Target Ontology 

Pattern  

Transformation 

type 

Transformation 

Expression 

PTR1.1 s:C1 p:C1 Type-1 s:C1 

PTR1.2 s:C2 p:C3 Type-1 s:C2 

PTR1.3 s:I1 p:I1 Type-1 s:I1 

PTR1.4 s:I2 p:C4 Type-2 s:I2 

PTR1.5 s:OP1 - Type-3 - 

PTR1.6 - p:C2 Type-4 p:C2 

PTR1.7 - p:I2 Type-4 p:I2 

PTR1.8 - p:I3 Type-4 p:I3 

PTR1.9 - p:OP1 Type-4 p:OP1 

PTR1.10 - p:OP2 Type-4 p:OP2 

 

Table 6: Initial ontology pattern correspondences 

OPC ID 
Source Ontology Pattern 

Target Ontology Pattern 

Artifact type Source Ontology Artifact 

OPC1 Class s:Supplier, s:Service Supplier-Service 

OPC2 Class s:Service,s:EDM Service-Categorization 

OPC3 Class s:EDM, s:PartLength Service-LengthCapability 

OPC4 Class s:PartLength LengthCapability 

OPC5 Class s:Service, s:Moldmaking Service-Categorization  

 

  



Table 7: Source & target ontology pattern correspondences output from the OPCs identification 

OPC ID 
Source Ontology Pattern Target 

Ontology 

Pattern Artifact type Source Ontology Artifact 

OPC1 Class s:Supplier, s:SuplierService, s:Service Supplier-

Service 
Individual s:Supplier_3, s:SS_3_4, s:Service_4 

Object Property s:SupplierService_SupplierID,s:SupplierService_ServiceID 

Data Property s:Supplier_ID, s:Service_Name 

Datatype xsd:string 

Literalal “Supplier_3”, “S3_EDM_Service” 

Axiom (s:Supplier_3, rdf:type, s:Supplier), 

(s:SS_3_4, rdf:type, s:SuplierService), 

(s:SS_3_4, s:SupplierService_SupplierID, s:Supplier_3), 

(s:SS_3_4, s:SupplierService_ServiceID, s:Service_4), 

(s:Supplier_3, s:Supplier_ID, “Supplier_3”), 

(s:Service_4, s:Service_Name, “S3_EDM_Service”) 

OPC2 Class s:Service, s:EDM Service-

Categoriza

tion 

 

Individual s:Service_4, s:EDMService_3 

Object Property s:EDM_ServiceID 

Data Property s:Service_Name 

Datatype xsd:string 

Literalal “S3_EDM_Service” 

Axiom (s:Service_4, rdf:type, s:Service), (s:EDMService_3, rdf:type, 

s:EDM), (s:Service_4, s:Service_Name, “S3_EDM_Service”)  

(s:EDMService_3, s:EDM_ServiceID, s:Service_4) 

OPC3 Class s:Service, s:Moldmaking Service-

Categoriza

tion 
Individual s:Service_9, s:MoldmakingService_3 

Object Property s:Moldmaking_ServiceID 

Data Property s:Service_Name 

Datatype xsd:string 

Literalal “S6_Moldmaking_Service” 

Axiom (s:Service_9, rdf:type, s:Service),  

(s:Service_9, s:Service_Name, “S6_Moldmaking_Service”), 

(s:MoldmakingService_3, rdf:type, s:Moldmaking), 

(s:MoldmakingService_3, s:Moldmaking_ServiceID, s:Service_9) 

OPC4 Class s:EDM, s:PartLength, s:EDMPartLength Service-

Length 

Capability 

Individual s:EDMService_3, s:EP_3_4, s:PartLength_4 

Object Property s:EDMPartlength_EDMID, s:EDMPartLengnth_PartLengthID 

Data Property s:PartLength_Value 

Datatype xsd:string 

Literalal “6cm – 48cm” 

Axiom (s:EDMService_3, rdf:type, s:EDM), (s:PartLength_4, rdf:type, 

s:PartLength), (s:EP_3_4, rdf:type, s:EDMPartLength), 

(s:EP_3_4, s:EDMPartLengnth_PartLengthID,s:PartLength_4), 

(s:EP_3_4, s:EDMPartlength_EDMID, s:EDMService_3) 

OPC5 Class s:PartLength Length 

Capability Individual s:PartLength_4 

Object Property - 

Data Property s:PartLength_Value 

Datatype xsd:string 

Literalal “6cm – 48cm” 

Axiom (s:PartLength_4, rdf:type, s:PartLength), (s:PartLength_4, 

s:PartLength_Value, “6cm – 48cm”) 



 

Table 8: Transformation rule for OPC1 

Rule 

ID 
PTR ID 

Source Ontology 

Pattern Variable 

Target Ontology 

Pattern Variable 

Transformation 

type 

Transformation 

Expression 

TR1 PTR1.1 s:C1 p:C1 Type-1 s:C1 

PTR1.2 s:C3 p:C2 Type-1 s:C3 

PTR1.3 s:L1 P:I1 Type-2 s:L1 

PTR1.4 s:L2 P:I2 Type-2 s:L1 

 PTR1.5 - p:OP1 Type-4 p:hasService 

PTR1.6 s:I1 - Type-3 - 

PTR1.7 s:I2 - Type-3 - 

PTR1.8 s:I3 - Type-3 - 

PTR1.9 s:OP1 - Type-3 - 

PTR1.10 s:OP2 - Type-3 - 

PTR1.11 s:DP1 - Type-3 - 

PTR1.12 s:DP2 - Type-3 - 

PTR1.13 s:C2 - Type-3 - 

 

