

A PRACTICAL TOOL FOR UNCERTAINTY IN OWL ONTOLOGIES

Shenyong Zhang1,2, Yi Sun2, Yun Peng2, Xiaopu Wang1

1Department of Astronomy and Applied Physics
University of Science and Technology of China, Hefei, Anhui 230026

2Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County, Baltimore, MD 21250

syzhang@mail.ustc.edu.cn, {yisun1, ypeng}@umbc.edu, wxp@ustc.edu.cn

ABSTRACT
Previously we have proposed a theoretical framework,
named BayesOWL, which translates an OWL taxonomy
of concept classes into a Bayesian network (BN) and
incorporates consistent probabilistic information about the
concept classes into the translated BN. In this paper, we
extend the original framework to support general OWL
DL ontologies and to effectively deal with inconsistent
probabilistic information. We have also implemented the
BayesOWL prototype system, which can be used as a
practical tool by people investigating uncertainty in
Semantic Web.

KEY WORDS
Semantic Web, Ontology Reasoning, Bayesian Networks

1. Introduction

Typically a Semantic Web ontology is built on concept
classes of interest and relationships between these classes
of the domain which it intends to model. Semantic Web
ontology languages such as OWL and RDF are
sufficiently expressive to describe the logical relations
such as subclass, subproperty, equivalent, disjoint, etc,
between concept classes. However, as logic languages,
they cannot quantify and reason with the uncertain aspect
of the inter-class relations such as the degree of the
overlap or inclusion between two concepts, even if the
uncertainty information about the concept classes and
inter-class relations is available [1, 2]. For example, one
may know 1) concept A is a subclass of B and 2) P(A|B) =
0.1. The logical relation of 1) can be represented in OWL,
but the probabilistic information in 2) cannot.

In previous work, we have proposed a theoretical
framework, named BayesOWL, to address representation
and reasoning with uncertainty in Semantic Web
ontologies [3, 4]. The framework consists of a set of
structure translation rules which are used to translate an
OWL taxonomy into a Bayesian network (BN) direct
acyclic graph (DAG), and a construction mechanism used
to incorporate available probabilistic information about

concept classes and interclass relations into the
conditional probability tables (CPT) of the BN. The
resulting BN is complementary to the original ontology; it
models the uncertain aspect of the domain and supports
ontological queries by Bayesian reasoning.

Stated more precisely, the BayesOWL takes two inputs:

1) An OWL DL file that defines an ontology ONT; and
2) A set of probability distributions R, each of which is

in the form of P(u|v) where variables in U and V are
concept classes in ONT.

It outputs a BN, N, which
1) Preserves all logical relations among concept classes

existing in ONT; and
2) Agrees with the probabilistic information in R as

close as possible.

In the original BayesOWL framework, ONT is restricted
to simple taxonomical ontologies (i.e. ontologies only
consist of concept classes, not anonymous classes). It also
requires that probability distributions in R be consistent
with each other. In this paper, we extend the original
framework of BayesOWL to address these limitations.
Based on the extended framework we have completed a
prototype implementation [5] which is available as a
practical tool for researchers and practitioners who are
modeling uncertainty in Semantic Web.

The rest of this paper is organized as follows. Section 2
briefly reviews the original BayesOWL structure
translation rules and extends it to support general OWL
DL ontologies. Section 3 introduces general techniques
that integrate inconsistent probabilistic information and
shows how these approaches can be applied to BN.
Section 4 presents our approach to incorporate
probabilistic information, both consistent and
inconsistent, to modify the CPTs in the translated BN.
Section 5 shows our prototype implementation. And
finally Section 6 concludes with discussions and
directions for future work.

2. Structure Translation

In this section, we first give a brief review of the structure
translation rules in the original BayesOWL, and then
discuss how to extend these rules from terminological
taxonomies to OWL DL ontologies.

2.1 Original Structure Translation Rules

To translate the given ONT into a BN, BayesOWL first
constructs a DAG, the BN structure, based on the concept
class hierarchy. Each concept class C in ONT is translated
into a node C in the DAG, treated as a binary random
variable with P(C) as the probability of a randomly
chosen individual belonging to class C. The arcs between
the nodes are set according to the logical relations
between these concept classes in ONT. Besides the
subclass relation, five other logical relations can be
specified using OWL constructors [6], they are:
equivalent (same as), union, intersection, disjoint, and
complement.

