
Semantic-based Optimal XML Schema Matching:
A Mathematical Programming Approach

Jaewook Kim and Yun Peng

Department of Computer Science and Electrical

Engineering, University of Maryland, Baltimore County

Baltimore, MD USA

jaewook2@umbc.edu and ypeng@umbc.edu

Nenad Ivezic and Junho Shin

Manufacturing Systems Integration Division

National Institute of Standards and Technology

Gaithersburg, MD USA

nivezic@nist.gov and junho.shin@nist.gov

Abstract—We propose a novel solution for semantic-based XML

schema matching, taking a mathematical programming

approach. This method identifies the globally optimal solution

for the problem of matching two XML schemas by reducing the

tree-to-tree matching problem to simpler problems of path-to-

path, node-to-node, and word-to-word matching. We formulate

these matching problems as maximum weighted bipartite graph

matching problems with different constraints, which are solved

by different mathematical programming techniques, including

integer programming and dynamic programming. Solutions to

simpler problems provide weights for the next stage until the

optimal tree-to-tree matching solution is obtained. The

effectiveness of this approach has been verified and

demonstrated by computer experiments.

Keywords-E-business; XML schema matching; optimization;

maximum weighted bipartite graph; semantic similarity; integer

programming; dynamic programming

I. INTRODUCTION

XML [1] and XML schemas [2] have been widely used
in the e-Business transactions among enterprises that
exchange business documents with their partners (e.g.,
suppliers and customers in the supply chain) [3,4,5]. Many
enterprises and organizations have defined their own XML
schemas to describe the structure and content of their
business documents (i.e., XML instances) to be used in the
transactions. Many organizations have also published
standard XML schemas to be shared in the transactions
within specific industry domains [6,7,8] (e.g., e-
manufacturing, e-government, and e-health industries).

The popularity of XML leads to an integration problem
as different enterprises or organizations often choose
different XML representations for the same or similar
concepts [4,5]. One of the most critical steps to achieving the
seamless exchange of information between heterogeneous e-
Business systems is schema matching, which is known to be
costly and error-prone [9,10]. Schema matching takes as
input two schemas, each consisting of a set of discrete
components (elements or attributes), and determines as
output the relationships between these components [11].

XML schemas or instances are typically reviewed as
labeled trees (i.e., rooted acyclic graphs) where each node
represents a component named by a label of English word or
concatenation of words or their abbreviations. In this paper

we focus on one type of schema mapping, namely, matching
between all atomic components (i.e., the leaf nodes) between
two schemas or instances based on their semantics (meaning
of nodes). Also, we only consider pair-wise matchings of 1:1
cardinality (e.g., any atomic component in the source schema
can match no more than one atomic component in the target
schema). Matching between those atomic components help
identify how a certain value of one XML instance can be
transformed to certain value of the other for successful
exchange of information.

We propose new innovative techniques to address two
challenging problems in this type of schema matching. First,
due to synonyms (different words meaning the same thing)
and multi-senses (one word having different meanings in
different context) found in natural languages, the meaning of
an atomic component cannot be determined solely by the
words in its label. The semantic ambiguity can be reduced by
contextual information such as the labels of its neighboring
nodes. In this paper, we concentrate on one type of context
for an atomic component: the nodes along the path from the
root to the leaf of the schema tree.

Second, it is difficult to correctly identify the best set of
matching pairs for all atomic components between two trees.
This is because one leaf in one tree may match more than
one leaf in the other tree (with different semantic
similarities) and locally identified best matching pairs do not
necessarily form the globally optimal set. We propose to use
mathematical programming techniques to solve this
combinatorial optimization problem. To further reduce the
computational complexity, we propose to decompose the
global optimization into simpler matching problems such as
path-to-path, node-to-node, and word-to-word matching. We
formulate the sequence of matching problems as maximum
weighted bipartite matching problems with different sets of
constraints and solve them by different mathematical
programming techniques, including integer programming
[12] and dynamic programming [13]. Solutions to simpler
problems provide weights for the next stage until the optimal
tree-to-tree matching is obtained.

