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ABSTRACT 
Previously we have proposed a theoretical framework, 
named BayesOWL, which translates an OWL taxonomy 
of concept classes into a Bayesian network (BN) and 
incorporates consistent probabilistic information about the 
concept classes into the translated BN. In this paper, we 
extend the original framework to support general OWL 
DL ontologies and to effectively deal with inconsistent 
probabilistic information. We have also implemented the 
BayesOWL prototype system, which can be used as a 
practical tool by people investigating uncertainty in 
Semantic Web.  
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1.  Introduction 
 
Typically a Semantic Web ontology is built on concept 
classes of interest and relationships between these classes 
of the domain which it intends to model. Semantic Web 
ontology languages such as OWL and RDF are 
sufficiently expressive to describe the logical relations 
such as subclass, subproperty, equivalent, disjoint, etc, 
between concept classes. However, as logic languages, 
they cannot quantify and reason with the uncertain aspect 
of the inter-class relations such as the degree of the 
overlap or inclusion between two concepts, even if the 
uncertainty information about the concept classes and 
inter-class relations is available [1, 2]. For example, one 
may know 1) concept A is a subclass of B and 2) P(A|B) = 
0.1. The logical relation of 1) can be represented in OWL, 
but the probabilistic information in 2) cannot.  
 
In previous work, we have proposed a theoretical 
framework, named BayesOWL, to address representation 
and reasoning with uncertainty in Semantic Web 
ontologies [3, 4]. The framework consists of a set of 
structure translation rules which are used to translate an 
OWL taxonomy into a Bayesian network (BN) direct 
acyclic graph (DAG), and a construction mechanism used 
to incorporate available probabilistic information about 

concept classes and interclass relations into the 
conditional probability tables (CPT) of the BN. The 
resulting BN is complementary to the original ontology; it 
models the uncertain aspect of the domain and supports 
ontological queries by Bayesian reasoning. 
 
Stated more precisely, the BayesOWL takes two inputs:  

1) An OWL DL file that defines an ontology ONT; and  
2) A set of probability distributions R, each of which is 

in the form of P(u|v) where variables in U and V are 
concept classes in ONT. 

It outputs a BN, N, which 
1) Preserves all logical relations among concept classes 

existing in ONT; and 
2) Agrees with the probabilistic information in R as 

close as possible. 
 
In the original BayesOWL framework, ONT is restricted 
to simple taxonomical ontologies (i.e. ontologies only 
consist of concept classes, not anonymous classes). It also 
requires that probability distributions in R be consistent 
with each other. In this paper, we extend the original 
framework of BayesOWL to address these limitations. 
Based on the extended framework we have completed a 
prototype implementation [5] which is available as a 
practical tool for researchers and practitioners who are 
modeling uncertainty in Semantic Web. 
 
The rest of this paper is organized as follows. Section 2 
briefly reviews the original BayesOWL structure 
translation rules and extends it to support general OWL 
DL ontologies. Section 3 introduces general techniques 
that integrate inconsistent probabilistic information and 
shows how these approaches can be applied to BN. 
Section 4 presents our approach to incorporate 
probabilistic information, both consistent and 
inconsistent, to modify the CPTs in the translated BN. 
Section 5 shows our prototype implementation. And 
finally Section 6 concludes with discussions and 
directions for future work. 
 
2.  Structure Translation 
 



In this section, we first give a brief review of the structure 
translation rules in the original BayesOWL, and then 
discuss how to extend these rules from terminological 
taxonomies to OWL DL ontologies. 
 
2.1 Original Structure Translation Rules 
 
To translate the given ONT into a BN, BayesOWL first 
constructs a DAG, the BN structure, based on the concept 
class hierarchy. Each concept class C in ONT is translated 
into a node C in the DAG, treated as a binary random 
variable with P(C) as the probability of a randomly 
chosen individual belonging to class C. The arcs between 
the nodes are set according to the logical relations 
between these concept classes in ONT. Besides the 
subclass relation, five other logical relations can be 
specified using OWL constructors [6], they are: 
equivalent (same as), union, intersection, disjoint, and 
complement. 
 
The original BayesOWL only deals with OWL ontologies 
which are simple taxonomies of concepts (i.e., ontologies 
without OWL properties). Since every class in such 
taxonomy is a concept class, it is sufficient for the BN 
DAG to model the subclasses and other logical relations 
that are explicitly defined in the given ontology file [4]. 
This is done by 

1) Setting an arc from the superclass node to the 
subclass node for each defined subclass relation and 
constructing the default CPT of the subclass node; 

2) Creating a logic node (L-node for short) for each of 
the defined logical relation of other five types. Each 
L-node is connected with the related concept nodes, 
and its CPT is set according to the designated 
logical relation. 