The original BayesOWL only deals with OWL ontologies
which are simple taxonomies of concepts (i.e., ontologies
without OWL properties). Since every class in such
taxonomy is a concept class, it is sufficient for the BN
DAG to model the subclasses and other logical relations
that are explicitly defined in the given ontology file [4].
This is done by

1) Setting an arc from the superclass node to the
subclass node for each defined subclass relation and
constructing the default CPT of the subclass node;

2) Creating a logic node (L-node for short) for each of
the defined logical relation of other five types. Each
L-node is connected with the related concept nodes,
and its CPT is set according to the designated
logical relation.

For a concept node, an entry in its CPT must be zero if
any of its parents is ‘False’ for this entry. The only other
entry in the table is the one in which all its parents are
‘True’. We set the value of such an entry (0.5, 0.5) as
default. As will be seen later, when probabilistic
information R is provided, these non-zero entries in the
CPT for concept nodes will be modified so that the BN
will have its distribution satisfying R.

For L-nodes, CPT entries are set based on the logical
relations they denote. Fig. 1 below gives an example of
the L-node for a disjoint relation between concepts C1 and
C2 and its CPT. It can be seen that, when L_disjoint is set
to “True”, C1 and C2 become disjoint (probability of both
being true becomes 0).

Figure 1. Logic node for “disjoint” and its CPT

An example illustrating the structure translation is given
in Fig. 2 below: Fig. 2.(a) gives the ontology of 6 concept
classes and logical relations between these concepts; Fig.
2.(b) is the translated DAG where the 6 concept nodes
correspond to the 6 concept classes and they form a
subclass hierarchy. The 4 defined logical relations are
modeled by the 4 L-nodes with their CPTs set according
to the respective logical relations.

(a) A tiny ontology named “Nature”

(b) The translated BN DAG

Figure 2. Taxonomy “Nature” and its BN structure

2.2 Implicit Logical Relations

Modeling logical relations between concept classes in
general ontologies is more complicated than those in
simple taxonomies. This is because general ontologies
may contain anonymous classes and implicit logical
relations may exist between concept classes via these
anonymous classes. For example, in the Wine ontology
provided by W3C as an OWL use example and test
benchmark [7], there is no explicitly defined logical
relation between two concept classes “RedBurgundy” and
“WhiteWine”. However, they are disjoint with each other
because they are subclasses of two disjoint anonymous
classes “hasColor = #Red” and “hasColor = #White”,
respectively.

If we simply exclude these anonymous classes from the
translated BN, these implicit logical relations between
concept classes will be lost. By using OWL reasoner tools
such as Pellet [8], all of these implicit relations can be
derived from the given ontology. However, not every of
these relations needs to be modeled by an L-node in the
translated DAG; some are implied by others and thus are
considered redundant.

disjoint
C1 C2 T F
T T 0.0 1.0
T F 1.0 0.0
F T 1.0 0.0
F F 1.0 0.0

“Nature” Ontology
Concept classes:

Animal, Male, Female, Human, Man, Woman;
Defined logical relations:
• Male, Female: subclasses of Animal;
• Male and Female: disjoint with each other;
• Man: intersection of Human and Male;
• Woman: intersection of Human and Female;
• Human: union of Man and Woman.

C1

L_disjoint

C2

Let SONT denote all explicit and implicit logical relations
between concept classes of the given ontology, we define
SDAG ⊆ SONT as a set of logical relations such that:

1) every L in SONT is entailed by SDAG; and
2) no L in SDAG is entailed by SDAG \{L}.

Then, we only need to model those L in SDAG by subclass
arcs and L-nodes in the translated BN. Note that SDAG =
SONT if ONT does not contain any anonymous class.