The remainder of the paper is organized as follows.
Section II provides a brief survey of the related works. The
detailed algorithm of the proposed approach is described in
Sections III. Section IV reports the experiments and results.
Section V concludes with the directions for future research.

II. RELATED WORKS

Many schema matching methods have been proposed
[10,11]. Typically, these methods first attempt to identify
semantic relationships between the elements of two schemas.
Based on the granularity of the matching, these schema
matching techniques can be separated into two classes:
element-level and structure-level [11]. The element-level
approaches determine the matching elements in the target
schema for each element of the source schema. The
structure-level approaches refer to matching combinations of
elements that appear together in a structure.

For the element-level matching, string-based similarity
metric is the most fundamental technique to analyze the
linguistic context of names and name descriptions of schema
elements. There is a variety of string-based similarity metrics,
including Hamming distance [14], Jaccard similarity
coefficient [15], Cosine coefficient [16], and n-gram [17].
The string-based metrics can be enhanced using natural
language preprocessing techniques for the input string, such
as tokenization, lemmatization, and elimination [11].

To further enhance the string-based metrics, corpus
resources can be utilized for more accurate and less
ambiguous results. One of the important resources is the
lexical taxonomy among the words (e.g., parents, children,
ancestor, and descendant relationships). Common knowledge
corpora, such as WordNet [18] and domain-specific corpora
can be used to determine the meaning of the words [19,20].

A corpus also provides statistical information related to
the importance of words. The difference in importance of
individual entities and their relationships affects the semantic
similarity measurement. The information content (IC)-based
metric was proposed to utilize this statistical information
[21,22,23]. This approach measures the similarity between
two entities (e.g., two words, two objects, or two structures),
A and B based on how much information is needed to
describe common(A, B), the commonality between them (e.g.,
the features or hypernyms the two words share). Applying
this approach to tree-like IS-A taxonomies [22], one can
measure the similarity between A and B as

2 log ()
(,)

log () log ()
IC

P C
Sim A B

P A P B

where C is the most specific subsumer of A and B with the
smallest prior probability and the probabilities can be
obtained according to the frequencies in a corpus .

For structure-level matching, a variety of graph-based
techniques have been proposed [10,11]. Typically, a graph-
based metric quantifies the commonality between
components by taking into account the lexical and structural
similarities of sub-components (e.g., ancestors and
descendents including leaf components). Because most
schemas can be viewed as labeled trees, many matching
algorithms have been developed based on either top-down or
bottom-up traversal techniques [10].

As an example of the top-down approach, TransScm [24]
provides a schema-based matching for data translation and

conversion based on the syntactic analysis of the structures.
Tess [25] is another example of a top-down algorithm, which
deals with schema evolution. Tess takes definitions of the old
and new types and identifies pairs of types as matching
candidates. It then recursively tries to match their
substructure in a top-down fashion.

Alternatively, the bottom-up approach compares all
combinations of the elements and finds matches at a given
level even if the intermediate and higher level structures
differ considerably. Similarity flooding (SF) [26] provides
bottom-up matching based on similarity propagation.
Another effective bottom-up method, called S-Match [27],
decomposes the tree matching problem into a set of node
matching problems. Each node matching problem is
translated into a propositional formula, thus transforming the
matching problem to a propositional unsatisfiability problem,
which can then be efficiently resolved using state of the art
propositional satisfiability deciders.

Cupid [28] provides a composite matching approach
combining element- and structure-level matching
approaches. It computes the similarity with domain-specific
thesauri as the linguistic resources and traverses the tree in a
combined bottom-up and top-down manner.

Top-down approaches are less expensive but can be
misled if the top-level schema structures are very different
[10]. On the other hand, bottom-up approaches take a more
comprehensive view [11]. However, the ways the existing
bottom-up methods identify the optimal matching are
typically ad hock, not based on a theoretically well founded
manner.

III. ALGORITHM

We propose a novel schema-based matching algorithm to
solve the combinatorial matching optimization problem of
matching atomic components between two schemas. Our
approach synthesizes the global optimal set of pair-wise
matchings between atomic components in a principled
manner by mathematical programming.