 
For a concept node, an entry in its CPT must be zero if 
any of its parents is ‘False’ for this entry. The only other 
entry in the table is the one in which all its parents are 
‘True’. We set the value of such an entry (0.5, 0.5) as 
default. As will be seen later, when probabilistic 
information R is provided, these non-zero entries in the 
CPT for concept nodes will be modified so that the BN 
will have its distribution satisfying R. 
 
For L-nodes, CPT entries are set based on the logical 
relations they denote. Fig. 1 below gives an example of 
the L-node for a disjoint relation between concepts C1 and 
C2 and its CPT. It can be seen that, when L_disjoint is set 
to “True”, C1 and C2 become disjoint (probability of both 
being true becomes 0).  

 
 

Figure 1. Logic node for “disjoint” and its CPT 

An example illustrating the structure translation is given 
in Fig. 2 below: Fig. 2.(a) gives the ontology of 6 concept 
classes and logical relations between these concepts; Fig. 
2.(b) is the translated DAG where the 6 concept nodes 
correspond to the 6 concept classes and they form a 
subclass hierarchy. The 4 defined logical relations are 
modeled by the 4 L-nodes with their CPTs set according 
to the respective logical relations. 

 
(a) A tiny ontology named “Nature” 

 
(b) The translated BN DAG 

Figure 2. Taxonomy “Nature” and its BN structure 
 
2.2 Implicit Logical Relations 
 
Modeling logical relations between concept classes in 
general ontologies is more complicated than those in 
simple taxonomies. This is because general ontologies 
may contain anonymous classes and implicit logical 
relations may exist between concept classes via these 
anonymous classes. For example, in the Wine ontology 
provided by W3C as an OWL use example and test 
benchmark [7], there is no explicitly defined logical 
relation between two concept classes “RedBurgundy” and 
“WhiteWine”. However, they are disjoint with each other 
because they are subclasses of two disjoint anonymous 
classes “hasColor = #Red” and “hasColor = #White”, 
respectively. 
 
If we simply exclude these anonymous classes from the 
translated BN, these implicit logical relations between 
concept classes will be lost. By using OWL reasoner tools 
such as Pellet [8], all of these implicit relations can be 
derived from the given ontology. However, not every of 
these relations needs to be modeled by an L-node in the 
translated DAG; some are implied by others and thus are 
considered redundant.  
 

disjoint 
C1 C2 T F 
T T 0.0 1.0 
T F 1.0 0.0 
F T 1.0 0.0 
F F 1.0 0.0 

“Nature” Ontology 
Concept classes: 

Animal, Male, Female, Human, Man, Woman; 
Defined logical relations: 
• Male, Female: subclasses of Animal; 
• Male and Female: disjoint with each other; 
• Man: intersection of Human and Male; 
• Woman: intersection of Human and Female; 
• Human: union of Man and Woman. 

C1 

L_disjoint 

C2 



Let SONT denote all explicit and implicit logical relations 
between concept classes of the given ontology, we define 
SDAG ⊆ SONT as a set of logical relations such that:  

1) every L in SONT is entailed by SDAG; and  
2) no L in SDAG is entailed by SDAG \{L}.  

 
Then, we only need to model those L in SDAG by subclass 
arcs and L-nodes in the translated BN. Note that SDAG = 
SONT if ONT does not contain any anonymous class. 
 
2.3 Removing Redundant Relations 
 
Most of the redundant relations in SONT are stemmed from 
the “equivalency”, “transitivity”, and “commutativity” of 
logical relations. For example, 
• if equivalent(A, B) is in SONT, then for any concept C 
related to A in SONT, C is also related to B of the same 
relation in SONT; 
• if  and A B B C⊆ ⊆ are in SONT then A C⊆ is also in 
SONT; 
• if  and A B B C⊆ ∩ = ∅ are in SONT then A C∩ = ∅  is 
also in SONT; 
• if A B C= ∩ is in SONT then A C B= ∩ is also in SONT; 
 
This leads to the following procedure for removing 
redundant relations.  
 