2.3 Removing Redundant Relations

Most of the redundant relations in SONT are stemmed from
the “equivalency”, “transitivity”, and “commutativity” of
logical relations. For example,
• if equivalent(A, B) is in SONT, then for any concept C
related to A in SONT, C is also related to B of the same
relation in SONT;
• if and A B B C⊆ ⊆ are in SONT then A C⊆ is also in
SONT;
• if and A B B C⊆ ∩ = ∅ are in SONT then A C∩ = ∅ is
also in SONT;
• if A B C= ∩ is in SONT then A C B= ∩ is also in SONT;

This leads to the following procedure for removing
redundant relations.

1. Equivalence:

1.1 partition the set of all concept classes into
equivalence groups, and designate one concept in
each group as its representative;

1.2 replace all equivalence relations in SONT by these
equivalence groups: each equivalence group is
modeled by a single L_equivalent node and
having all concept nodes in that group pointing
to this L-node;

1.3 for all remaining relations in SONT, replace each
concept by the representative of the equivalence
group it belongs to;

1.4 combine relations that are the same or become
the same under commutation into one relation;

2. Disjoint: remove A B∩ = ∅ from SONT if
C D∩ =∅ , and A C B D⊆ ⊆ are also in SONT;

3. Subclass: for each concept class A
3.1 identify all most specific subsumers of A;
3.2 remove all A C⊆ from SONT if C is not a most

specific subsumer of A;

Most redundant relations in SONT will be removed by this
procedure. We use the Wine ontology [7] (which also
imports Food ontology) to verify our redundancy relation
removal procedure. Table 1 shows the results.

Table 1. Number of relations in “Wine” ontology

 Explicitly
Defined

Derived by
Pellet

After
Redundant
removal

No. of Relations 99 6641 388

As given in Table 1, the number of logical relations
explicitly defined between concept classes in the ontology
file is 99, which is much smaller than the total number of
relations derived by Pellet reasoner, 6641. After applying
our redundant relation removal procedure, the number is
reduced to 388, which is less than 6% of all derivable
logical relations. 172 of them are subclass relations, they
will be modeled by the subclass arcs in the BN. Each of
the rest 216 logical relations is represented by an L-node
in the translated BN. The total number of the concept
classes in wine ontology is 126, and the total number of
the nodes (the concept nodes plus the L-nodes) in
resulting BN is 342.

2.4 Extended Structure Translation Rules

The rules for structure translation of the extended
BayesOWL are now given as follows:
• Concept Classes. Each defined concept class is

mapped into a binary variable node, called concept
node, in the translated BN.

• Logical Relations. Construct SDAG by first forming SONT
from the given ontology by OWL reasoner and then
applying the redundant relation removal procedure.

• Subclasses. For every subclass relation in SDAG, an arc
is set from the superclass to the subclass and a default
CPT is constructed for the subclass node. A subclass
hierarchy of all concept nodes is thus formed.

• Logical Nodes. For every logical relation other than
subclass in SDAG, create an L-node, connecting all
concept nodes in that relation to the L-node, and set its
CPT according to the logic of the relation.

When all L-nodes are set to true (denoted LT), all logical
relations between concept classes in ONT hold between
the corresponding concept nodes in the translated BN.

Now the task left is to integrate the probabilistic
information in R (the second input to BayesOWL) into
the BN. This is done by modifying the CPTs of the
concept nodes so that the joint distribution of the BN,
given LT, agrees with R, i.e.
 (| ,) (|), (|)P u v LT R u v R u v= ∀ ∈R .
This task is dealt with in the next two sections.

3. Probabilistic Information Incorporation

Consider a joint probability distribution (JPD) Q(X)
defined on a set of variables X = {X1,…,Xn} and a set of
low-dimensional probability distributions, called
constraint { }1(),..., ()mR Y R Y=R , where , 1jY X j m⊆ < < .

To incorporate information in R into Q is to change Q(X)
minimally to Q*(X) to satisfy all constraints in R, i.e.
 * () (), () .j j j

j jQ y R y R y= ∀ ∈R

The approach BayesOWL takes for the information
integration is based on the method known as iterative
proportional fitting procedure (IPFP) which iteratively
modifies the JPD using the constraints one at a time. If
these constraints are consistent with each other, i.e., there
exists a JPD that satisfies all constraints, then IPFP will
converge. In this section we first briefly describe IPFP,
and then discuss how to apply IPFP to modify BN CPTs
with probabilistic constraints. Finally we propose our
method to deal with inconsistent constraints.

