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Abstract: Previously we have proposed a theoretical 

framework, called BayesOWL, to model uncertainty in 

semantic web ontologies based on Bayesian networks. In 

particular, we have developed a set of rules and algo-

rithms to translate an OWL taxonomy into a BN. In this 

paper, we describe our implementation of BayesOWL 

framework together with examples of its use. 
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1 Introduction 

Semantic web as a formalism based on crisp description 

logic is known to be severely limited in representing and 

reasoning with uncertainty of the world it is meant to 

model. Various proposals have been made in the recent 

years to deal with uncertainty in semantic web, especially 

in the ontologies written in semantic web languages such 

as OWL and RDF [2,6]. These include BayesOWL, a 

probabilistic framework we proposed earlier that is aimed 

at automatically translating OWL ontologies to Bayesian 

networks (BNs). The details of this framework and its 

applications to ontology mapping can be found in our 

companion papers [3,4,5]. 

In this paper we focus on a prototype implementation of 

the BayesOWL framework. As can be seen in Figure 1 

below, translation from an OWL ontology to a BN by the 

prototype system is done in two stages. The first stage is 

to construct the BN structure (a directed acyclic graph or 

DAG) from the input OWL ontology file and to initialize 

the conditional probability tables (CPTs) with default 
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values. This is done by Taxonomy Parser (T-Parser for 

short) and BN structure constructor. The second stage is 

to incorporate user provided probabilistic information of 

concepts and inter-concept relations into the BN CPTs. 

This is done by Probability Parser (P-Parser for short) 

and CPT Constructor. 

 
Figure 1.  BayesOWL framework 

 

For the benefit of readers, before presenting the prototype 

implementation, we briefly describe the BayesOWL 

framework in Section 2, especially the rules for structure 

translation and algorithms for incorporating probabilistic 

information into CPTs [3]. The detailed description of the 

prototype system and its implementation is then given in 

Section 3 together with some explanatory examples. Fi-

nally, Section 4 concludes with a summary and evalua-

tion of this work and suggestions for future work. 



 

2 From OWL ontology to Bayesian Net-
works 

BayesOWL [3,4,5] is a framework that augments and 

supplements OWL for representing and reasoning with 

uncertainty based on Bayesian networks. This framework 

provides a set of rules and procedures for automatic trans-

lation of an OWL ontology into a BN structure (a DAG) 

and algorithms that incorporates probabilistic information 

about classes and inter class relations into the BN CPTs. 

The translated BN is shown to preserve  the semantics of 

the original ontology and to be consistent with the prob-

abilistic information; and it can support ontology reason-

ing, both within and across ontologies as Bayesian infer-

ences.  

 

2.1 Structure Translation 

Given an OWL ontology that defines a concept taxonomy, 

BayesOWL uses the following rules to convert it into a 

BN DAG. 

Rule 1: Concept Classes. Each defined concept 

class is mapped into a binary variable node, called con-

cept node, in the translated BN with states “True” or 

“False” denoting whether a randomly selected individual 

belongs to this concept class or not. 

Rule 2: Subclasses. If concept class C has a set of 

most specific super-concept classes Ci, a subnet is created 

in the translated BN with a converging connection from 

each Ci to C (see Figure 2). 

 
Figure 2. Subnet translated from “rdfs:subClassOf(C)” 

Rule 3: Logical Relations. OWL uses five logical 

operators: intersection, union, complement, equivalent, 

and disjoint, to define logical relations between concept 

classes. For such a relation, a logic node (L-node) is cre-

ated in the BN and is connected with the related concept 

nodes. For example, as shown in Figure 3, if concept 

class C is the intersection of concept classes Ci, a subnet 

is formed in the translated BN with one converging con-

nection from each Ci to C, and one converging connection 

from C and each Ci to the logic node “LNodeIntersec-

tion”. Logical relations defined using other logical op-

erators can be similarly translated.  

 
Figure 3. Subnet translated from “owl:intersectionof” 

 

2.2 CPT Construction 

The translated BN structure consists of two types of 

nodes: the logical nodes and the concept nodes. Next we 

describe how to construct CPTs for each of the two types 

of nodes. 

 

2.2.1 CPT for L-Nodes 

CPT for an L-Node can be completely determined by the 

logical relation it represents, that is, when its state is set 

to “True”, the intended logical relation among its parents 

must hold. For example, if C is the intersection of C1 and 

C2, then the L-Node is “True” if and only if  

    1 2 1 2 1 2 1 2c c c c c c c c c c c c∨ ∨ ∨ . 
This can be realized by the CPT shown in Table 1. 

When CPTs of all L-Nodes have been filled, the states for 

L-Nodes are set to “True”, so all logical relations hold. 