1. Equivalence: 

1.1 partition the set of all concept classes into 
equivalence groups, and designate one concept in 
each group as its representative; 

1.2 replace all equivalence relations in SONT by these 
equivalence groups: each equivalence group is 
modeled by a single L_equivalent node and 
having all concept nodes in that group pointing 
to this L-node; 

1.3 for all remaining relations in SONT, replace each 
concept by the representative of the equivalence 
group it belongs to; 

1.4 combine relations that are the same or become 
the same under commutation into one relation; 

2. Disjoint: remove A B∩ = ∅  from SONT if 
C D∩ =∅ ,  and A C B D⊆ ⊆  are also in SONT; 

3. Subclass: for each concept class A 
3.1 identify all most specific subsumers of A; 
3.2 remove all A C⊆ from SONT if C is not a most 

specific subsumer of A; 
 

 
Most redundant relations in SONT will be removed by this 
procedure. We use the Wine ontology [7] (which also 
imports Food ontology) to verify our redundancy relation 
removal procedure. Table 1 shows the results. 
 

Table 1. Number of relations in “Wine” ontology 

 Explicitly 
Defined 

Derived by 
Pellet 

After 
Redundant 
removal 

No. of Relations 99 6641 388 
 

As given in Table 1, the number of logical relations 
explicitly defined between concept classes in the ontology 
file is 99, which is much smaller than the total number of 
relations derived by Pellet reasoner, 6641. After applying 
our redundant relation removal procedure, the number is 
reduced to 388, which is less than 6% of all derivable 
logical relations. 172 of them are subclass relations, they 
will be modeled by the subclass arcs in the BN. Each of 
the rest 216 logical relations is represented by an L-node 
in the translated BN. The total number of the concept 
classes in wine ontology is 126, and the total number of 
the nodes (the concept nodes plus the L-nodes) in 
resulting BN is 342. 
 
2.4 Extended Structure Translation Rules 
 
The rules for structure translation of the extended 
BayesOWL are now given as follows: 
• Concept Classes. Each defined concept class is 

mapped into a binary variable node, called concept 
node, in the translated BN. 

• Logical Relations. Construct SDAG by first forming SONT 
from the given ontology by OWL reasoner and then 
applying the redundant relation removal procedure. 

• Subclasses. For every subclass relation in SDAG, an arc 
is set from the superclass to the subclass and a default 
CPT is constructed for the subclass node. A subclass 
hierarchy of all concept nodes is thus formed. 

• Logical Nodes. For every logical relation other than 
subclass in SDAG, create an L-node, connecting all 
concept nodes in that relation to the L-node, and set its 
CPT according to the logic of the relation. 

 
When all L-nodes are set to true (denoted LT), all logical 
relations between concept classes in ONT hold between 
the corresponding concept nodes in the translated BN. 
 
Now the task left is to integrate the probabilistic 
information in R (the second input to BayesOWL) into 
the BN. This is done by modifying the CPTs of the 
concept nodes so that the joint distribution of the BN, 
given LT, agrees with R, i.e. 
     ( | , ) ( | ),  ( | )P u v LT R u v R u v= ∀ ∈R .  
This task is dealt with in the next two sections.  
 
3.  Probabilistic Information Incorporation 
 
Consider a joint probability distribution (JPD) Q(X) 
defined on a set of variables X = {X1,…,Xn} and a set of 
low-dimensional probability distributions, called 
constraint { }1( ),..., ( )mR Y R Y=R , where , 1jY X j m⊆ < < .  



To incorporate information in R into Q is to change Q(X) 
minimally to Q*(X) to satisfy all constraints in R, i.e. 
     * ( ) ( ),  ( ) .j j j

j jQ y R y R y= ∀ ∈R  
 
The approach BayesOWL takes for the information 
integration is based on the method known as iterative 
proportional fitting procedure (IPFP) which iteratively 
modifies the JPD using the constraints one at a time. If 
these constraints are consistent with each other, i.e., there 
exists a JPD that satisfies all constraints, then IPFP will 
converge. In this section we first briefly describe IPFP, 
and then discuss how to apply IPFP to modify BN CPTs 
with probabilistic constraints. Finally we propose our 
method to deal with inconsistent constraints. 
 
3.1 Brief Introduction to IPFP 
 
Iterative proportional fitting procedure (IPFP) was first 
published by Kruithof [9]. Deming and Stephan used this 
procedure on estimating cell frequencies in contingency 
tables under marginal constraints [10].  
 