3.1 Brief Introduction to IPFP

Iterative proportional fitting procedure (IPFP) was first
published by Kruithof [9]. Deming and Stephan used this
procedure on estimating cell frequencies in contingency
tables under marginal constraints [10].

IPFP uses I-divergence, also known as Kullback-Leibler
divergence [11], relative information or cross-entropy, to
measure the distance between two JPDs P(x) and Q(x):

()() log ;
()(||)

P xP x if P Q
Q xI P Q

otherwise

 <<=
+∞

∑

where P << Q (P is dominated by Q) if { }| () 0x P x > ⊆
{ }| () 0x Q x > .

Let P be a convex set of JPD over X and 0 ()Q x ∉P .

'()Q x ∈P is an I-projection of 0 ()Q x on P if it has the
minimum I-divergence to 0 ()Q x among all JPD in P.

For 0 ()Q x and { }1(),..., ()mR y R y=R the iterative process
of IPFP is defined as following:

 1
1

()() ()
()

i

k k i
k

R yQ x Q x
Q y−

−

= ⋅ ,

where 1)mod)1((+−= mki . IPFP was proved to converge
when constraints are consistent, and the converging JPD
Q* is an I-projection of 0 ()Q x on the set of all JPDs that
satisfy all constraints in R [12].

3.2 Modifying BN with Probability Constraints

Applying IPFP to modify the CPT for concept nodes is
more complicated. Note that a BN defines a JPD which
can be generated by the chain rule
 1() (|)n

i i iQ x Q x π== Π
where Xi is the variable of BN and iπ is the set of all
parents of Xi, and the parent-child relations are
determined by BN DAG. One would think our task can be

accomplished by simply applying IPFP on this JPD and
then extracting the CPTs from the resulting JPD Q* by
marginalization. However, this approach would not work
because IPFP does not respect the interdependencies
between variables dictated by the BN DAG. This can be
seen from a simple example in Fig. 3.

On the left of Fig. 3 is the DAG of a BN of three variables
A, B, and C, and its initial CPTs. The JPD Q(A,B,C) (on
the upper right) is obtained by modifying the original JPD
of this BN with constraint P(B, C) = (0.4, 0.3, 0.17, 0.13).
However, if we extract from Q the CPTs Q(A), Q(B|A)
and Q(C|A) for the three variables, the new JPD defined
by these CPTs, '(, ,) () (|) (|)Q A B C Q A Q B A Q C A= ⋅ ⋅ on
the lower right, is different from Q, and it does not satisfy
constraint P(B, C) any more, although the difference is
not that great.

Figure 3. A three variable BN example

To resolve this problem, we have developed an algorithm,
called E-IPFP, [13], which is an extension of IPFP. E-
IPFP forces the process to obey the BN structure by
introducing an additional constraint
 1 1 i i() (|)n

m i kR x Q x π+ == Π
where i i(|)kQ x π are CPTs extracted from the current JPD
during IPFP process.

Let 0 1 0 i i() (|)n

iQ x Q x π== Π be the initial JPD of the BN

and { }1(),..., ()mR Y R Y=R be the set of constraints, E-
IPFP is given as following.

1. 0 1 0 i i() (|)n
iQ x Q x π== Π ;

2. for k = 1 until convergence {
2.1 i = ((k - 1) mod (m + 1)) + 1;
2.2 if i < m + 1

1
1

()() ()
()

i

k k i
k

R yQ x Q x
Q y−

−

= ⋅ ;

2.3 else

extract 1 i i(|)kQ x π− from 1()kQ x− according to
BN structure;

1 1 i i() (|)n
k i kQ x Q x π= −= Π ;

2.4 k = k + 1;
 }

Note that the m constraints in R are used in Step 2.2 (i <
m + 1) in the same ways as the standard IPFP, and the
structure constraint 1()mR x+ is used in Step 2.3. As proved
in [13], E-IPFP converges for consistent probability
constraints and the converging JPD satisfies all
constraints in R and obeys the BN structure.