Table 1.  CPT for L-Node (intersection) 

Intersection 
C C1 C2 

True False 

True True True 1.0 0.0 

True True False 0.0 1.0 

True False True 0.0 1.0 

True False False 0.0 1.0 

False True True 0.0 1.0 

False True False 1.0 0.0 

False False True 1.0 0.0 

False False False 1.0 0.0 

 

2.2.2 Representing Probabilities in OWL 

In many applications, probabilistic information of con-



cept nodes and inter-concept relations such as prior 

probabilities for individual concepts and pair-wise condi-

tional probabilities for subclass relations may be available 

for the given ontology. We require this information be 

encoded as OWL document. The encoding described in 

this subsection is a generalization of what we have pro-

posed in [3, 5]. In this encoding we treat a probability as a 

kind of resource, and define several OWL classes to en-

code probabilities: 

Class Variable: its instances denote variables 

(nodes) in the translated BN. A variable has a property 

called “hasClass”, pointing to the concept class in the 

original ontology this variable is mapped from. 

Class Proposition: its instances denote variable in-

stantiations. A proposition has two properties: “hasVari-

able” and “haState”, indicating the variable and the state 

the proposition is instantiating. Finally, 

Class Probability: its instances denote individual 

probabilities. A probability has three properties: “hasPro-

position” (cardinality >= 1), “hasCondition” (cardinality 

>= 0) and “hasValue” (cardinality = 1).  

Using these classes we can easily define marginal and 

conditional probabilities without ambiguity. This can be 

seen from the encoding of the conditional probability 
( | , ) 0.5P A True B True C False= = = = ,  

where A, B, C are BN nodes corresponding to the con-

cepts ClassA, ClassB, and ClassC in the original ontol-

ogy. 

 

 

2.2.3 CPT for Concept Nodes 

Let 
Cπ  be the set of all parent nodes of the concept node 

C. From the structure translation rules, all nodes in 
Cπ  

are super-classes of C. Therefore, each entry in ( | )CP C π , 
the CPT of C, must have value zero if any of its parents is 
“False” for that entry. The only other entry in the table is 
the one in which all parents are “True”. It is the probabil-
ity distribution of this entry that needs to be determined. 
If no probabilistic information is available, then CPT for 
each concept node is set for its default values. Among a 
number of alternatives, BayesOWL chooses the equal 
probability for the default. This can be seen from CPT for 
concept node C with parents A and B in Table 2 below.  

 
Table 2. Default CPT for concept node C  

with parents A and B. 

C 
A B 

True False 

True True 0.5 0.5 

True False 0.0 1.0 

False True 0.0 1.0 

False False 0.0 1.0 

 
When probabilistic information is available, this informa-
tion needs to be incorporated into the CPTs of the con-
cept nodes.  For this purpose we have developed several 
algorithms [8], all based on a mathematical procedure 
known as iterative proportional fitting procedure (IPFP) 
[1,7,12]. These algorithms take the probabilistic informa-
tion as constraints and iteratively modify the joint distri-
butions of all variables, using the constraints one at a 
time, until a convergence is reached in which all the con-
straints are satisfied by the resulting joint distribution.  
The most widely available constraints for ontologies are 
those of marginals for individual concepts (P(c)) and 
pair-wise conditionals of subclass relations (P(c|a)). Note 
that each of these constraints involves variables within 

<owl:Variable rdf:ID="A"> 

 <hasClass>ClassA</hasClass> 

</owl:Variable> 
<owl:Variable rdf:ID="B"> 

 <hasClass>ClassB</hasClass> 

</owl:Variable> 
<owl:Variable rdf:ID="C"> 

 <hasClass>ClassC</hasClass> 

</owl:Variable> 
<owl:Proposition rdf:ID="a1"> 

 <hasVariable>A</hasVariable> 

 <hasState>True</hasState> 
</owl:Proposition> 

<owl:Proposition rdf:ID="b1"> 

 <hasVariable>B</hasVariable> 
 <hasState>True</hasState> 

</owl:Proposition> 

<owl:Proposition rdf:ID="c0"> 
 <hasVariable>C</hasVariable> 

 <hasState>False</hasState> 

</owl:Proposition> 
<owl:Probability rdf:ID="P(a1|b1,c0)"> 

 <hasproposition>a1</hasproposition>

 <hasCondition>b1</hasCondition> 
 <hasCondition>c0</hasCondition> 

 <hasValue>0.5</hasValue> 

</owl:Probability> 



one CPT, and these constraints can be efficiently incor-
porated by one of our algorithms called D-IPFP, where D 
stands for decomposed. At each iteration, instead of 
modifying the joint distribution as general IPFP does, 
D-IPFP takes one constraint and only modifies one CPT 
which contains the variables of that constraint. The algo-
rithm D-IPFP does as follows: 
D-IPFP starts with initial joint distribution of translated 
BN, which is the product of CPTs of all concept nodes:   

