
BayesOWL: A Prototype System for Uncertainty in Semantic Web

Shenyong Zhang1,2, Yi Sun2, Yun Peng2, Xiaopu Wang1

1Department of Astronomy and Applied Physics
University of Science and Technology of China, Hefei, Anhui 230026

2Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County, Baltimore, MD 21250

{syzhang, yisun1, ypeng}@umbc.edu, wxp@ustc.edu.cn

Abstract: Previously we have proposed a theoretical

framework, called BayesOWL, to model uncertainty in

semantic web ontologies based on Bayesian networks. In

particular, we have developed a set of rules and algo-

rithms to translate an OWL taxonomy into a BN. In this

paper, we describe our implementation of BayesOWL

framework together with examples of its use.

Keywords: semantic web, ontology, Bayesian networks,

uncertainty reasoning, iterative proportional fitting pro-

cedure

1 Introduction

Semantic web as a formalism based on crisp description

logic is known to be severely limited in representing and

reasoning with uncertainty of the world it is meant to

model. Various proposals have been made in the recent

years to deal with uncertainty in semantic web, especially

in the ontologies written in semantic web languages such

as OWL and RDF [2,6]. These include BayesOWL, a

probabilistic framework we proposed earlier that is aimed

at automatically translating OWL ontologies to Bayesian

networks (BNs). The details of this framework and its

applications to ontology mapping can be found in our

companion papers [3,4,5].

In this paper we focus on a prototype implementation of

the BayesOWL framework. As can be seen in Figure 1

below, translation from an OWL ontology to a BN by the

prototype system is done in two stages. The first stage is

to construct the BN structure (a directed acyclic graph or

DAG) from the input OWL ontology file and to initialize

the conditional probability tables (CPTs) with default

* This work was supported in part by NIST award
60NANB6D6206 and the China Scholarship Council (CSC).

values. This is done by Taxonomy Parser (T-Parser for

short) and BN structure constructor. The second stage is

to incorporate user provided probabilistic information of

concepts and inter-concept relations into the BN CPTs.

This is done by Probability Parser (P-Parser for short)

and CPT Constructor.

Figure 1. BayesOWL framework

For the benefit of readers, before presenting the prototype

implementation, we briefly describe the BayesOWL

framework in Section 2, especially the rules for structure

translation and algorithms for incorporating probabilistic

information into CPTs [3]. The detailed description of the

prototype system and its implementation is then given in

Section 3 together with some explanatory examples. Fi-

nally, Section 4 concludes with a summary and evalua-

tion of this work and suggestions for future work.

2 From OWL ontology to Bayesian Net-
works

BayesOWL [3,4,5] is a framework that augments and

supplements OWL for representing and reasoning with

uncertainty based on Bayesian networks. This framework

provides a set of rules and procedures for automatic trans-

lation of an OWL ontology into a BN structure (a DAG)

and algorithms that incorporates probabilistic information

about classes and inter class relations into the BN CPTs.

The translated BN is shown to preserve the semantics of

the original ontology and to be consistent with the prob-

abilistic information; and it can support ontology reason-

ing, both within and across ontologies as Bayesian infer-

ences.

2.1 Structure Translation

Given an OWL ontology that defines a concept taxonomy,

BayesOWL uses the following rules to convert it into a

BN DAG.

Rule 1: Concept Classes. Each defined concept

class is mapped into a binary variable node, called con-

cept node, in the translated BN with states “True” or

“False” denoting whether a randomly selected individual

belongs to this concept class or not.

Rule 2: Subclasses. If concept class C has a set of

most specific super-concept classes Ci, a subnet is created

in the translated BN with a converging connection from

each Ci to C (see Figure 2).

Figure 2. Subnet translated from “rdfs:subClassOf(C)”

Rule 3: Logical Relations. OWL uses five logical

operators: intersection, union, complement, equivalent,

and disjoint, to define logical relations between concept

classes. For such a relation, a logic node (L-node) is cre-

ated in the BN and is connected with the related concept

nodes. For example, as shown in Figure 3, if concept

class C is the intersection of concept classes Ci, a subnet

is formed in the translated BN with one converging con-

nection from each Ci to C, and one converging connection

from C and each Ci to the logic node “LNodeIntersec-

tion”. Logical relations defined using other logical op-

erators can be similarly translated.