Like IPFP, E-IPFP is extremely expensive when the BN is
large. To reduce the computational cost, we have
developed two additional algorithms. The first algorithm,
D-IPFP, decomposes the BN into subnets and applies E-
IPFP to each subnet with constraints involved in that
subnet. The second algorithm, SD-IPFP, is applicable
when variables in each constraint are within one CPT.
Then each CPT is modified directly by the constraints
without generating the JPD. Please refer to [13] for more
details of these algorithms.

3.3 Inconsistent Information Integration

As discussed in 3.1, IPFP converges for consistent
constraints. But when constraints are inconsistent with
each other, IPFP tends to go into cycles [14]. To integrate
such inconsistent constraints, the best one can do is to
find a JPD whose marginals are as close as possible to the
constraints in R. Vomlel has proposed an algorithm called
GEMA [14, 15], which is a parallel variation of the
iterative IPFP. However, the algorithm suffers a high
computation cost and its result is very sensitive to the
initial JPD and constraint orders [16].

We have developed an efficient method named SMOOTH
for inconsistent constraint integration [16]. It is very
much like the standard IPFP, except that at each iteration
a bi-directional modification takes place: at the kth
iteration, not only the current JPD 1()kQ x− is modified by
the chosen constraint ()jR y , ()jR y itself is also modified
by 1()j

kQ y− . Precisely, at the kth iteration we have:

1

1
1

() (1) () ();
()() () ;
()

j j j
k

j

k k j
k

R y Q y R y
R yQ x Q x

Q y

α α−

−
−

= − +

= ⋅

where 0 1α< < is the smooth factor, and in order to
guarantee these constraints are treated equally, α should
be chosen to be very close to 1. It converges with
constant ;α the convergence can be accelerated by
reducing α at the end [16]. Since 1()kQ x− has been
modified by other constraints in the previous iterations,
using it to modify ()jR y has the effect of reducing or
smoothening the inconsistency among the constraints.

Experiments show SMOOTH is data insensitive, time and
computation efficient.

Moreover, since it can be seen as an extension of standard
IPFP, we can directly apply it to any IPFP-based methods,
including E-IPFP.

4. CPT Construction

As discussed in Section 3, a BN translated from OWL
ontology contains two kinds of nodes: concept nodes and
L-nodes. For L-nodes, CPTs are completely determined
by logical operation results, thus the only thing that is left
is to construct CPTs for concept nodes. These CPTs shall
incorporate the probabilistic information in R. When
using E-IPFP to construct CPTs for concept nodes, we
need to preserve the logical relations among the concept
nodes. As shown in Section 2, this is done by setting all
L-nodes to true, denoted by LT. This requires replacing
the formula in Step 2.2 of E-IPFP by

 1

1

()() ()
(|)

j

k k kj
k

R yQ x Q x
Q y LT

β−

−

= ⋅ ⋅ ,

where 1/ ()k x kQ xβ = Σ is the normalization factor. If the
constraints are inconsistent, then SMOOTH is applied,
and

1

1
1

() (1) (|) ();
()() () ;

(|)

j j j
k

j

k k kj
k

R y Q y LT R y
R yQ x Q x

Q y LT

α α

β

−

−
−

= − +

= ⋅

shall be used.

As an example, consider the following constraints to the
Nature ontology in Fig 2:

• P(Animal) = 0.560
• P(Male,Human|Animal)= 0.511
• P(Female,Human|Animal)= 0.258
• P(Man|Animal,Human)= 0.664
• P(Woman|Animal,Human)= 0.336

These constraints are consistent with each other and with
the BN structure. After running E-IPFP to convergence,
the translated BN and its final CPTs are given in Fig. 4
below. It can be seen that, after all L-nodes are set to be
true, the network is consistent with all the probability
constraints.

