
Semantic Similarity Analysis of XML Schema Using Grid Computing

Jaewook Kim1,2, Sookyoung Lee1, Milton Halem1 and Yun Peng1

1Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

2National Institute of Standards and Technology
jaewook@nist.gov, { slee22, halem and ypeng}@umbc.edu

Abstract

A growing list of e-businesses has been using XML
schemas in recent years. Schema mapping now plays a
crucial role in integrating heterogeneous e-business ap-
plications. Since large-scale XML schema mapping using
complex and hybrid similarity measures requires signifi-
cant amount of processing time, a sophisticated similarity
analysis algorithm is needed to handle its complexity and
performance. In this paper, we focus on designing a ser-
vice-oriented architecture (SoA) for schema mapping,
based on a grid computing technology in order to en-
hance the effectiveness of the mapping algorithm. After
comparing three different grid computing technologies
(MPJ, Hadoop, and Globus), we explain why MPJ is the
most suitable. We propose SoA XML schema mapping
based on MPJ, and demonstrate its performance.

Keywords: XML Schema, E-business Integration, Schema
Mapping, Grid Computing, Service-oriented Architecture

1. Introduction

Recently, many XML schemas have been developed
for various e-business applications. Since companies en-
gaged in e-business often define their own XML schemas
for business-dependant properties, schema mapping is
essential for e-business integration.

However, XML schema mapping is typically very la-
bor-intensive, costly, and error-prone [1] . The time com-
plexity of XML schema mapping largely depends on
three factors: the number of elements that an XML
schema defines, the structural complexity of each ele-
ment, and the complexity of the mapping algorithm. Re-
cently, more complicated XML schemas and highly com-
plex mapping algorithms have been introduced. For in-
stance, the Open Application Group’s Integration (OAGi)
[7] component schema and Human Resource XML (HR-
XML) component schema [33] can vary from three hun-
dred to a thousand top-level elements, respectively.
Moreover, it can take more than an hour to analyze the
mapping using a hybrid similarity algorithm [2]. Clearly,

more-efficient architectures are required to improve the
performance of XML schema mappings.

In this paper, we propose an efficient XML schema
mapping analysis architecture using a Java-based parallel
system called MPJ (MPI-like Message Passing for Java)
[3]. The main idea of the proposed architecture is to dis-
tribute the heavy workload of XML schema mapping
analysis among a cluster of processors connected using
grid computing based on service-oriented architecture
(SoA). The proposed architecture has two key advan-
tages: First, it enhances the efficiency of the XML
schema-similarity analysis by reducing its total execution
time, and second, it provides high extensibility, so that an
end-user can add additional similarity algorithm easily.

The paper is organized as follows. Section 2 provides
the background for schema mappings, including brief
reviews of selected similarity metrics as well as grid com-
puting technologies. Detailed descriptions of the proposed
approach are given in Sections 3. Section 4 discusses the
performance of the proposed architecture. Finally, Sec-
tion 5 concludes with lessons learned and directions for
future research.

2. Background

XML schema mapping plays a crucial role in integrat-
ing heterogeneous e-business applications. However, the
difficulty associated with this approach lies in the fact
that semantics of XML schema used for e-business are
not formally defined, but are implicitly embedded in the
meanings of English words or phrases appearing in the
names of the schemas’ components and fields, as well as
in associated descriptions. Precise understanding of these
descriptions is difficult because of, among other things,
the lack of clearly documented common approaches to
associating and specifying descriptions. For these rea-
sons, it is very costly for experts to identify the reusable
standard components that can be shared by other sche-
mas, and to understand how to use them.

Various approaches have recently been developed to
automate the process of schema mapping between two
schemas [4, 5]. Most of these approaches first attempt to
identify semantic relations between the elements of the

two schemas and assign measures of meaning similarity.
In the following subsection, we review different semantic
similarity measures for XML schema mapping.

2.1. Similarity measures

There are several similarity approaches to help schema
mapping solutions. Based on our survey of the field of
schema mapping [1, 4], the simplest approach is usually a
linguistic metric that computes similarity between names
and textual descriptions of schema elements. A common
measure is obtained using string matching [10] , such as
the widely used Jaccard similarity [11] and Cosine simi-
larity [12] measures. In addition, to considering semantic
relationships, a few researches have proposed methods
based on a linguistic taxonomy [14] such as WordNet
[15], from which one can obtain more accurate and less
ambiguous semantics for words in the element names.