A. Algorithm overview

The matching algorithm takes as input two schemas and
identifies the set of matching pairs of all atomic components
of the input schemas with the highest semantic similarity
among all possible sets of pair-wise matchings. Fig. 1
illustrates the matching process of our approach for two
input schemas, S1 and S2.

The algorithm breaks the complex combinatorial
optimization problem into four matching stages: tree-to-tree,
path-to-path, node-to-node, and word-to-word matchings. As
can be seen in Fig. 2, each stage works on a bipartite graph,
consisting of two sets of vertices and a weight matrix with
the objective of finding the 1:1 matching between vertices in
one set to the other with the highest overall weight.
Therefore, we formulate these sub-problems as maximum
weighted bipartite graph matching problems [29].

Figure 1. Matching algorithm overview.

Except for the word-to-word matching stage, the weight
matrix for each stage is a similarity matrix calculated by the
previous stage. For example, the similarity matrix for tree-to-
tree matching stage is provided by path-to-path matching
stage. The word-to-word matching stage uses WordNet to
compute the semantic similarity between two words by
identifying the optimal matching pairs for their respective
senses.

Figure 2. Weighted bipartite graph modeling for different types of

components in two labeled trees.

Except for the path-to-path matching stage, optimal
matching at each stage can be obtained according to the
general Maximum-weighted Bipartite Matching algorithm
(MBM) [30]. The path-to-path matching requires an
additional ordering criterion [31] that path P1 includes most
of the nodes of path P2 in the correct order, and is called
Ordered Maximum-weighted Bipartite Matching (OMBM)
problem. Algorithms to solve the MBM and the OMBM
problems are described in the following sections.

B. Maximum-weighted bipartite matching algorithm

Tree-to-tree, node-to-node, and word-to-word matching
stages can be formulated as the general weighted bipartite

graph matching problems. Let G be a weighted bipartite

graph with two sets of vertices, 1 2, , , mU u u u and

 1 2 nV v ,v , ,v , and the edge set E. Edge eij in the graph

connects the vertices ui and vj whose weight wij is given in
the weight matrix W. Vertices of the same set are not
connected.

A matching M of graph G is a subset of E such that no
two edges in M share a common vertex. In other words, M
consists of a set of pair-wise matchings of 1:1 cardinality.
The maximum-weighted bipartite matching is a matching
whose sum of the weights of the edges is the highest among
all possible sets of pair-wise matchings. The optimal
matching M can be found by integer programming defined
below:

Maximize:
ij

ij ij

e E

w x

 (2)

subject to:

1

1, 1, ,
m

ij

i

x j n

 ,
1

1, 1, ,
n

ij

j

x i m

 ,

 1,0ijx , where ijx is 1 if Meij and 0 otherwise.

Because integer programming is typically NP-hard (i.e.,
harder than a nondeterministic polynomial-time problem and
for worst case with running time exponential to the problem
size) [32], we approximate it by a simple greedy algorithm as
follows:

Figure 3. Greedy algorithm for maximum weighted bipartite matching.

S1
input

User feedback
Matching

candidates

Matching

result

matching

iteration

path matching

feedback
node matching

feedback

word matching

feedback
output

user interaction
(optional)

stage 3 stage 2 stage 1

Tree-to-Tree matching Path-to-Path matching Node-to-Node matching Word-to-Word matching

stage 4

S2

Schema

word sense word node atomic

component

algorithm MBM-greedy (U,V,W)
 sort W;
 while (|U|>0 and |V|>0)

Choose vertices u and v connected with an edge e that has the
highest weight w in the weight matrix W;
if edges in M share neither u nor v
 then M := M + {e}, U := U - {u}, V := V - {v};
W [u,v] := 0;
wsum := wsum + w;

 wavg := 2 * wavg / (m + n);

 return {M, wavg};