(0) ( ) ( | );init Xi X init i iQ P X P X π∈= = Π  
It then iterates over all constraints ( | )i iR x L  and com-
putes 

( ) ( 1)

( 1)

( | )
( | ) ( );

( | , )i i

i i
k i x k x

k i i

R x L
Q x

Q x L LT
π α π−

−

⋅ ⋅  

where ix  is a concept node, iL  is the set of zero or 
more parents of ix , 

( ) ( | )
ik i xQ x π is the CPT that gets 

modified by constraint ( | )i iR x L , LT denotes that all 
L-Nodes’ states are set to be “True”, and 

( 1) ( )
ik xα π−

 is 
the normalization factor which can be calculated by 

( 1 )

( 1 ) ( 1 )
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3 BayesOWL Prototype System 

Our prototype implementation of BayesOWL is written in 

Java. It takes two inputs: (1) an OWL file that defines the 

ontology that is to be translated into a BN; and (2) an 

OWL file of the probabilistic information of concepts and 

inter-concept relations encoded in the way as described in 

Subsection 2.2.2. Note that the current implementation 

only translates the terminological taxonomy of the given 

ontology into a BN, and the probabilistic information is 

restricted to only those of marginals for individual con-

cepts and pair-wise conditionals for subclass relations. 

The translated BN is written in the format of Netica, a 

Bayesian network development software system from 

Norsys Software Corporation [17]. 

 

3.1 System Architecture 

BayesOWL prototype system contains a series of APIs, a 

graphical user interface (GUI) and related documenta-

tions. The system architecture of BayesOWL is shown in 

Figure 4. 

 

Figure 4. BayesOWL system architecture 

In the implementation, Jena API is used in T-Parser to 

parse OWL ontology file. Jena is an open source Java 

framework for semantic web applications. It is grown out 

of work of the HP Labs Semantic Web Program and pro-

vides OWL APIs (see [16] for details). T-Parser outputs 

the list of all concept nodes, one for each concept class 

defined in the ontology file, together with defined su-

per-classes for each concept. It also creates L-Nodes, one 

for each defined logical relation.  

The BN Constructor takes the output from T-Parser and 

translates the nodes into the BN structure (the DAG) ac-

cording to the structure translation rules given in Section 

2.1. It also initializes the CPTs for all nodes as described 

in Subsections 2.2.1 (for L-Nodes) and 2.2.3 (for concept 

nodes). 

Component P-Parser is built to parse probability files and 

extract the encoded probabilities into a specific format. 

These probabilities are then taken by CPT Constructor as 

input constraints for D-IPFP algorithm to modify the 

CPTs of the concept nodes. 

 

3.2 BayesOWL API 

Figure 5 shows BayesOWL APIs, which are contained in 

several Java packages. The package “commonDefine” 

contains classes defining data structure such as joint 

probability table etc. The package “commonMethod” 

contains a list of operations for the defined data struc-

tures. IPFP based algorithms are packed in the package 

“coreAlgorithms”. Both T-Parser and P-Parser are de-

fined in package “parser”. The package “constructor” 

consists of BN structure constructor and CPT constructor. 

Finally, the package “GUI” implements the system’s 



Graphical User Interface. All of these packages work to-

gether to complete the Ontology-to-BN translation. Each 

of these packages can also be used separately. 

 

 
Figure 5. BayesOWL API 

 

3.3 BayesOWL GUI 

The system GUI is given in Figure 6. The layout is di-

vided into several areas:  

• File input area, which is used to input OWL ontol-

ogy files and probability files; 

• Options area, which is designed for optional opera-

tions such as requesting Netica license for large BN, 

the location the result BN is to be saved, and if you 

want to open and view the result BN when it is gen-

erated; 

• Log area, which is built for showing the running 

status; 

• Result BN area, which shows the translated BN in a 

tree structure; and 

• Node detail area, which gives node details, including 

its prior beliefs and its parents, when a node is se-

lected in result BN area. 

The BayesOWL GUI is executable. After the input on-

tology and probability files are specified, the “start” but-

ton starts the translation, the result BN will be generated 

and saved, and the network structure is shown in the 

translation result area. 

 

3.4 Examples 

We demonstrate the validity of our approach and the 
implementation by a simple example ontology called 
“nature”, taken from [5]. This ontology defines the 
following six concept classes and several logical rela-
tions among these concepts: 
 

 

Figure 6. GUI of BayesOWL 

 

• “Animal” is a primitive concept class; 
• “Male”, “Female” and “Human” are subclasses of 

“Animal”; 
• “Man” and “Woman” are two subclasses of “Hu-

man”; 
• “Male” and “Female” are disjoint with each other; 
• “Man” is an intersection of “Human” and “Male”; 
• “Woman” is an intersection of “Human” and “Fe-

male”; 
• “Human” is the union of “Man” and “Woman”. 