Another approach is a structural similarity metric, such
as those based on three kinds of contexts for schema ele-
ments: the ancestor-context, the children-context and the
leaf-context [16]. These notions are defined based on the
notion of path in schema graphs. Several researches have
proposed the structural similarity metrics for XML sche-
ma, but they fail to recognize the respective importance of
individual entities and relations and the different roles
they play in semantic analysis and measurement. A metric
based on information content (IC) was proposed to ad-
dress this problem [17, 18]. This approach measures the
similarity between two entities (e.g., between two words,
two objects, or two structures), x and y, based on how
much information is needed to describe the commonality
between them (e.g., the features or hypernyms that two
words share). The more specific the commonality of x and
y, denoted common(x, y), the more similar x and y will be.
According to information theory, more information is
needed for describing more specific objects, and the de-
gree of specificity can be measured by their information
content. One can thus define common(x, y) as the most
specific hypernyms, C, of both x and y, and the similarity
as

(,) () log ()Sim x y I C P C (1)

where I(C) is the information content of C, and P(C) can
be calculated as word frequencies in a corpus.

Research by [19] shows that better results can be
achieved by combining the two approaches. Each of the
existing similarity metrics has its strengths and weak-
nesses. To combine the strengths of different similarity
metrics, [2] proposed a hybrid approach called layered
semantic similarity metrics (or the layered approach, for
short) that employs a variety of similarity metrics, includ-
ing lexical, taxonomical, and information content-based
metrics. It divides the tree structure of the XML schema
into three layers (i.e., top, inner, and atom layers) and

applies three different similarity metrics to them. Because
each layer typically captures the semantics from different
perspectives, it is an effective approach to capturing the
semantics in a coherent and justifiable manner. Clearly,
this combination of layered measures has a drawback in
that it increases the computational time which we address
in the following section.

The layered approach proposed two similarity meas-
ures: atom level similarity between two atom layers of
two elements and label similarity between the labels of
elements. For atom level similarity, an IC based measure
was proposed as follows:

 (2)

where A(x) and A(y) are the sets of atoms of global ele-
ments x and y, respectively. The atom level similarity is
used to analyze the atom layers of XML schema.

[2] also proposed a procedure for label similarity as
follows:
1) Normalize labels to obtain full words from the con-

catenations and abbreviations, denoted as L(x).
2) Calculate the semantic weight of each L(x) by

()

()
()

()
k

i
IC i

x L x k

I x
w x

I x

 (3)

where)(log)(ii xPxI , and P(xi) are taken as their

frequencies in their respective schema;
3) Obtain from the WordNet the description of each

word in L(x) and make the description a set of words
of same size, denoted as W(x);

4) Measure Sim(x, y) by cosine(W(x), W(y)):

 (4)

where)(if x is the frequency of the term ‘i’ in W(x).
The label similarity is applied to both top and inner

layers of XML schema. For label similarity of the inner
layer, the label x and y are the union of labels of all inter-
mediate nodes. To obtain a unique mapping, the similari-
ties obtained from three layers are combined by a
weighted sum: (,) A A T T I ISim x y w Sim w Sim w Sim ,
where the sum of the weights are normalized to one.

In this paper, we propose an efficient XML schema
mapping computational architecture based on the layered
semantic similarity metrics using a grid computing tech-
nology.

2.2. Grid computing

We now consider various grid computing technolo-

gies as a way to address the performance of our compute
intensive XML schema similarity analysis. In this subsec-
tion, three related distributed computing technologies,
Hadoop [22], Globus Toolkit[23] and MPJ [3], are ex-

plained. Each technology has different technical back-
grounds and performance trade-offs. We compare them
with respect to overhead for the initial setup, data man-
agement, security, and execution on our computing archi-
tecture, which for this study consists of 3 networked Pen-
tium based Intel laptops.

Hadoop is an open source software framework for
running applications on large clusters built of commodity
hardware. It provides applications both the reliability of a
data file system and a parallel computational paradigm
named Map/Reduce, which divides the data into many
small fragments of work, assigning each fragment a key,
value pair which is then distributed to each node in the
cluster for execution in parallel and then sorted by the
reduce function

The Globus Toolkit provides an alternative approach
to distributed computations and also is an open source
software that explicitly supports the development of ser-
vice oriented distributed computing applications and data
infrastructures. It better addresses such fundamental is-
sues that relate to security, information infrastructure,
resource management, data management, communication,
fault detection, and so forth.