IPFP uses I-divergence, also known as Kullback-Leibler 
divergence [11], relative information or cross-entropy, to 
measure the distance between two JPDs P(x) and Q(x):  

     
( )( ) log ;
( )( || )

                    

P xP x if P Q
Q xI P Q

otherwise

 <<= 
+∞

∑  

where P << Q (P is dominated by Q) if { }| ( ) 0x P x > ⊆  
{ }| ( ) 0x Q x > .  
 
Let P be a convex set of JPD over X and 0 ( )Q x ∉P . 

'( )Q x ∈P  is an I-projection of 0 ( )Q x on P if it has the 
minimum I-divergence to 0 ( )Q x among all JPD in P.  
 
For 0 ( )Q x and { }1( ),..., ( )mR y R y=R  the iterative process 
of IPFP is defined as following: 

     1
1

( )( ) ( )
( )

i

k k i
k

R yQ x Q x
Q y−

−

= ⋅ , 

where 1)mod)1(( +−= mki . IPFP was proved to converge 
when constraints are consistent, and the converging JPD 
Q* is an I-projection of 0 ( )Q x on the set of all JPDs that 
satisfy all constraints in R [12]. 
 
3.2 Modifying BN with Probability Constraints 
 
Applying IPFP to modify the CPT for concept nodes is 
more complicated. Note that a BN defines a JPD which 
can be generated by the chain rule  
     1( ) ( | )n

i i iQ x Q x π== Π   
where Xi is the variable of BN and iπ  is the set of all 
parents of Xi, and the parent-child relations are 
determined by BN DAG. One would think our task can be 

accomplished by simply applying IPFP on this JPD and 
then extracting the CPTs from the resulting JPD Q* by 
marginalization. However, this approach would not work 
because IPFP does not respect the interdependencies 
between variables dictated by the BN DAG. This can be 
seen from a simple example in Fig. 3.  
 
On the left of Fig. 3 is the DAG of a BN of three variables 
A, B, and C, and its initial CPTs. The JPD Q(A,B,C) (on 
the upper right) is obtained by modifying the original JPD 
of this BN with constraint P(B, C) = (0.4, 0.3, 0.17, 0.13). 
However, if we extract from Q the CPTs Q(A), Q(B|A) 
and Q(C|A) for the three variables, the new JPD defined 
by these CPTs, '( , , ) ( ) ( | ) ( | )Q A B C Q A Q B A Q C A= ⋅ ⋅  on 
the lower right, is different from Q, and it does not satisfy 
constraint P(B, C) any more, although the difference is 
not that great. 
 

 
Figure 3. A three variable BN example 

 
To resolve this problem, we have developed an algorithm, 
called E-IPFP, [13], which is an extension of IPFP. E-
IPFP forces the process to obey the BN structure by 
introducing an additional constraint  
     1 1 i i( ) ( | )n

m i kR x Q x π+ == Π  
where i i( | )kQ x π are CPTs extracted from the current JPD 
during IPFP process.  
 
Let 0 1 0 i i( ) ( | )n

iQ x Q x π== Π  be the initial JPD of the BN 

and { }1( ),..., ( )mR Y R Y=R  be the set of constraints, E-
IPFP is given as following. 
 

1. 0 1 0 i i( ) ( | )n
iQ x Q x π== Π ; 

2. for k = 1 until convergence { 
2.1 i = ((k - 1) mod (m + 1)) + 1; 
2.2 if i < m + 1 

1
1

( )( ) ( )
( )

i

k k i
k

R yQ x Q x
Q y−

−

= ⋅ ; 

2.3 else  



extract 1 i i( | )kQ x π−  from 1( )kQ x−  according to 
BN structure; 

1 1 i i( ) ( | )n
k i kQ x Q x π= −= Π ; 

2.4 k = k + 1; 
 } 
 
Note that the m constraints in R are used in Step 2.2 (i < 
m + 1) in the same ways as the standard IPFP, and the 
structure constraint 1( )mR x+ is used in Step 2.3. As proved 
in [13], E-IPFP converges for consistent probability 
constraints and the converging JPD satisfies all 
constraints in R and obeys the BN structure. 
 
Like IPFP, E-IPFP is extremely expensive when the BN is 
large. To reduce the computational cost, we have 
developed two additional algorithms. The first algorithm, 
D-IPFP, decomposes the BN into subnets and applies E-
IPFP to each subnet with constraints involved in that 
subnet. The second algorithm, SD-IPFP, is applicable 
when variables in each constraint are within one CPT. 
Then each CPT is modified directly by the constraints 
without generating the JPD. Please refer to [13] for more 
details of these algorithms. 
 