P
1
 P

2

N
1
 N

2

EP

EN

b) path-to-path

c) node-to-node

T
1
 T

2

P1

P2

a) tree-to-tree

ET

W
1
 W

2

Ew

d) word-to-word

atomic

component

node

word

word sense

The greedy algorithm simply sorts the weight matrix W
in ascending order and at each iteration chooses an edge with
the highest weight. The initial weight matrix W is calculated
by the previous matching stage. The chosen edge would be
the matching candidate if it shares no vertex with edges in M.
This process is repeated until there is no vertex to be
matched in either U or V. The algorithm returns the optimal
matching set M and the average weight of all edges in M as
the measure of similarity between U and V. In this greedy
algorithm, the most expensive step is the sorting of the
weight matrix W of size .m n We use a quicksort algorithm

[33] that takes O(klog(k)) to sort k items. Thus, the
complexity of this greedy algorithm is O(mn log(mn)).

C. Ordered maximum-weighted bipartite matching

algorithm

Some have suggested using the longest common
sequence (LCS) to address the ordering criterion in the path-
to-path matching [30,34,35] . However, none of the
suggestions utilizes the semantic similarities of the nodes on
the two paths. To consider semantic similarities of the nodes,
we have developed the ordered maximum-weighted bipartite
matching algorithm based on dynamic programming.

Let G be a weighted bipartite graph with two ordered
sets of vertices 1 2, , , mU u u u

and V 1 2 nv ,v , ,v ,

and the edge set E. The core algorithm, OMBM (U, V), finds
the optimal matching M between U and V by recursively
partitioning it into smaller sub-problems until the solution
becomes trivial.

For a sequence S=s1s2…sd, a sequence shortened from the
end is denoted Sk=s1s2…sk, where k d . We call Sk the prefix
of S. The prefixes of U are U1, U2 ,…, Um, and the prefixes of
V are V1,V2,…Vn. Let OMBM (Ui, Vj) be the function that
finds the optimal matching of prefixes Ui and Vj. This
problem can be reduced to three alternative simpler sub-
problems with shortened prefixes and returns the one with
maximum sum of weights:

1) ui and vj match each other. Then the optimal
matching for Ui and Vj can be formed by attaching edge eij
to the optimal matching of two shortend sequences

1iU
 and

1jV , denoted. 1 1, ,i j ijOMBM U V e .

2) ui and vj do not match each other. Then, either of

them can be removed to shorten one of the matching

sequences and OMBM (Ui, Vj) is reduced to either OMBM

(Ui-1, Vj) or OMBM (Ui, Vj-1).
Thus OMBM (Ui, Vj) can be computed by the following

recursive function:

1

1

1 1

, ,
,

, ,

, ,

i j

i j

i j

i j ij

if i 0 or j 0

OMBM U V
OMBM U V

max OMBM U V otherwise

OMBM U V e

where the function max() returns the optimal matching
among the three matchings from the sub-problems; it returns
empty if either Ui or Vj is reduced to nill (i = 0 or j = 0).

The optimal matching M of two sets of order vertices U
and V, |U| = n, |V| = m, is then computed as:

 nm VUOMBMM ,

The similarity score of M, denoted SimM, is the average
weights of all edges in M:

 2

ij
M ij

e M
Sim w

m n

To efficiently execute the algorithm, we use a bottom-up
approach [13]. The algorithm is as follows:

Figure 4. Bottom-up dynamic programming algorithm for ordered

maximum weighted bipartite matching.

This algorithm starts from the simplest matching between
U1 and V1 and continues to more complex matching
problems. The calculated similarity scores for the optimal
matchings (average weights by Eq. (5)) are stored in table
A[i,j] in Fig. 4 for future use to avoid repeated calculations of
smaller problems. The weights of W are calculated by the
previous matching stage (i.e., node-to-node matching stage).
The complexity is only O(mn), i.e., linear to the size of table
A.

The following algorithm deals with a simple matter of
finding the matching between components U and V that is
identified by bottom-up dynamic programming algorithm of
Fig. 5.

Figure 5. Dynamic programming algorithm for ordered maximum

weighted bipartite matching.

