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Abstract—We propose a novel solution for semantic-based XML 

schema matching, taking a mathematical programming 

approach. This method identifies the globally optimal solution 

for the problem of matching two XML schemas by reducing the 

tree-to-tree matching problem to simpler problems of path-to-

path, node-to-node, and word-to-word matching. We formulate 

these matching problems as maximum weighted bipartite graph 

matching problems with different constraints, which are solved 

by different mathematical programming techniques, including 

integer programming and dynamic programming. Solutions to 

simpler problems provide weights for the next stage until the 

optimal tree-to-tree matching solution is obtained. The 

effectiveness of this approach has been verified and 

demonstrated by computer experiments. 
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I.  INTRODUCTION 

XML [1] and XML schemas [2] have been widely used 
in the e-Business transactions among enterprises that 
exchange business documents with their partners (e.g., 
suppliers and customers in the supply chain) [3,4,5]. Many 
enterprises and organizations have defined their own XML 
schemas to describe the structure and content of their 
business documents (i.e., XML instances) to be used in the 
transactions. Many organizations have also published 
standard XML schemas to be shared in the transactions 
within specific industry domains [6,7,8] (e.g., e-
manufacturing, e-government, and e-health industries). 

The popularity of XML leads to an integration problem 
as different enterprises or organizations often choose 
different XML representations for the same or similar 
concepts [4,5]. One of the most critical steps to achieving the 
seamless exchange of information between heterogeneous e-
Business systems is schema matching, which is known to be 
costly and error-prone [9,10]. Schema matching takes as 
input two schemas, each consisting of a set of discrete 
components (elements or attributes), and determines as 
output the relationships between these components [11]. 

XML schemas or instances are typically reviewed as 
labeled trees (i.e., rooted acyclic graphs) where each node 
represents a component named by a label of English word or 
concatenation of words or their abbreviations. In this paper 

we focus on one type of schema mapping, namely, matching 
between all atomic components (i.e., the leaf nodes) between 
two schemas or instances based on their semantics (meaning 
of nodes). Also, we only consider pair-wise matchings of 1:1 
cardinality (e.g., any atomic component in the source schema 
can match no more than one atomic component in the target 
schema). Matching between those atomic components help 
identify how a certain value of one XML instance can be 
transformed to certain value of the other for successful 
exchange of information. 

We propose new innovative techniques to address two 
challenging problems in this type of schema matching. First, 
due to synonyms (different words meaning the same thing) 
and multi-senses (one word having different meanings in 
different context) found in natural languages, the meaning of 
an atomic component cannot be determined solely by the 
words in its label. The semantic ambiguity can be reduced by 
contextual information such as the labels of its neighboring 
nodes. In this paper, we concentrate on one type of context 
for an atomic component: the nodes along the path from the 
root to the leaf of the schema tree.  

Second, it is difficult to correctly identify the best set of 
matching pairs for all atomic components between two trees. 
This is because one leaf in one tree may match more than 
one leaf in the other tree (with different semantic 
similarities) and locally identified best matching pairs do not 
necessarily form the globally optimal set. We propose to use 
mathematical programming techniques to solve this 
combinatorial optimization problem. To further reduce the 
computational complexity, we propose to decompose the 
global optimization into simpler matching problems such as 
path-to-path, node-to-node, and word-to-word matching. We 
formulate the sequence of matching problems as maximum 
weighted bipartite matching problems with different sets of 
constraints and solve them by different mathematical 
programming techniques, including integer programming 
[12] and dynamic programming [13]. Solutions to simpler 
problems provide weights for the next stage until the optimal 
tree-to-tree matching is obtained. 

The remainder of the paper is organized as follows. 
Section II provides a brief survey of the related works. The 
detailed algorithm of the proposed approach is described in 
Sections III. Section IV reports the experiments and results. 
Section V concludes with the directions for future research. 



II. RELATED WORKS 

Many schema matching methods have been proposed 
[10,11]. Typically, these methods first attempt to identify 
semantic relationships between the elements of two schemas. 
Based on the granularity of the matching, these schema 
matching techniques can be separated into two classes: 
element-level and structure-level [11]. The element-level 
approaches determine the matching elements in the target 
schema for each element of the source schema. The 
structure-level approaches refer to matching combinations of 
elements that appear together in a structure.  