Figure 3. Subnet translated from “owl:intersectionof”

2.2 CPT Construction

The translated BN structure consists of two types of

nodes: the logical nodes and the concept nodes. Next we

describe how to construct CPTs for each of the two types

of nodes.

2.2.1 CPT for L-Nodes

CPT for an L-Node can be completely determined by the

logical relation it represents, that is, when its state is set

to “True”, the intended logical relation among its parents

must hold. For example, if C is the intersection of C1 and

C2, then the L-Node is “True” if and only if

 1 2 1 2 1 2 1 2c c c c c c c c c c c c∨ ∨ ∨ .
This can be realized by the CPT shown in Table 1.

When CPTs of all L-Nodes have been filled, the states for

L-Nodes are set to “True”, so all logical relations hold.

Table 1. CPT for L-Node (intersection)

Intersection
C C1 C2

True False

True True True 1.0 0.0

True True False 0.0 1.0

True False True 0.0 1.0

True False False 0.0 1.0

False True True 0.0 1.0

False True False 1.0 0.0

False False True 1.0 0.0

False False False 1.0 0.0

2.2.2 Representing Probabilities in OWL

In many applications, probabilistic information of con-

cept nodes and inter-concept relations such as prior

probabilities for individual concepts and pair-wise condi-

tional probabilities for subclass relations may be available

for the given ontology. We require this information be

encoded as OWL document. The encoding described in

this subsection is a generalization of what we have pro-

posed in [3, 5]. In this encoding we treat a probability as a

kind of resource, and define several OWL classes to en-

code probabilities:

Class Variable: its instances denote variables

(nodes) in the translated BN. A variable has a property

called “hasClass”, pointing to the concept class in the

original ontology this variable is mapped from.

Class Proposition: its instances denote variable in-

stantiations. A proposition has two properties: “hasVari-

able” and “haState”, indicating the variable and the state

the proposition is instantiating. Finally,

Class Probability: its instances denote individual

probabilities. A probability has three properties: “hasPro-

position” (cardinality >= 1), “hasCondition” (cardinality

>= 0) and “hasValue” (cardinality = 1).

Using these classes we can easily define marginal and

conditional probabilities without ambiguity. This can be

seen from the encoding of the conditional probability
(| ,) 0.5P A True B True C False= = = = ,

where A, B, C are BN nodes corresponding to the con-

cepts ClassA, ClassB, and ClassC in the original ontol-

ogy.

2.2.3 CPT for Concept Nodes

Let
Cπ be the set of all parent nodes of the concept node

C. From the structure translation rules, all nodes in
Cπ

are super-classes of C. Therefore, each entry in (|)CP C π ,
the CPT of C, must have value zero if any of its parents is
“False” for that entry. The only other entry in the table is
the one in which all parents are “True”. It is the probabil-
ity distribution of this entry that needs to be determined.
If no probabilistic information is available, then CPT for
each concept node is set for its default values. Among a
number of alternatives, BayesOWL chooses the equal
probability for the default. This can be seen from CPT for
concept node C with parents A and B in Table 2 below.

Table 2. Default CPT for concept node C

with parents A and B.

C
A B

True False

True True 0.5 0.5

True False 0.0 1.0

False True 0.0 1.0

False False 0.0 1.0

When probabilistic information is available, this informa-
tion needs to be incorporated into the CPTs of the con-
cept nodes. For this purpose we have developed several
algorithms [8], all based on a mathematical procedure
known as iterative proportional fitting procedure (IPFP)
[1,7,12]. These algorithms take the probabilistic informa-
tion as constraints and iteratively modify the joint distri-
butions of all variables, using the constraints one at a
time, until a convergence is reached in which all the con-
straints are satisfied by the resulting joint distribution.
The most widely available constraints for ontologies are
those of marginals for individual concepts (P(c)) and
pair-wise conditionals of subclass relations (P(c|a)). Note
that each of these constraints involves variables within