Algorithm OMBM is further enhanced by considering the
differences in importance for the individual components
measured by their IC values. We collect the frequency of
each component by their occurrences in the schemas and
compute the IC by Eq. (1). Fig. 6 shows the modified
algorithm.

Algorithm OMBM-IC gives more weights to higher level
components because lower level components are typically
generic and common entities that appear widely as the
descendants of many elements and thus less discriminatory
than the higher level components. In addition, it also
considers the differences in importance of components at the
same level. The complexity of this algorithm is still O(mn).

algorithm OMBM (U,V,W)
 OMBM-arrays (U,V,W);
 i := m, j :=n;
 while i > 0 and j > 0
 if A[i,j] equal to A[i-1,j] then i--;
 elseif A[i,j] equal to A[i,j-1] then j--;
 else M := M+{ei,j}, i--, j--;
 return {M, wavg};

algorithm OMBM-arrays (U,V,W)
 for i from 1 to m
 for j from 1 to n
 A [i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1]+W [i,j];
 wavg := 2*A[m,n] / (m + n);
 return {A, wavg};

Figure 6. Algorithm enhanced by information contents.

D. Overall schema matching algorithm

Fig. 7 below gives the algorithm for overall schema
matching and how each stage obtains the weight matrix by
calling the optimization algorithm for the previous stage.

Figure 7. Overall schema matching algorithm.

The algorithm views matching two schema trees as
matching two sets of atomic components with their
respective path-contexts. Each path consists of a sequence of
nodes along the path from the root to the leaf of the schema
tree. Each node represents a component named by a label of
English word or concatenation of words or their
abbreviations. To compute semantics similarities between
words, we analyze optimal pair-wised matchings between
multiple senses of two words.

The word-to-word matching algorithm uses two semantic
similarity measure functions: word-sense-sim() based on
WordNet taxonomy and word-desc-sim() based on textual
description. In WordNet, nouns are organized into
taxonomies in which each node has a set of synonyms (a
synset), each of which representing a single sense [18]. If a
word has multiple senses, it will appear in multiple synsets at
various locations in the taxonomy. To compute the semantic

similarity between two words (two sets of senses), we use
the MBM-greedy() algorithm with the input of two set of
synsets for words W1 and W2, respectively, and a similarity
matrix of all possible pairs between senses in W1 and W2 is
calculated by Eq. (1).

If a word does not exist in WordNet, we extract the
textual description of a given word from the internet and then
use string similarity measures, such as the cosine similarity
[16], to calculate the similarity between the two textual
descriptions of the two words.

IV. EXPERIMENTS AND RESULTS

We have implemented a prototype system of our
approach based on Java and JWNL [36] for experimental
validation. In the experiments, we used five real world XML
schemas for purchase orders (i.e., CIDX, Apertum, Excel,
Norris, and Paragon) from [37,38]. Table I summarizes the
characteristics of those XML schemas.

TABLE I. CHARACTERISTICS OF PO XML SCHEMAS

Schemas CIDX Apertum Excel Norris Paragon

max depth 4 5 4 4 6

nodes 40 145 55 65 80

leaf nodes 33 116 42 54 68

In the experiment, as suggested in [36], we compute the

tree-to-tree similarity of the ten pairs of the five XML
schemas, then for each schema, a matching to any of the
other four is accepted if the similarity score is above a fixed
threshold 0.6. To evaluate the quality of our match result, we
used several performance metrics including Precision, Recall,
F-measure, and Overall [39,40], against the results from
manual matching [38]. These measures are then compared
with the performances of other approaches for the same
setting [28,38,41]. Note that the Overall measure, proposed
by [38] to estimate the post-match efforts, varies in [-1, 1]
and other three vary in [0,1].