For the element-level matching, string-based similarity 
metric is the most fundamental technique to analyze the 
linguistic context of names and name descriptions of schema 
elements. There is a variety of string-based similarity metrics, 
including Hamming distance [14], Jaccard similarity 
coefficient [15], Cosine coefficient [16], and n-gram [17]. 
The string-based metrics can be enhanced using natural 
language preprocessing techniques for the input string, such 
as tokenization, lemmatization, and elimination [11]. 

To further enhance the string-based metrics, corpus 
resources can be utilized for more accurate and less 
ambiguous results. One of the important resources is the 
lexical taxonomy among the words (e.g., parents, children, 
ancestor, and descendant relationships). Common knowledge 
corpora, such as WordNet [18] and domain-specific corpora 
can be used to determine the meaning of the words [19,20]. 

A corpus also provides statistical information related to 
the importance of words. The difference in importance of 
individual entities and their relationships affects the semantic 
similarity measurement. The information content (IC)-based 
metric was proposed to utilize this statistical information 
[21,22,23]. This approach measures the similarity between 
two entities (e.g., two words, two objects, or two structures), 
A and B based on how much information is needed to 
describe common(A, B), the commonality between them (e.g., 
the features or hypernyms the two words share). Applying 
this approach to tree-like IS-A taxonomies [22], one can 
measure the similarity between A and B as 
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where C is the most specific subsumer of A and B with the 
smallest prior probability and the probabilities can be 
obtained according to the frequencies in a corpus .  

For structure-level matching, a variety of graph-based 
techniques have been proposed [10,11]. Typically, a graph-
based metric quantifies the commonality between 
components by taking into account the lexical and structural 
similarities of sub-components (e.g., ancestors and 
descendents including leaf components). Because most 
schemas can be viewed as labeled trees, many matching 
algorithms have been developed based on either top-down or 
bottom-up traversal techniques [10]. 

As an example of the top-down approach, TransScm [24] 
provides a schema-based matching for data translation and 

conversion based on the syntactic analysis of the structures. 
Tess [25] is another example of a top-down algorithm, which 
deals with schema evolution. Tess takes definitions of the old 
and new types and identifies pairs of types as matching 
candidates. It then recursively tries to match their 
substructure in a top-down fashion.  

Alternatively, the bottom-up approach compares all 
combinations of the elements and finds matches at a given 
level even if the intermediate and higher level structures 
differ considerably. Similarity flooding (SF) [26] provides 
bottom-up matching based on similarity propagation. 
Another effective bottom-up method, called S-Match [27], 
decomposes the tree matching problem into a set of node 
matching problems. Each node matching problem is 
translated into a propositional formula, thus transforming the 
matching problem to a propositional unsatisfiability problem, 
which can then be efficiently resolved using state of the art 
propositional satisfiability deciders. 

Cupid [28] provides a composite matching approach 
combining element- and structure-level matching 
approaches. It computes the similarity with domain-specific 
thesauri as the linguistic resources and traverses the tree in a 
combined bottom-up and top-down manner.  

Top-down approaches are less expensive but can be 
misled if the top-level schema structures are very different 
[10]. On the other hand, bottom-up approaches take a more 
comprehensive view [11]. However, the ways the existing 
bottom-up methods identify the optimal matching are 
typically ad hock, not based on  a theoretically well founded 
manner.  

III. ALGORITHM 

We propose a novel schema-based matching algorithm to 
solve the combinatorial matching optimization problem of 
matching atomic components between two schemas. Our 
approach synthesizes the global optimal set of pair-wise 
matchings between atomic components in a principled 
manner by mathematical programming.   

A. Algorithm overview 

The matching algorithm takes as input two schemas and 
identifies the set of matching pairs of all atomic components 
of the input schemas with the highest semantic similarity 
among all possible sets of pair-wise matchings. Fig. 1 
illustrates the matching process of our approach for two 
input schemas, S1 and S2. 