Figure 7 gives the BN structure translated from this on-

tology. It contains six concept nodes, one per each con-

cept class, together with directed links for the defined 

subclass relations. The BN also contains four L-Nodes 

for the four defined logical relations, together with the 

proper links as dictated by the structure translation rules 

for these logical relations. All nodes’ CPTs are initialized 

using rules discussed in Subsections 2.2.1 and 2.2.3. 

 
Figure 7. Translated BN structure from the “nature” ontology 

 



Figure 8 shows the final BN after CPTs are modified by 

the following probabilistic constraints: 

• P(Animal) = 0.5 

• P(Male|Animal) = 0.5 

• P(Female|Animal) = 0.48 

• P(Human|Animal) = 0.1 

• P(Man|Human) = 0.49 

• P(Woman|Human) = 0.51 

 

Figure 8. Translated BN of the “nature” ontology 

The final CPTs for the six concept nodes are given in 

Figure 9 below. 

 

Figure 9. Final CPTs of BN for “nature” ontology 

 

In Figure 8 we can see that all L-Nodes are set to “True”, 

and that, when “Animal” is set to “True”, probabilities of 

“Male”, “Female” and “Human” are all consistent with 

the given probabilistic constraints.  

We have also experimented BayesOWL with several large 

ontologies. One example is the ontology “SWRC.owl” 

for modeling entities of research communities [11]. The 

result BN for SWRC.owl contains 125 variables, includ-

ing 70 mapped from concept classes and 55 L-Nodes. 

3.5 Applications 

The translated BN can support common ontological rea-

soning tasks as probabilistic inferences in the subspace of 

LT (i.e., all L-Nodes are set to “True”). One of such tasks 

is Concept Satisfiability: deciding whether a concept class 

represented by a description x is null. This can be done by 
calculating if ( | ) 0.P e LT =  Another task is Concept 

Overlapping: deciding if and to what extent a description x 

overlaps with a concept C. This can be measured 
by ( | , )P c x LT , which can be computed by applying gen-

eral BN belief update algorithms. 

Another reasoning task with wide applications is to find 

the concept C defined in an ontology that is semantically 

most similar to a description x. Without the probabilistic 

extension, this task is often accomplished by finding the 

most specific subsumer of x. With BayesOWL, this can 

be done by finding the concept with the maximum simi-

larity score in some similarity measure such as Jaccard 

coefficient 
( , ) ( | ) / ( | )J c x P c x CT P c x CT= ∧ ∨ . 

For example, let x Male Animal= ¬ ∧ in our “nature” 

ontology. The most specific subsumer found by the se-

mantic web reasoner Racer is “Animal”. But using Baye-

sOWL the most similar concept is “Female” with J(x, 

Female) = 0.9593, which is certainly a more reasonable 

answer than “Animal”. 

BayesOWL also supports reasoning for uncertainty de-

scriptions. Continuing our example, suppose now x is 

described as belonging to class “Male” with probability 

0.1 and to “Animal” with probability 0.7. Then J(c, x) 

can be computed by inputting these probabilities as vi r-

tual evidence to the BN [9]. Class “Female” remains the 

most similar concept to x, but its similarity score J(x, 

Female) now decreases to 0.5753. 

 

4 Conclusions and Future Work 

In this paper, we described a prototype implementation 

for BayesOWL, a probabilistic framework for uncertainty 

in semantic web ontologies based on Bayesian networks. 

The implementation contains a series of APIs, including 

algorithms for structure translation of an OWL termino-

logical taxonomy to a BN DAG and for incorporating 

probabilistic constraints into the BN CPTs. A graphical 

user interface is also implemented for facilitating the 



execution of the system. Experiments show the system 

runs well on OWL taxonomies of different size. 

As a software tool, the BayesOWL system can be used by 

researchers and practitioners on ontology engineering 

such as domain modeling, ontology reasoning and ontol-

ogy concept mapping [8]. 

Further research is required along several directions. One 

is to extend the theoretical framework from taxonomies to 

full OWL ontologies that include properties and data 

types. Another is to deal with probabilistic constraints 

that are inconsistent with each other, a situation often 

occurring with real applications. Several proposals have 

been made to modify a joint distribution with inconsistent 

constraints [12,13], including our own [14]. It is our plan 

to adopt some of these methods into the CPT constructor 

in the next release of BayesOWL. Finally, it is desirable 

to automatically learn the probabilistic constraints from 

existing resources such as the relevant websites and/or 

text corpora when such constraints are not available from 

the domain experts or the ontology designers. 
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