A third approach to cluster computing makes use of
MPJ which is an extension to the Message Passing Inter-
face (MPI), a standard for the message-passing software
layer. It provides a flexible structure based on the mas-
ter/slave architecture, into which a variety of applications
can be easily programmed. Table 1 shows the different
features of MPJ, Hadoop and Globus Toolkit.

Table 1: Comparison of MPJ to Hadoop and Globus.

 MPJ Hadoop Globus
Extra SW
requirement

Java, Java, sshd,
cygwin

Java, Ant

Setup System-
independent

System-
specific

System-
independent

Security No ssh WS-security
Data
management

No DFS GridFTP

Computing Grid Clustering Grid

Hadoop requires more extra software installation and
management because it requires the privilege of the ad-
ministrator to configure the clusters. Moreover, the
Map/Reduce paradigm is not effective for all possible
parallel computing templates, especially for our XML
schema analysis architecture, which did not lend itself
well to execute the key value pairs of the Map similarity
measure function for all the schema data elements. Glo-
bus Toolkit makes extensive use of Web Services to de-
fine its interfaces and structure its components, which
provide flexible, extensible, and widely adopted XML-
based mechanisms for describing, discovering, and invok-
ing network services. It can be applied to our XML

schema analysis architecture, but requires a complex en-
vironment configuration for Web Services.

On the other hand, MPJ requires simple environment
configuration and programming architecture. Processors
or machines that cooperatively work together via MPJ are
independent of each other in terms of configuration and
resource management. Because of this simplicity, our
XML schema analysis computing architecture can be
more easily implemented as grid computing architecture
using MPJ, even if it does not provide any security and
data management functionalities.

3. XML schema mapping by SoA and grid

In this section, we propose a service oriented architec-
ture (SoA) for XML schema mapping based on a grid
computing technology in order to enhance the computa-
tional efficiency of the mapping algorithm. The proposed
architecture is extended from the layered approach [2].

3.1. Overview

Various schema mapping tools [25, 26] have been in-

troduced in the e-business market. However, most of the
schema mapping tools do not support any semantic simi-
larity analysis methods that have been researched and
proposed, for schema mapping.

In this study, we design and implement a Grid comput-
ing architecture for XML Schema Mapping based on Ser-
vice-Oriented Architecture (GridXMLSM-SOA). This
system can help not only the existing schema mapping
tools, but also e-business vendors, to easily make use of
the functionality of semantic similarity analysis. In par-
ticular, it uses the layered approach, which can capture
the semantics of different perspectives in the XML sche-
mas well.

The layered approach recommends a set of data ele-
ments in the target schema as likely mapping/merging
candidates for each element in the source schema, based
on their semantic similarity scores. In other words, for
mapping between a source schema with n data elements
and a target schema with m data elements, we compute
the semantic similarities between all possible pairs of
source/target elements, generating an n*m matrix called
the similarity matrix. As we explained in Section 2, the
semantic similarities can be computed by combining three
different similarities for each layer of XML schema. We
then recommend a set of candidates according to the simi-
larity ranking.

The performance of this similarity measure approach
mainly depends on the number of elements to be com-
pared and the complexity of the semantic similarity algo-
rithms. Because the similarity measure for each pair of
source/target elements and the different semantic similari-
ties for each layer can be computed in parallel, grid com-

puting technology can be applied to enhance performance.
The next section describes the general architecture and
detailed implementation of GridXMLSM-SOA.

3.2. General architecture

Figure 1 shows the overview architecture of
GridXMLSM-SOA.

Source
XML

Schemas

Target
XML

Schemas

SOAP
Client

SOAP/
HTTP

S2S* - Schema to Schema
E2E* - Element to Element

GCM* - Grid Computing Manager

UDDI Directory Server

UDDI/
HTTP

UDDI/
HTTP

SOAP/
HTTP

Schema Repository Service

Source
XML

Schemas

Target
XML

Schemas

SOAP/
HTTP

S2S

Similarity
Matrix

target elements

source elem
ents

machines:
List of elements in Grid
(Hostname or
IP address)

E2E grid

MPJ daemon
MPJ

MPJ daemon

Master
ID = 0

GCM

Grid Computing based on MPJ

idx idx

Figure 1: Overview of GridXMLSM-SOA.