Precision, Recall, F-measure, and Overall for our results
are 0.85, 0.85, 0.85, and 0.69. To increase the precision, we
used a relative threshold which is chosen as the similarity of
the matching with the largest gap to the next best matching,
among matching candidates with similarities ranging from
0.5 to 0.6. Fig. 8 shows the performance analysis of the
matching result that our solution produced.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision

Recall

F-measure

Overall

Figure 8. Performance analysis.

algorithm T2T-matching (T1, T2)
 for i from 1 to |T1|
 for j from 1 to |T2|
 t2t-smatix[i,j] := P2P-matching (T1’s ith path, T2’s jth path);
 return MBM-greedy (T1’s atomics, T2’s atomics, t2t- smatix);

algorithm P2P-matching (P1, P2)
 for i from 1 to |P1|
 for j from 1 to |P2|
 p2p-smatix[i,j] := N2N-matching (P1’s ith node, P2’s jth node);
 return OMWM-IC (P1’s nodes, P2’s nodes, p2p-smatix);

algorithm N2N-matching (N1, N2)
 for i from 1 to |N1|
 for j from 1 to |N2|
 n2n-smatix[i,j] := W2W-matching (N1’s ith word, N2’s jth word);
 return MWM-greedy (N1’s words, N2’s words, n2n-smatix);

algorithm W2W-matching (W1, W2)
 if wordnet definitions for W1 and W2 exists then
 for i from 1 to |W1|
 for j from 1 to |W2|
 w2w-smatix[i,j] := word-sense-sim (W1’s ith sense, W2’s jth sense);
 return MWM-greedy (W1’s senses, W2’s senses, w2w-smatix);
 else
 return word-desc-sim (W1, W2);

algorithm OMBM-IC (U,V,W)
 for i from 1 to m
 ic-sum := ic-sum + ic(ui);
 for j from 1 to n
 ic-sum := ic-sum + ic(vj);
 for i from 1 to m
 for j from 1 to n
 ic-weight = W [ui, vj]*(ic(ui)+ic(vj));
 A[i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1]+ ic-weight;
 wavg := A[m,n]/ ic-sum;
 return {A, wavg};

The experiment results show that our matching
performances of Precision, Recall, F-measure, and Overall
are 0.93, 0.83, 0.88, and 0.77, respectively. Comparing to the
previous results that use a fixed threshold, the Recall is
slightly decreased while the Precision is significantly
increased. The relative threshold also helps to increase F-
measure and Overall.

For comparison purpose, the average scores of
performance metrics by some other methods are given in Fig.
9.

Figure 9. Performance analysis.

The first comparison, as illustrated in Fig. 9a, is with
Thang [41] who proposed an XML schema matching
solution that combines linguistic, data type, and path-context
similarity measures. He also implemented the Cupid [28]
algorithm for comparison purpose. We compared our result
to both algorithms’. In general, all performance metrics of
our approach are slightly better than Thang’s and
significantly better than Cupid’s.

The second comparison is with COMA [38] which used
various ways for combining different matchers. Because
COMA only provides performance graphs without the
specific score as shown in Fig. 9b, it is difficult to exactly
compare the performances with our result. However, Fig. 9b
shows that our result is, in general, at least equal to or
slightly better than COMA’s results even if some of their
matchers used the manual matching called SchemaM [38].

V. CONCLUSIONS

In this paper, we have described a solution to identify
semantic-based optimal XML schema matching using
mathematical programming. This solution identifies the
optimal matching between two XML schemas on the

assumption that the tree-to-tree matching problem can be
globally optimized by reducing it to simpler problems, such
as path-to-path, node-to-node, and word-to-word matching.
We have implemented a prototype system for our solution
and conducted the experiments with actual industry XML
schemas. We compared our result to some other XML
schema matching approaches. The results were encouraging.
The average matching performances of Precision, Recall, F-
measure, and Overall were 0.93, 0.83, 0.88, and 0.77, which
are better than or at least equal to other approaches’.

Although our approach primarily targets the XML
schema matching problem, the solution can be applied to
other matching problems (e.g., XML instance matching) if
the instances can be represented as labeled trees. Our
solution is limited to the assumptions that only 1:1 matching
cardinality is considered and that schema designers correctly
use the English terminologies when labeling the
elements/attributes in the schemas. These limitations call for
further research. Other directions of research include
methods to improve the performance by utilizing domain
specific terminology and taxonomy, ontologies with formally
defined concept semantics, and user feedback.