3.3 Inconsistent Information Integration 
 
As discussed in 3.1, IPFP converges for consistent 
constraints. But when constraints are inconsistent with 
each other, IPFP tends to go into cycles [14]. To integrate 
such inconsistent constraints, the best one can do is to 
find a JPD whose marginals are as close as possible to the 
constraints in R. Vomlel has proposed an algorithm called 
GEMA [14, 15], which is a parallel variation of the 
iterative IPFP. However, the algorithm suffers a high 
computation cost and its result is very sensitive to the 
initial JPD and constraint orders [16]. 
 
We have developed an efficient method named SMOOTH 
for inconsistent constraint integration [16]. It is very 
much like the standard IPFP, except that at each iteration 
a bi-directional modification takes place: at the kth 
iteration, not only the current JPD 1( )kQ x−  is modified by 
the chosen constraint ( )jR y , ( )jR y itself is also modified 
by 1( )j

kQ y− . Precisely, at the kth iteration we have: 

     
1

1
1

( ) (1 ) ( ) ( );
( )( ) ( ) ;
( )

j j j
k

j

k k j
k

R y Q y R y
R yQ x Q x

Q y

α α−

−
−

= − +

= ⋅
 

where 0 1α< <  is the smooth factor, and in order to 
guarantee these constraints are treated equally, α  should 
be chosen to be very close to 1. It converges with 
constant ;α  the convergence can be accelerated by 
reducing α at the end [16]. Since 1( )kQ x−  has been 
modified by other constraints in the previous iterations, 
using it to modify ( )jR y  has the effect of reducing or 
smoothening the inconsistency among the constraints. 

Experiments show SMOOTH is data insensitive, time and 
computation efficient.  
 
Moreover, since it can be seen as an extension of standard 
IPFP, we can directly apply it to any IPFP-based methods, 
including E-IPFP. 
 
4.  CPT Construction 
 
As discussed in Section 3, a BN translated from OWL 
ontology contains two kinds of nodes: concept nodes and 
L-nodes. For L-nodes, CPTs are completely determined 
by logical operation results, thus the only thing that is left 
is to construct CPTs for concept nodes. These CPTs shall 
incorporate the probabilistic information in R. When 
using E-IPFP to construct CPTs for concept nodes, we 
need to preserve the logical relations among the concept 
nodes. As shown in Section 2, this is done by setting all 
L-nodes to true, denoted by LT. This requires replacing 
the formula in Step 2.2 of E-IPFP by 

     1

1

( )( ) ( )
( | )

j

k k kj
k

R yQ x Q x
Q y LT

β−

−

= ⋅ ⋅ , 

where 1/ ( )k x kQ xβ = Σ is the normalization factor. If the 
constraints are inconsistent, then SMOOTH is applied, 
and 

     
1

1
1

( ) (1 ) ( | ) ( );
( )( ) ( ) ;

( | )

j j j
k

j

k k kj
k

R y Q y LT R y
R yQ x Q x

Q y LT

α α

β

−

−
−

= − +

= ⋅
 

shall be used. 
 
As an example, consider the following constraints to the 
Nature ontology in Fig 2: 

• P(Animal) = 0.560 
• P(Male,Human|Animal)= 0.511 
• P(Female,Human|Animal)= 0.258 
• P(Man|Animal,Human)= 0.664 
• P(Woman|Animal,Human)= 0.336 

These constraints are consistent with each other and with 
the BN structure. After running E-IPFP to convergence, 
the translated BN and its final CPTs are given in Fig. 4 
below. It can be seen that, after all L-nodes are set to be 
true, the network is consistent with all the probability 
constraints. 

 
(a) Resulting BN of the ‘‘Nature” ontology 



 
(b) Final CPTs of the resulting BN 

Figure 4. Translation result of the “Nature” ontology 
 
When we change the fourth constraint to 
       P(Man|Animal,Human)= 0.56,  
these constraints become inconsistent with the BN 
structure in which “Man” and “Woman” are complement 
with each other. To deal with this inconsistency, 
SMOOTH version of E-IPFP is applied. At convergence, 
the translated BN has 

P(Man|Animal,Human)= 0.636,  
P(Woman|Animal,Human)= 0.364 

which are now complement with each other and close to 
the given constraints. Figure 5 gives the final CPTs for 
the resulting BN. 
 