The architecture depicted in Figure 1 consists of three

main SoA components: a schema mapping SOAP client,
Grid enhanced XML Schema Mapping Web Services
(GridXMLSM-WS), and a Universal Description Discov-
ery and Integration (UDDI) [27] directory service. The
schema mapping SOAP client can be any kind of soft-
ware that uses the GridXMLSM-WS. It should support
messaging using SOAP 1.1 or 1.2 specifications [28].
First, the GridXMLSM-WS publishes its own Web Ser-
vices Description Language (WSDL) service description
at a public UDDI directory server. Any SOAP client can
now find the WSDL service description of the
GridXMLSM-WS through the public UDDI directory
server. Note that there are several supporting tools, such
as AXIS2 [13], for generating a SOAP message genera-
tor/parser according to the given WSDL. Finally, the
schema mapping SOAP client can invoke the
GridXMLSM-WS to request a schema mapping analysis
for a given source-target XML schema pair.

The GridXMLSM-WS consists of four components: a
Schema-to-Schema (S2S) mapping service, a Grid Com-
puting Manager (GCM), an Element-to-Element (E2E)
mapping service, and a schema repository service. The
S2S mapping service is the main component providing an
interface with the similarity mapping analysis function.
The similarity mapping analysis produces a similarity
matrix that contains the semantic similarities between all
comparable source/target element pairs. The GCM is a
sub-component of the S2S mapping service that initiates
the grid computing network and assigns jobs to the grid
cells, which are the E2E mapping services. E2E mapping
services execute semantic similarities between the given
source/target elements using the given similarity mapping

algorithm. Last, the schema repository service is a web
service that manages XML schemas via a permanent re-
pository.

3.3. Use cases and scenarios

Grid Computing

Figure 2: Use case diagram.

Figure 2 illustrates a use case model of GridXMLSM-

WS. As shown in the general architecture in Figure 1,
there are five actors: a SOAP client, a UDDI directory
service, a S2S mapping service with GCM, an E2E map-
ping service, and a schema repository service. The use
case scenario is as follows: 1) S2S mapping service pub-
lishes its WSDL service description on UDDI directory
service, 2) a SOAP client finds the WSDL service de-
scription of the S2S mapping service via UDDI directory
service, implements an SOAP messaging generator/parser,
invokes the S2S mapping service to upload source/target
schemas and request a schema mapping analysis, 3) S2S
mapping service creates a similarity matrix and distributes
the similarity analysis jobs for every cell in the similarity
matrix to the E2E mapping service with indices of the
source and target elements to be analyzed, 5) E2E map-
ping service computes the semantic similarity using the
given similarity algorithm and source/target schema from
the schema repository service, and 6) S2S mapping ser-
vice collects all semantic similarity results and, finally,
returns the mapping target candidate elements for each
element in the source schema based on their semantic
similarities. The detailed scenario is shown in Figure 3 as
a flow diagram.

Figure 3: Flow diagram.
3.4. MPJ Implementation

The proposed XML schema analysis structure uses
MPJ which was developed to enable high-performance
computing (HPC) using Java. Figure 4 shows the pseudo-
code of MPJ implementation.

Figure 4: Pseudo-code of MPJ implementation.

The MPJ approach is well-suited to handling computa-

tions where a task is divided up into subtasks, with most
of the processes used to compute the subtasks, and only a
few processes (often just one process) used for managing
the tasks. The manager is called the "master," and the
others the "slaves."

The first step to implementing grid computing is to ini-
tialize the MPJ (lines 2–4). After that, the processors are
divided into two communicators, with one processor as
the master (lines 6– 15) and the others the slaves (lines
16– 18). The master assigns initial subtasks to the active
slaves and then waits until each slave finishes its task.
Once a slave returns the result of its given task, the next
subtask is assigned. Thus, faster processors will process
more subtasks.

4. Experiments and results

A prototype system with an example SOAP client was

implemented using Eclipse [24], JDK 6, and the Google
Web Toolkit [8] based on Tomcat and AXIS2. We evalu-
ated its performance using actual industry XML schemas
and three semantic similarity algorithms.

4.1 Real data

To test and evaluate the proposed approach, we ob-
tained two actual industry XML schemas from two differ-
ent workgroups at the Automotive Industry Action Group
(AIAG) [6]. The AIAG Resource schema and the Truck
and Heavy Equipment (T&HE) schema were used as the
target and source, respectively. There were a total of 139
global (top) elements defined in the T&HE schema that
needed to be mapped onto the set of 145 global elements

of the AIAG schema. Thus, the semantic distances of 139
x 145 (~20,000) pairs of elements needed to be examined.