Table 9: Transformation rule 

Rule 

ID 
PTR ID 

Source Ontology 

Pattern 

Target Ontology 

Pattern 

Transformation 

type 

Transformation 

Expression 

TR5 

PTR5.1 s:C1 p:C1 Type-1 s:C1 

PTR5.2 s:I1 p:I1 Type-1 s:I1 

PTR5.3 s:L1 p:L1 Type-2 s:G1 

PTR5.4 s:L1 P:L2 Type-2 s:G2 

PTR5.5 - p:DP1 Type-4 p:hasMin 

PTR5.6 - p:DP2 Type-4 p:hasMax 

PTR5.7 s:DP1 - Type-3 - 

 

Table 10: OPCs information ready for the pattern transformation 

OPC ID 
Source Ontology 

Pattern 
Target Ontology Pattern Transformation Rule 

OPC1 SP1 Supplier-Service TR1 

  OPC2 SP2 Service-Categorization TR2 

OPC3 SP3 Service-Categorization TR3 

OPC4 SP4 Service-LengthCapability TR4 

OPC5 SP5 LengthCapability TR5 

 

  



Table 11: Occurrences of SP1 in the source ontology derived from SP1 query 

SP1 

Instance ID 
I1 I2 I3 L1 L2 

SPI1.1 s:Supplier_3 s:SS_3_4 s:Service_4 “Supplier_3” “S3_EDM_Service” 

SPI1.2 s:Supplier_6 s:SS_6_9 s:Service_9 “Supplier_6” “S6_Moldmaking_Service” 

 

Table 12: Results of TR1 application on SPI1.1 pattern instance 

PTR ID 
SP1 

Variables 
Source Ontology Artifacts 

Transformation 

Type 

Result 

Name Type 

PTR1.1 s:C1 s:Supplier Type-1 s:Supplier Class 

PTR1.2 s:C3 s:Service Type-1 s:Service Class 

PTR1.3 s:L1 “Supplier_3” Type-2 s:Supplier_3 Individual 

PTR1.4 s:L2 
“S3_EDM_Service” 

Type-2 
s:S3_EDM_Servic

e 

Individual 

PTR1.5 - - Type-4 
s:hasService Object 

Property 

PTR1.6 s:I1 s:Supplier_3 Type-3 - - 

PTR1.7 s:I2 s:SS_3_4 Type-3 - - 

PTR1.8 s:I3 s:Service_4 Type-3 - - 

PTR1.9 s:OP1 s:SupplierService_SupplierID Type-3 - - 

PTR1.10 s:OP2 s:SupplierService_ServiceID Type-3 - - 

PTR1.11 s:DP1 s:Supplier_ID Type-3 - - 

PTR1.12 s:DP2 s:Service_Name Type-3 - - 

PTR1.13 s:C2 s:SupplierService Type-3 - - 

 

Table 13: Mapping class axioms 

Mapping 

Class 

Axiom 

ID 
Mapping Class Axioms 

EDMSupplier 

A1 
mo:Supplier and  

    mo:hasService some mo:ElectroDischargeMachiningService 

A2 

s:Supplier and inverse s:SupplierService_SupplierID  

some (s:SupplierService and s:SupplierService_ServiceID 

some (s:Service and inverse s:EDM_ServiceID some s:EDM)) 

 

  



Table 14: Reasoning times in the canonicalization case (all times are in second) 

Number of 
Service Category  

Classes 

Loading 
Time 

Consistency 
Checking Time 

Classification Time 
Realization 

Time 
Total Time 

10 0.005 0.001 0.001 0.001 0.008 

20 0.006 0.001 0.001 0.002 0.010 

30 0.009 0.002 0.001 0.003 0.015 

40 0.01 0.001 0.001 0.007 0.019 

50 0.012 0.002 0.001 0.009 0.024 

60 0.013 0.003 0.001 0.012 0.029 

70 0.016 0.002 0.001 0.017 0.036 

80 0.02 0.005 0.001 0.023 0.049 

90 0.022 0.004 0.001 0.026 0.053 

100 0.024 0.005 0.002 0.031 0.062 

Table 15: Reasoning times in the non-canonicalization case (all times are in second) 

Number of Service 
Category  
Classes 

Loading 
Time 

Consistency 
Checking Time 

Classification 
Time 

Realization 
Time 

Total Time 

10 0.031 0.031 0.203 0.062 0.327 

20 0.047 0.032 1.67 0.391 2.14 

30 0.062 0.047 10.744 2.17 13.023 

40 0.063 0.156 38.508 6.184 44.911 

50 0.047 0.25 91.101 13.039 104.437 

60 0.062 0.343 185.847 24.81 211.062 

70 0.062 0.421 339.18 44.652 384.315 

80 0.078 0.687 573.335 78.936 653.036 

90 0.078 0.796 948.925 124.508 1074.307 

100 0.078 1.046 1505.469 183.522 1690.115 

 