ACKNOWLEDGMENT

This work was supported in part by NIST award
70NANB9H9145.

REFERENCES

[1] W3.org “Extensible Markup Language (XML) 1.1 specification,”
available at: http://www.w3.org/TR/xml11/

[2] W3.org, “XML schema 1.1 specification,” available at:
http://www.w3.org/TR/xmlschema11-1/

[3] R. Kalakota, and M. Robinson, “E-business: roadmap for Success,”
Addison-Wesley, Reading, MA, 1999.

[4] J.M. Nurmilaakso and P. Kotinurmi, “A review of XML-based
supply-chain integration,” Production Planning and Control, vol. 15,
no. 6, Sep. 2004, pp. 608–621, doi: 10.1080/09537280412331283937.

[5] R. Skinstad, "Business Process Integration through XML", available
at: http://www.infoloom.com/gcaconfs/WEB/paris2000/S10-03.HTM

[6] S.Y. Shim, V.S. Pendyala, M. Sundaram, and J.Z. Gao, “Business-to-
business e-commerce frameworks,” IEEE Computer, vol. 33, no. 10,
Oct. 2000, pp. 40-47, doi: 10.1109/2.876291.

[7] B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, and A.
Elmagarmid, “Business-to-business interactions: issues and enabling
technologies,” VLDB Journal, vol. 12, no. 1, May 2003, pp. 59–85,
doi: 10.1007/s00778-003-0087-z.

[8] C. Bussler, “B2B protocol standards and their role in semantic B2B
integration engines,” Bull Tech Comm Data Eng, vol. 24, no. 1, 2001,
pp. 3–11.

[9] A. Gal, “Why is Schema Matching Tough and What Can We Do
About It?,” ACM Sigmod Record, vol. 35, no. 4, 2006, pp. 2-5. doi:
10.1145/1228268.1228269.

[10] E. Rahm and P.A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB Journal, vol. 10, no. 4, 2001 , pp. 334-350.
doi: 10.1007/s007780100057.

[11] P. Shvaiko, and J. Euzenat, “A survey of schema-based matching
approaches,” Journal on Data Semantics IV, LNCS 3730, 2005, pp.
146-171. doi: 10.1007/11603412_5.

[12] K.H. Elster, “Modern Mathematical Methods of Optimization,” Vch
Pub. 1993, ISBN 3-05-501452-9.

[13] R.E. Bellman, “Dynamic Programming,” Princeton University Press,
Princeton, NJ, 1957, Republished 2003: Dover, ISBN 0486428095.

b) COMA: matcher combinations

a) Thang

0.93 0.91

0.74

0.83 0.83

0.68

0.88 0.87

0.710.77 0.75

0.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our solution Thang Cupid

Precision

Recall

F-measure

Overall

[14] R.W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical Journal, vol. 29, no. 2, 1950, pp. 147–160,
MR0035935.

[15] C.J. Van Rijsbergen, “Information retrieval,” 2nd ed., London:
Butterworths, 1979.

[16] H.A. Sneath, “Then application of computers to taxonomy,” Journal
of General Microbiology, vol. 17, no. 1, 1957, pp. 201-226, doi:
10.1099/00221287-17-1-201.

[17] E. Ukkonen, “Approximate string matching with q-grams and
maximal matches,” Theoretical Computer Science, vol. 92, no. 1,
1992, pp. 191-211.

[18] G.A. Miller, “WORDNET: a lexical database for English,”
Communications of ACM, vol. 38, no. 11, 1995, pp. 39-41. doi:
10.1145/219717.219748.

[19] P. Qin, Z. Lu, Y. Yan, and F. Wu, “A New Measure of Word
Semantic Similarity Based on WordNet Hierarchy and DAG Theory,”
Proc. of International Conference on Web Information Systems and
Mining, 2009, pp. 181-185, doi: 10.1109/WISM.2009.44.