The algorithm breaks the complex combinatorial 
optimization problem into four matching stages: tree-to-tree, 
path-to-path, node-to-node, and word-to-word matchings. As 
can be seen in Fig. 2, each stage works on a bipartite graph, 
consisting of two sets of vertices and a weight matrix with 
the objective of finding the 1:1 matching between vertices in 
one set to the other with the highest overall weight. 
Therefore, we formulate these sub-problems as maximum 
weighted bipartite graph matching problems [29]. 



 

Figure 1.  Matching algorithm overview.

Except for the word-to-word matching stage, the weight 
matrix for each stage is a similarity matrix calculated by the 
previous stage. For example, the similarity matrix for tree-to-
tree matching stage is provided by path-to-path matching 
stage. The word-to-word matching stage uses WordNet to 
compute the semantic similarity between two words by 
identifying the optimal matching pairs for their respective 
senses. 

 

 

Figure 2.  Weighted bipartite graph modeling for different types of 

components in two labeled trees. 

Except for the path-to-path matching stage, optimal 
matching at each stage can be obtained according to the 
general Maximum-weighted Bipartite Matching algorithm 
(MBM) [30]. The path-to-path matching requires an 
additional ordering criterion [31] that path P1 includes most 
of the nodes of path P2 in the correct order, and is called 
Ordered Maximum-weighted Bipartite Matching (OMBM) 
problem. Algorithms to solve the MBM and the OMBM 
problems are described in the following sections. 

B. Maximum-weighted bipartite matching algorithm 

Tree-to-tree, node-to-node, and word-to-word matching 
stages can be formulated as the general weighted bipartite 

graph matching problems. Let G be a weighted bipartite 

graph with two sets of vertices,  1 2, , , mU u u u  and 

 1 2 nV v ,v , ,v , and the edge set E. Edge eij in the graph 

connects the vertices ui and vj whose weight wij is given in 
the weight matrix W. Vertices of the same set are not 
connected.  

A matching M of graph G is a subset of E such that no 
two edges in M share a common vertex. In other words, M 
consists of a set of pair-wise matchings of 1:1 cardinality. 
The maximum-weighted bipartite matching is a matching 
whose sum of the weights of the edges is the highest among 
all possible sets of pair-wise matchings. The optimal 
matching M can be found by integer programming defined 
below: 

Maximize: 
ij

ij ij
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 1,0ijx , where ijx  is 1 if Meij   and 0 otherwise. 

Because integer programming is typically NP-hard (i.e., 
harder than a nondeterministic polynomial-time problem and 
for worst case with running time exponential to the problem 
size) [32], we approximate it by a simple greedy algorithm as 
follows: 

 

 
Figure 3.  Greedy algorithm for maximum weighted bipartite matching. 

S1 
input 

User feedback 
Matching 

candidates 

Matching 

result 

matching 

iteration 

path matching 

feedback 
node matching 

feedback 

word matching 

feedback 
output 

user interaction 
(optional) 

stage 3 stage 2 stage 1 

Tree-to-Tree matching Path-to-Path matching Node-to-Node matching Word-to-Word matching 

stage 4 

S2 

Schema 

word sense word node atomic 

component 

algorithm MBM-greedy (U,V,W) 
    sort W; 
    while (|U|>0 and |V|>0) 

Choose vertices u and v connected with an edge e that has the 
highest weight w in the weight matrix W; 
if edges in M share neither u nor v  
     then M := M + {e}, U := U - {u}, V := V - {v}; 
W [u,v] := 0; 
wsum := wsum + w; 

    wavg := 2 * wavg / (m + n); 

    return {M, wavg}; 
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The greedy algorithm simply sorts the weight matrix W 
in ascending order and at each iteration chooses an edge with 
the highest weight. The initial weight matrix W is calculated 
by the previous matching stage. The chosen edge would be 
the matching candidate if it shares no vertex with edges in M. 
This process is repeated until there is no vertex to be 
matched in either U or V. The algorithm returns the optimal 
matching set M and the average weight of all edges in M as 
the measure of similarity between U and V. In this greedy 
algorithm, the most expensive step is the sorting of the 
weight matrix W of size .m n  We use a quicksort algorithm 

[33] that takes O(klog(k)) to sort k items. Thus, the 
complexity of this greedy algorithm is O(mn log(mn)). 