(a) Resulting BN of the ‘‘Nature” ontology

(b) Final CPTs of the resulting BN

Figure 4. Translation result of the “Nature” ontology

When we change the fourth constraint to
 P(Man|Animal,Human)= 0.56,
these constraints become inconsistent with the BN
structure in which “Man” and “Woman” are complement
with each other. To deal with this inconsistency,
SMOOTH version of E-IPFP is applied. At convergence,
the translated BN has

P(Man|Animal,Human)= 0.636,
P(Woman|Animal,Human)= 0.364

which are now complement with each other and close to
the given constraints. Figure 5 gives the final CPTs for
the resulting BN.

Figure 5. Final CPTs of resulting BN (inconsistent)

5. Prototype Implementation

Our prototype implementation [5] of BayesOWL is
written in Java. It takes two inputs: 1) an OWL file that
defines the ontology which is to be translated into a BN;
and 2) an OWL file of the probabilistic information of
concepts and inter-concept relations encoded in the way
as described in [5]. The translated BN is written in the
format of Netica, a BN development software system
from Norsys Software Corporation [17]. Netica also
provides probabilistic reasoning when constructing the
CPTs for the translated BN.

5.1 System Architecture

The architecture of the BayesOWL prototype is given in
Figure 6 below. The Terminological Parser (T-Parser)
parses the OWL ontology file, identifies all concept
classes defined in the ontology, and generates all logical
relations among the concepts.

As discussed in Subsection 2.2, some of these relations
are not explicitly defined in the ontology file but can be
derived using anonymous classes. To ensure all implicit
relations are derived, we choose Pellet [8, 18], a complete
reasoner for OWL DL, to help implement the T-Parser
and construct SONT. After the SONT is formed, we remove
the redundant relations and generate SDAG.

BN-Structure Constructor takes SDAG as input and outputs
the BN DAG. It also constructs the CPTs for all L-nodes
and initializes the default CPTs for concept nodes.

The Probabilistic Parser (P-Parser) parses probability
files and extracts the encoded probabilities into a specific
internal representation. These probabilities are then taken
by CPT Constructor as input constraints for E-IPFP
algorithm to modify the CPTs of the concept nodes.

Figure 6. Architecture of BayesOWL prototype system

5.2 The BayesOWL Toolkit

As a practical tool for the users and developers, the
BayesOWL prototype provides a toolkit, containing a set
of Java APIs and a graphic user interface (GUI). User’s
reference manual and other related documents are also
provided.

The APIs (see Figure 7 below) includes several packages
which can be used to complete the ontology-to-BN
translation. The packages and the methods included there
can also be used separately.

Figure 7. BayesOWL APIs

The system GUI is shown in Figure 8. The layout is
divided into several areas:
• File input area: which is used to input OWL

ontology files and probability files;
• Options area: which is designed for optional

operations such as requesting Netica license for large
BN, the location the resulting BN to be saved, and
whether you want to open and view the resulting BN
when it is generated;

• Log area: which is for showing the running status;
• Result BN area: which shows the translated BN in a

tree structure; and
• Node detail area: which gives node details

(including its prior beliefs and its parents) when a
node is selected in resulting BN area.

The BayesOWL GUI is executable. After the input
ontology and probability files are specified, the “start”
button starts the translation, the resulting BN will be
generated and saved, and the network structure is shown
in the translation result area.

Figure 8. GUI of BayesOWL

6. Conclusions and Future Work

In this paper, we have extended our original BayesOWL
framework so that it is able to model the implicit logical
relations entailed via anonymous classes, thus to support
general OWL DL ontologies, and to incorporate both
consistent and inconsistent probabilistic information.
These extensions allow one to translate terminological
taxonomy of an OWL DL ontology into a BN. As a
probabilistic model, the translated BN complements the
logic-based Semantic Web languages and supports
ontological queries as Bayesian reasoning.

The BayesOWL prototype system and its Java APIs and
GUI can be used as a practical tool for those who are
interested in representing and reasoning with uncertainty
in Semantic Web.

Currently we are intensely working on the theoretical
analysis of BayesOWL framework. Recently we have
completed more rigorous proofs of convergence of both
SMOOTH and E-IPFP. Analysis of the framework’s time
complexity is underway, with the emphasis on the
complexity of the CPT construction since it dominates the
computation of the framework.

We are also actively working on identifying real world
application scenarios that are best suitable for
BayesOWL. Experiments with these scenarios will allow
us to evaluate the validity and effectiveness of the
framework.