4.2. Performance Analysis

We tested the execution time to obtain the semantic

similarity results using three different algorithms. With-
out help of grid computing, the execution time was 420
sec. By increasing the number of processors in the grid
computing network, the execution time was reduced. Fig-
ure 5 shows an exponential decay graph [9] which means
the execution time decreases exponentially as the number
of processes increases. Note that it is not ideal exponen-
tial decay graph, due to trade-off between networking
overhead and performance.

200000

250000

300000

350000

400000

450000

1 2 3 4 5

of machines

e
xe
cu
ti
o
n
 t
im

e
 (
m
se
c) 420sec (7mins)

230sec (4mins)

46% improved

Figure 5: The number of machines vs. execution time.

5. Conclusions and directions for future re-
search

In this paper, we proposed a service-oriented architec-
ture for XML schema mapping based on a grid computing
technology in order to enhance the effectiveness of the
semantic similarity analysis. We also implemented a pro-
totype computer system architecture to evaluate the pro-
posed approach. The proposed approach and the proto-
type system can provide efficient and highly extensible
XML schema mapping web services. The existing schema
mapping tools can extend the software functionality to
support automated schema mapping simply by adapting
our web services.

A series of experiments were conducted using actual
industry XML schemas and the complex semantic simi-
larity algorithms. These showed encouraging improve-
ments in performance. A grid computing network imple-
menting MPJ could successfully improve performance by
reducing the computation time of the semantic similarity
between two large-scale XML schemas.

We investigated other two grid computing technolo-
gies: Hadoop and Globus Toolkit. Hadoop is not appro-
priate for the XML schema mapping analysis architecture
based on the layered approach and Globus Toolkit re-
quires a complex environment configuration for Web

1. public GCM(source, target, args) throws MPIException {
2. MPI.Init(args);
3. my_pe = MPI.COMM_WORLD.Rank();
4. npes = MPI.COMM_WORLD.Size();
5. float simMatrix[][] = new float[source][target];
6. if (my_pe == 0) { // Master
7. for (int i = 0; i < source; i++) for (int j = 0; j < target; j++) {
8. int send[] = { i, j };
9. if (k++ < npes) {
10. MPI.COMM_WORLD.Isend(send, 0, send.length, MPI.INT, k%npes, 1);
11. } else {
12. status = MPI.COMM_WORLD.Recv(result, 0, 3, MPI.FLOAT, MPI.ANY_SOURCE,

2);
13. simMatrix[(int) (result[0])][(int) (result[1])] = result[2];
14. MPI.COMM_WORLD.Isend(send, 0, send.length, MPI.INT, status.source, 1);
15. }}
16. } else { // E2E Element
17. status = MPI.COMM_WORLD.Recv(param, 0, 2, MPI.INT, 0,MPI.ANY_TAG);
18. MPI.COMM_WORLD.Isend(result, 0, result.length, MPI.FLOAT, 0, 2); }
19. MPI.Finalize(); }

Services. However, both provide better functionalities for
grid computing such as security, resource/data manage-
ment, communication, and fault detection. This calls for
further examination of grid computing technologies and
for exploring other automated schema mapping ap-
proaches that may be fit to Map/Reduce paradigm of
Hadoop.

The following immediate steps are planned for future
research: 1) extend our experiments using globally estab-
lished grid computing infrastructures such as SURAgrid
[29], TERAGRID [30], and NorduGrid [31], 2) explore
other automated schema mapping approaches that can
apply Map/Reduce paradigm of Hadoop, and 3) investi-
gate the existing schema mapping tools how to integrate
with GridSM-WS. We also plan to conduct similarity
measures for large (n,m) schema element pairs employing
Hadoop on large numbers of processors at the Multicore
Computational Center at UMBC [32] where the order of
n, the number of schema elements is of the order of com-
pute nodes in order to to validate the conclusions for large
data elements and clusters.

These further researches should be investigated first
for more utilization of GridSM-WS tools in real e-
business integration works, but the work discussed in this
paper shows that service-oriented architecture based on
grid computing technology can accomplish XML schema
mapping and integration tasks more efficiently.

Acknowledgements

This work was supported in part by NIST award
60NANB6D6206.