[20] D. Yang, and D.M.W. Powers, “Measuring semantic similarity in the
taxonomy of WordNet,” Proc. of the 28th Australasian Computer
Science Conference, 2005, pp. 315-322, doi: 10.1.1.87.678.

[21] P. Resnik, “Using information content to evaluate semantic similarity
in a taxonomy,” Proc. of the 14th International Joint Conference on
Artificial Intelligence, 1995, pp. 448-453, doi: 10.1.1.55.5277.

[22] D. Lin, “An Information-theoretic definition of similarity,” Proc. of
the 15th International Conference on Machine Learning, 1998, pp.
296-304. doi: 10.1.1.55.1832.

[23] T.M. Cover and J.A. Thomas, “Elements of information theory,”
Wiley series in telecommunications. Wiley, New York, 1991.

[24] T. Milo and S. Zohar, “Using schema matching to simplify
heterogeneous data translation,” Proc. of the 24th International
Conference on Very Large Data Bases, 1998, pp. 122-133. doi:
10.1.1.30.2620.

[25] B.S. Lerner, “A model for compound type changes encountered in
schema evolution,” ACM Transactions on Database Systems, vol. 25,
no. 1, 2000, pp. 83-127, doi: 10.1.1.105.1542.

[26] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding - a
versatile graph matching algorithm,” Proc. of 18th International
Conference of Data Engineering, 2002, pp. 117-128. doi:
10.1.1.61.4266.

[27] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-Match: an
algorithm and an implementation of semantic matching,” Proc. of the

European Semantic Web Symposium (ESWS), 2004, pp. 61–75, doi:
10.1007/978-3-540-25956-5_5.

[28] J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic schema
matching with Cupid,” Proc. of the 27th International Conference on
Very Large Data Bases, 2001, pp. 49-58. doi: 10.1.1.17.4650.

[29] A.L. Dulmage and N.S. Mendelsohn, “Coverings of bipartite graphs,”
Canadian Journal of Mathematics, vol. 10, 1958, pp. 517–534.

[30] W.B. Douglas, “Introduction to Graph Theory,” 2nd ed., Prentice
Hall, Chapter 3, 1999, ISBN 0-13-014400-2.

[31] D. Carmel, Y. Maarek, Y. Mass, N. Efraty, and G. Landau, “An
Extension of the Vector Space Model for Querying XML documents
via XML fragments,” in ACM SIGIR 2002 Workshop on XML and
Information Retrieval, Tampere, Finland, August 2002.

[32] C. H. Papadimitriou, “On the complexity of integer programming,” J.
ACM, vol. 28, 1981, pp. 765–768.

[33] C.A.R. Hoare, ”Quicksort,” Computer Journal, vol. 5. no. 1, 1962, pp.
10-15.

[34] L.L. Mong, Y.H. Liang, H. Wynne, Y. Xia, “XClust: Clustering XML
Schemas for Effective Integration,” Proc. in 11th ACM International
Conference on Information and Knowledge Management (CIKM),
McLean, Virginia, November 2002, doi: 10.1145/584792.584841.

[35] A. Boukottaya and C. Vanoirbeek, “Schema Matching for
Transforming Structured Documents,” In DocEng, 2005, pp. 2-4, doi:
10.1145/1096601.1096629.

[36] Java WordNet Library (JWNL), available at: http://sourceforge.net/
apps/mediawiki/jwordnet

[37] BizTalk Server available at: http://www.microsoft.com/biztalk/

[38] D. Aum üller, H.H. Do, S. Massmann, and E. Rahm, “Schema and
ontology matching with COMA++,” Proc. of the International
Conference on Management of Data (SIGMOD), Software
Demonstration, 2005

[39] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel,
“Performance measures for information extraction,” Proc. of DARPA
Broadcast News Workshop, Herndon, VA, February 1999

[40] C.J. van Rijsbergen, “Information Retrieval,” 2nd ed., Butterworth,
1979.

[41] H.O. Thang, V.S. Nam, “XML Schema Automatic Matching
Solution,” International Journal of Computer Systems Science and
Engineering, vol. 4, no. 1, 2008, pp. 68-74.