One direction for future work is the automatic generation
of probabilistic information. Relying on ontology
designers and domain experts may not always be possible
and often error prone, especially when the ontology is
large. One potential way is to mine the web data using
text classification methods [19, 20, 21] and other
information retrieval techniques.

Another direction is to extend the BayesOWL framework
to properties and individuals, so that a complete
uncertainty model for complex OWL DL ontologies can
be built.

Acknowledgements

This work was supported in part by NIST award
60NANB6D6206 and the China Scholarship Council
(CSC).

References

[1] P. Costa, K.B. Laskey, and K.J. Laskey, PR-OWL: A
Bayesian ontology language for the semantic web, Proc.
of Workshop on Uncertainty Reasoning for the Semantic
Web (URSW) at the 4th International Semantic Web
Conference, Galway, Ireland, November 2005.

[2] Z. Ding, Y. Peng, A probabilistic extension to
ontology language OWL, Proc. of the 37th Hawaii
International Conference on System Sciences, Big Island,
HI, 2004.

[3] Z. Ding, Y. Peng, R. Pan, A Bayesian approach to
uncertainty modeling in OWL ontology, Proc. of 2004
International Conference on Advances in Intelligent
Systems - Theory and Applications, Luxembourg-
Kirchberg, Luxembourg, 2004.

[4] Z. Ding, Y. Peng and R. Pan, BayesOWL:
Uncertainty modeling in semantic web ontologies, Soft
computing in ontologies and semantic web (NY:
Springer-Verlag, March 2006).

[5] S. Zhang, Y. Sun and Y. Peng, BayesOWL: A
prototype system for uncertainty in semantic web, Proc.
of the 2009 International Conference on Artificial
Intelligence, Las Vegas, USA, Jul. 13-16, 2009.

[6] http://www.w3.org/2004/OWL

[7] http://www.w3.org/TR/owl-guide/

[8] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur and Y.
Katz, Pellet: A practical OWL-DL reasoner, Journal of
Web Semantics, 2007, 51-53.

[9] R. Kruithof, Telefoonverkeersrekening, De Ingenieur
52, 1937, 15-25.

[10] W.E. Deming and F.F. Stephan, On a least square
adjustment of a sampled frequency table when the
expected marginal total are known, Ann. Math. Statist.,
11, 1940, 427-444.

[11] S. Kullback and R.A. Leibler, On information and
sufficiency, Annals of Mathematical Statistics, 22, 1951,
79-86.

[12] I. Csiszar, I-divergence geometry of probability
distributions and minimization problems, The Annuals of
Probability, 3(1), 1975, 146-158.

[13] Y. Peng and Z. Ding, Modifying Bayesian networks
by probability constraints, Proc. of 21st Conference on
Uncertainty in Artificial Intelligence, Edinburgh,
Scotland, July 26-29, 2005.

[14] J. Vomlel, Methods of probabilistic knowledge
integration, PhD thesis, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical
University, 1999.

[15] J. Vomlel, Integrating inconsistent data in a
probabilistic model, Journal of Applied NonClassical
Logics, 2003, 1-20.

[16] S. Zhang and Y. Peng, An efficient method for
probabilistic knowledge integration, Proc. of the 20th
IEEE International Conference on Tools with Artificial
Intelligence, Dayton, Ohio, Nov. 3-5, 2008.

[17] http://www.norsys.com/

[18] http://clarkparsia.com/pellet

[19] A. Doan, J. Madhavan et al, Learning to match
ontologies on the semantic web, VLDB Journal, 2003,
303-319.

[20] R. Pan, Z. Ding, Y. Yu and Y. Peng, A Bayesian
network approach to ontology mapping, Proc. of the
Fourth International Semantic Web Conference, Galway,
Ireland, November 6-10, 2005.

[21] S. Prasad, Y. Peng, and T. Finin, A tool for mapping
between two ontologies using explicit information,
Ontologies in Agent Systems (OAS) workshop,
International Conference on Autonomous Agents and
Multi-Agent Systems, Bologna, Italy, July, 2002.