Disclaimer

Certain commercial software products are identified in
this paper. These products were used only for demonstra-
tion purposes. This use does not imply approval or en-
dorsement by NIST, nor does it imply that these products
are necessarily the best available for the purpose.

References

[1] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching”, VLDB Journal, volume 10, issue
4, 2001, pp. 334-350.
[2] J. Kim, Y. Peng, B. Kulvatunyou, N. Ivezik, A. Jones, “A
Layered Approach to Semantic Similarity Analysis of XML
Schemas,” IEEE International Conference on Information Reuse
and Integration, 2008.
[3] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox,
“MPJ: MPI-like message passing for Java,” Concurrency: Pract.
Exper., 12(11):1019–1038, September 2000.
[4] P. Shvaiko and J. Euzenat, “A Survey of Schema-Based
Matching Approaches”, Journal on Data Semantics IV, LNCS
3730, 2005, pp. 146-171

[5] Y. Peng, “On Semantic Similarity Measures”, Technical
Report from Syllogism.Com to NIST, 2006.
[6] Automotive Industry Action Group (AIAG) Website,
http://www.aiag.org
[7] The Open Application Group, “Open Application Group
Integration Specification”, version 8.0. 2002.
[8] Google Web Toolkit,
http://en.wikipedia.org/wiki/Google_Web_Toolkit
[9] Exponential Decay definition from Wikipedia, the free en-
cyclopedia http://en.wikipedia.org/wiki/Exponential_decay
[10] H. H. Do and E. Rahm, “COMA - A System for Flexible
Combination of Schema Matching Approaches”, in Proceedings
of the Very Large Data Bases Conference (VLDB), 2001, pp
610–621.
[11] Jaccard similarity, http://www.dcs.shef.ac.uk/~sam/
stringmetrics.html#jaccard
[12] Cosine similarity, http://www.dcs.shef.ac.uk/~sam/
stringmetrics.html#cosine
[13] Apach Axis2, http://en.wikipedia.org/wiki/Apache_Axis2
[14] D. Yang and D.M.W. Powers, “Measuring Semantic
Similarity in the Taxonomy of WordNet”, in the 28th
Australasian Computer Science Conference (ACSC2005),
Newcastle, Australia, 2005, pp. 315-322.
[15] WordNet, http://wordnet.princeton.edu/
[16] Thang H.Q. and Nam V.S., “XML Schema Automatic
Matching Solution,” International Journal of Computer Systems
Science and Eng., 4 (1):pp. 68-74.
[17] D. Lin, “An Information-Theoretic Definition of
Similarity”, in Proceedings of International Conference on
Machine Learning, Madison, Wisconsin, July, 1998.
[18] P. Resnik, “Using Information Content to Evaluate
Semantic Similarity in a Taxonomy”, in Proceedings of the 14th
International Joint Conference on AI, Montreal, CA, 1995, pp.
448-453.
[19] A. Formica, “Similarity of XML-Schema elements: a
structural and information content approach”, The Computer
Journal, volume 51, issue 2, 2008, pp. 240-254.
[20] English Stopwords List Website, http://www.ranks.
nl/tools/stopwords.html
[21] UN/CEFACT TBG17 Harmonisation workgroup
http://www.uncefactforum.org/TBG/TBG17/tbg17.htm.
[22] Hadoop, http://en.wikipedia.org/wiki/Hadoop
[23] Globus Toolkit, http://www.globus.org/toolkit/
[24] Eclipse, http://en.wikipedia.org/wiki/Eclipse_(software)
[25] Altova XML Schema mapping tool,
http://www.stylusstudio.com/xsd_to_xsd.html
[26] F. Duchateau, Z. Bellahsene, and E. Hunt. XBenchMatch:
a Benchmark for XML Schema Matching Tools. In VLDB,
pages 1318–1321, 2007.
[27] Universal Description Discovery and Integration (UDDI),
http://en.wikipedia.org/wiki/UDDI
[28] SOAP Version 1.2, http://www.w3.org/TR/soap12-part0/
[29] SURAgrid , http://www.sura.org/programs/sura_grid.html
[30] TERAGRID, http://www.teragrid.org/
[31] NorduGrid, http://www.nordugrid.org/
[32] Multicore Computational Center at UMBC,
http://www.mc2.umbc.edu/
[33] HR-XML schema ver 2.5, http://www.hr-xml.org/