C. Ordered maximum-weighted bipartite matching 

algorithm 

Some have suggested using the longest common 
sequence (LCS) to address the ordering criterion in the path-
to-path matching [30,34,35] . However, none of the 
suggestions utilizes the semantic similarities of the nodes on 
the two paths. To consider semantic similarities of the nodes, 
we have developed the ordered maximum-weighted bipartite 
matching algorithm based on dynamic programming. 

Let G be a weighted bipartite graph with two ordered 
sets of vertices  1 2, , , mU u u u

 
and V    1 2 nv ,v , ,v , 

and the edge set E. The core algorithm, OMBM (U, V), finds 
the optimal matching M between U and V by recursively 
partitioning it into smaller sub-problems until the solution 
becomes trivial.  

For a sequence S=s1s2…sd, a sequence shortened from the 
end is denoted Sk=s1s2…sk, where k d . We call Sk the prefix 
of S. The prefixes of U are U1, U2 ,…, Um, and the prefixes of 
V are V1,V2,…Vn. Let OMBM (Ui, Vj) be the function that 
finds the optimal matching of prefixes Ui and Vj. This 
problem can be reduced to three alternative simpler sub-
problems with shortened prefixes and returns the one with 
maximum sum of weights: 

1) ui and vj match each other. Then the optimal 
matching for  Ui and Vj can be formed by attaching edge eij 
to the optimal matching of two shortend sequences 

1iU 
 and 

1jV  , denoted.   1 1, ,i j ijOMBM U V e  . 

2) ui and vj do not match each other. Then, either of 

them can be removed to shorten one of the matching 

sequences and OMBM (Ui, Vj) is reduced to either OMBM 

(Ui-1, Vj) or OMBM (Ui, Vj-1).  
Thus OMBM (Ui, Vj) can be computed by the following 

recursive function: 
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where the function max() returns the optimal matching 
among the three matchings from the sub-problems; it returns 
empty if either Ui or Vj is reduced to nill (i = 0 or j = 0). 

The optimal matching M of two sets of order vertices U 
and V, |U| = n, |V| = m, is then computed as: 

  nm VUOMBMM ,  

The similarity score of M, denoted SimM, is the average 
weights of all edges in M:  

 2

ij
M ij

e M
Sim w

m n
  


 

To efficiently execute the algorithm, we use a bottom-up 
approach [13]. The algorithm is as follows: 

 

 
Figure 4.  Bottom-up dynamic programming algorithm for ordered 

maximum weighted bipartite matching. 

This algorithm starts from the simplest matching between 
U1 and V1 and continues to more complex matching 
problems. The calculated similarity scores for the optimal 
matchings (average weights by Eq. (5)) are stored in table 
A[i,j] in Fig. 4 for future use to avoid repeated calculations of 
smaller  problems. The weights of W are calculated by the 
previous matching stage (i.e., node-to-node matching stage). 
The complexity is only O(mn), i.e., linear to the size of table 
A. 

The following algorithm deals with a simple matter of 
finding the matching between components U and V that is 
identified by bottom-up dynamic programming algorithm of 
Fig. 5. 

 

 
Figure 5.  Dynamic programming algorithm for ordered maximum 

weighted bipartite matching. 

Algorithm OMBM is further enhanced by considering the 
differences in importance for the individual components 
measured by their IC values. We collect the frequency of 
each component by their occurrences in the schemas and 
compute the IC by Eq. (1). Fig. 6 shows the modified 
algorithm. 