 
Figure 5. Final CPTs of resulting BN (inconsistent) 

 
 
5.  Prototype Implementation 
 
Our prototype implementation [5] of BayesOWL is 
written in Java. It takes two inputs: 1) an OWL file that 
defines the ontology which is to be translated into a BN; 
and 2) an OWL file of the probabilistic information of 
concepts and inter-concept relations encoded in the way 
as described in [5]. The translated BN is written in the 
format of Netica, a BN development software system 
from Norsys Software Corporation [17]. Netica also 
provides probabilistic reasoning when constructing the 
CPTs for the translated BN. 
 
5.1 System Architecture 
 
The architecture of the BayesOWL prototype is given in 
Figure 6 below. The Terminological Parser (T-Parser) 
parses the OWL ontology file, identifies all concept 
classes defined in the ontology, and generates all logical 
relations among the concepts. 

 
As discussed in Subsection 2.2, some of these relations 
are not explicitly defined in the ontology file but can be 
derived using anonymous classes. To ensure all implicit 
relations are derived, we choose Pellet [8, 18], a complete 
reasoner for OWL DL, to help implement the T-Parser 
and construct SONT. After the SONT is formed, we remove 
the redundant relations and generate SDAG. 
 
BN-Structure Constructor takes SDAG as input and outputs 
the BN DAG. It also constructs the CPTs for all L-nodes 
and initializes the default CPTs for concept nodes. 
 
The Probabilistic Parser (P-Parser) parses probability 
files and extracts the encoded probabilities into a specific 
internal representation. These probabilities are then taken 
by CPT Constructor as input constraints for E-IPFP 
algorithm to modify the CPTs of the concept nodes. 
 

 
Figure 6. Architecture of BayesOWL prototype system 

 
5.2 The BayesOWL Toolkit 
 
As a practical tool for the users and developers, the 
BayesOWL prototype provides a toolkit, containing a set 
of Java APIs and a graphic user interface (GUI). User’s 
reference manual and other related documents are also 
provided. 
 
The APIs (see Figure 7 below) includes several packages 
which can be used to complete the ontology-to-BN 
translation. The packages and the methods included there 
can also be used separately. 
 

 
Figure 7. BayesOWL APIs 



 
The system GUI is shown in Figure 8. The layout is 
divided into several areas: 
• File input area: which is used to input OWL 

ontology files and probability files; 
• Options area: which is designed for optional 

operations such as requesting Netica license for large 
BN, the location the resulting BN to be saved, and 
whether you want to open and view the resulting BN 
when it is generated; 

• Log area: which is for showing the running status; 
• Result BN area: which shows the translated BN in a 

tree structure; and 
• Node detail area: which gives node details 

(including its prior beliefs and its parents) when a 
node is selected in resulting BN area. 

 
The BayesOWL GUI is executable. After the input 
ontology and probability files are specified, the “start” 
button starts the translation, the resulting BN will be 
generated and saved, and the network structure is shown 
in the translation result area. 
 

 
Figure 8. GUI of BayesOWL 

 
6.  Conclusions and Future Work 
 
In this paper, we have extended our original BayesOWL 
framework so that it is able to model the implicit logical 
relations entailed via anonymous classes, thus to support 
general OWL DL ontologies, and to incorporate both 
consistent and inconsistent probabilistic information. 
These extensions allow one to translate terminological 
taxonomy of an OWL DL ontology into a BN. As a 
probabilistic model, the translated BN complements the 
logic-based Semantic Web languages and supports 
ontological queries as Bayesian reasoning. 
 
The BayesOWL prototype system and its Java APIs and 
GUI can be used as a practical tool for those who are 
interested in representing and reasoning with uncertainty 
in Semantic Web. 

 
Currently we are intensely working on the theoretical 
analysis of BayesOWL framework. Recently we have 
completed more rigorous proofs of convergence of both 
SMOOTH and E-IPFP. Analysis of the framework’s time 
complexity is underway, with the emphasis on the 
complexity of the CPT construction since it dominates the 
computation of the framework. 
 
We are also actively working on identifying real world 
application scenarios that are best suitable for 
BayesOWL. Experiments with these scenarios will allow 
us to evaluate the validity and effectiveness of the 
framework. 
 
One direction for future work is the automatic generation 
of probabilistic information. Relying on ontology 
designers and domain experts may not always be possible 
and often error prone, especially when the ontology is 
large. One potential way is to mine the web data using 
text classification methods [19, 20, 21] and other 
information retrieval techniques. 
 
Another direction is to extend the BayesOWL framework 
to properties and individuals, so that a complete 
uncertainty model for complex OWL DL ontologies can 
be built. 
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