Algorithm OMBM-IC gives more weights to higher level 
components because lower level components are typically 
generic and common entities that appear widely as the 
descendants of many elements and thus less discriminatory 
than the higher level components. In addition, it also 
considers the differences in importance of components at the 
same level. The complexity of this algorithm is still O(mn). 

algorithm OMBM (U,V,W) 
    OMBM-arrays (U,V,W); 
    i := m, j :=n; 
    while i > 0 and j > 0 
        if A[i,j] equal to A[i-1,j] then i--; 
             elseif A[i,j] equal to A[i,j-1] then j--; 
                 else M := M+{ei,j}, i--, j--; 
    return {M, wavg}; 
 

algorithm OMBM-arrays (U,V,W) 
    for i from 1 to m 
        for j from 1 to n 
              A [i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1]+W [i,j]; 
    wavg := 2*A[m,n] / (m + n); 
    return {A, wavg}; 



 
Figure 6.  Algorithm enhanced by information contents. 

D. Overall schema matching algorithm 

Fig. 7 below gives the algorithm for overall schema 
matching and how each stage obtains the weight matrix by 
calling the optimization algorithm for the previous stage.  

 

 
Figure 7.  Overall schema matching algorithm. 

The algorithm views matching two schema trees as 
matching two sets of atomic components with their 
respective path-contexts. Each path consists of a sequence of 
nodes along the path from the root to the leaf of the schema 
tree. Each node represents a component named by a label of 
English word or concatenation of words or their 
abbreviations. To compute semantics similarities between 
words, we analyze optimal pair-wised matchings between 
multiple senses of two words. 

The word-to-word matching algorithm uses two semantic 
similarity measure functions: word-sense-sim() based on 
WordNet taxonomy and word-desc-sim() based on textual 
description. In WordNet, nouns are organized into 
taxonomies in which each node has a set of synonyms (a 
synset), each of which representing a single sense [18]. If a 
word has multiple senses, it will appear in multiple synsets at 
various locations in the taxonomy. To compute the semantic 

similarity between two words (two sets of senses), we use 
the MBM-greedy() algorithm with the input of two set of 
synsets for words W1 and W2, respectively, and a similarity 
matrix of all possible pairs between senses in W1 and W2 is 
calculated by Eq. (1). 

If a word does not exist in WordNet, we extract the 
textual description of a given word from the internet and then 
use string similarity measures, such as the cosine similarity 
[16], to calculate the similarity between the two textual 
descriptions of the two words. 

IV. EXPERIMENTS AND RESULTS 

We have implemented a prototype system of our 
approach based on Java and JWNL [36] for experimental 
validation. In the experiments, we used five real world XML 
schemas for purchase orders (i.e., CIDX, Apertum, Excel, 
Norris, and Paragon) from [37,38]. Table I summarizes the 
characteristics of those XML schemas. 

TABLE I.  CHARACTERISTICS OF PO XML SCHEMAS 

Schemas CIDX Apertum Excel Norris Paragon 

max depth 4 5 4 4 6 

# nodes 40 145 55 65 80 

# leaf nodes 33 116 42 54 68 

 
In the experiment, as suggested in [36], we compute the 

tree-to-tree similarity of the ten pairs of the five XML 
schemas, then for each schema, a matching to any of the 
other four is accepted if the similarity score is above a fixed 
threshold 0.6. To evaluate the quality of our match result, we 
used several performance metrics including Precision, Recall, 
F-measure, and Overall [39,40], against the results from 
manual matching [38]. These measures are then compared 
with the performances of other approaches for the same 
setting [28,38,41]. Note that the Overall measure, proposed 
by [38] to estimate the post-match efforts, varies in [-1, 1] 
and other three vary in [0,1]. 

Precision, Recall, F-measure, and Overall for our results 
are 0.85, 0.85, 0.85, and 0.69. To increase the precision, we 
used a relative threshold which is chosen as the similarity of 
the matching with the largest gap to the next best matching, 
among matching candidates with similarities ranging from 
0.5 to 0.6. Fig. 8 shows the performance analysis of the 
matching result that our solution produced. 
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Figure 8.  Performance analysis. 

algorithm T2T-matching (T1, T2) 
    for i from 1 to |T1| 
        for j from 1 to |T2| 
            t2t-smatix[i,j] := P2P-matching (T1’s ith path, T2’s jth path); 
    return MBM-greedy (T1’s atomics, T2’s atomics, t2t- smatix); 
 
algorithm P2P-matching (P1, P2) 
    for i from 1 to |P1| 
        for j from 1 to |P2| 
            p2p-smatix[i,j] := N2N-matching (P1’s ith node, P2’s jth node); 
    return OMWM-IC (P1’s nodes, P2’s nodes, p2p-smatix); 
 
algorithm N2N-matching (N1, N2) 
    for i from 1 to |N1| 
        for j from 1 to |N2| 
            n2n-smatix[i,j] := W2W-matching (N1’s ith word, N2’s jth word); 
    return MWM-greedy (N1’s words, N2’s words, n2n-smatix); 
 
algorithm W2W-matching (W1, W2) 
    if wordnet definitions for W1 and W2 exists then 
        for i from 1 to |W1| 
            for j from 1 to |W2| 
                w2w-smatix[i,j] := word-sense-sim (W1’s ith sense, W2’s jth sense); 
        return MWM-greedy (W1’s senses, W2’s senses, w2w-smatix); 
    else  
        return word-desc-sim (W1, W2); 
 

algorithm OMBM-IC (U,V,W) 
    for i from 1 to m 
        ic-sum := ic-sum + ic(ui); 
    for j from 1 to n 
        ic-sum := ic-sum + ic(vj); 
    for i from 1 to m 
        for j from 1 to n  
            ic-weight = W [ui, vj]*(ic(ui)+ic(vj)); 
            A[i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1]+ ic-weight; 
    wavg := A[m,n]/ ic-sum; 
    return {A, wavg}; 
 
 



The experiment results show that our matching 
performances of Precision, Recall, F-measure, and Overall 
are 0.93, 0.83, 0.88, and 0.77, respectively. Comparing to the 
previous results that use a fixed threshold, the Recall is 
slightly decreased while the Precision is significantly 
increased. The relative threshold also helps to increase F-
measure and Overall.  

For comparison purpose, the average scores of 
performance metrics by some other methods are given in Fig. 
9.  

 

 

Figure 9.  Performance analysis. 

The first comparison, as illustrated in Fig. 9a, is with 
Thang [41] who proposed an XML schema matching 
solution that combines linguistic, data type, and path-context 
similarity measures. He also implemented the Cupid [28] 
algorithm for comparison purpose. We compared our result 
to both algorithms’. In general, all performance metrics of 
our approach are slightly better than Thang’s and 
significantly better than Cupid’s. 

The second comparison is with COMA [38] which used 
various ways for combining different matchers. Because 
COMA only provides performance graphs without the 
specific score as shown in Fig. 9b, it is difficult to exactly 
compare the performances with our result. However, Fig. 9b 
shows that our result is, in general, at least equal to or 
slightly better than COMA’s results even if some of their 
matchers used the manual matching called SchemaM [38]. 

V. CONCLUSIONS 

In this paper, we have described a solution to identify 
semantic-based optimal XML schema matching using 
mathematical programming. This solution identifies the 
optimal matching between two XML schemas on the 

assumption that the tree-to-tree matching problem can be 
globally optimized by reducing it to simpler problems, such 
as path-to-path, node-to-node, and word-to-word matching. 
We have implemented a prototype system for our solution 
and conducted the experiments with actual industry XML 
schemas. We compared our result to some other XML 
schema matching approaches. The results were encouraging. 
The average matching performances of Precision, Recall, F-
measure, and Overall were 0.93, 0.83, 0.88, and 0.77, which 
are better than or at least equal to other approaches’. 

Although our approach primarily targets the XML 
schema matching problem, the solution can be applied to 
other matching problems (e.g., XML instance matching) if 
the instances can be represented as labeled trees. Our 
solution is limited to the assumptions that only 1:1 matching 
cardinality is considered and that schema designers correctly 
use the English terminologies when labeling the 
elements/attributes in the schemas. These limitations call for 
further research. Other directions of research include 
methods to improve the performance by utilizing domain 
specific terminology and taxonomy, ontologies with formally 
defined concept semantics, and user feedback. 
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