<owl:Variable rdf:ID="A">

 <hasClass>ClassA</hasClass>

</owl:Variable>
<owl:Variable rdf:ID="B">

 <hasClass>ClassB</hasClass>

</owl:Variable>
<owl:Variable rdf:ID="C">

 <hasClass>ClassC</hasClass>

</owl:Variable>
<owl:Proposition rdf:ID="a1">

 <hasVariable>A</hasVariable>

 <hasState>True</hasState>
</owl:Proposition>

<owl:Proposition rdf:ID="b1">

 <hasVariable>B</hasVariable>
 <hasState>True</hasState>

</owl:Proposition>

<owl:Proposition rdf:ID="c0">
 <hasVariable>C</hasVariable>

 <hasState>False</hasState>

</owl:Proposition>
<owl:Probability rdf:ID="P(a1|b1,c0)">

 <hasproposition>a1</hasproposition>

 <hasCondition>b1</hasCondition>
 <hasCondition>c0</hasCondition>

 <hasValue>0.5</hasValue>

</owl:Probability>

one CPT, and these constraints can be efficiently incor-
porated by one of our algorithms called D-IPFP, where D
stands for decomposed. At each iteration, instead of
modifying the joint distribution as general IPFP does,
D-IPFP takes one constraint and only modifies one CPT
which contains the variables of that constraint. The algo-
rithm D-IPFP does as follows:
D-IPFP starts with initial joint distribution of translated
BN, which is the product of CPTs of all concept nodes:

(0) () (|);init Xi X init i iQ P X P X π∈= = Π
It then iterates over all constraints (|)i iR x L and com-
putes

() (1)

(1)

(|)
(|) ();

(| ,)i i

i i
k i x k x

k i i

R x L
Q x

Q x L LT
π α π−

−

⋅ ⋅

where ix is a concept node, iL is the set of zero or
more parents of ix ,

() (|)
ik i xQ x π is the CPT that gets

modified by constraint (|)i iR x L , LT denotes that all
L-Nodes’ states are set to be “True”, and

(1) ()
ik xα π−

 is
the normalization factor which can be calculated by

(1)

(1) (1)

1
()

(|) (|) / (| ,)
.

i

i

k x

k i V i i k i i
ix
Q x R x L Q x L LT

α π
π

−

− −

=
⋅Σ

3 BayesOWL Prototype System

Our prototype implementation of BayesOWL is written in

Java. It takes two inputs: (1) an OWL file that defines the

ontology that is to be translated into a BN; and (2) an

OWL file of the probabilistic information of concepts and

inter-concept relations encoded in the way as described in

Subsection 2.2.2. Note that the current implementation

only translates the terminological taxonomy of the given

ontology into a BN, and the probabilistic information is

restricted to only those of marginals for individual con-

cepts and pair-wise conditionals for subclass relations.

The translated BN is written in the format of Netica, a

Bayesian network development software system from

Norsys Software Corporation [17].

3.1 System Architecture

BayesOWL prototype system contains a series of APIs, a

graphical user interface (GUI) and related documenta-

tions. The system architecture of BayesOWL is shown in

Figure 4.

Figure 4. BayesOWL system architecture

In the implementation, Jena API is used in T-Parser to

parse OWL ontology file. Jena is an open source Java

framework for semantic web applications. It is grown out

of work of the HP Labs Semantic Web Program and pro-

vides OWL APIs (see [16] for details). T-Parser outputs

the list of all concept nodes, one for each concept class

defined in the ontology file, together with defined su-

per-classes for each concept. It also creates L-Nodes, one

for each defined logical relation.

The BN Constructor takes the output from T-Parser and

translates the nodes into the BN structure (the DAG) ac-

cording to the structure translation rules given in Section

2.1. It also initializes the CPTs for all nodes as described

in Subsections 2.2.1 (for L-Nodes) and 2.2.3 (for concept

nodes).

Component P-Parser is built to parse probability files and

extract the encoded probabilities into a specific format.

These probabilities are then taken by CPT Constructor as

input constraints for D-IPFP algorithm to modify the

CPTs of the concept nodes.

3.2 BayesOWL API

Figure 5 shows BayesOWL APIs, which are contained in

several Java packages. The package “commonDefine”

contains classes defining data structure such as joint

probability table etc. The package “commonMethod”

contains a list of operations for the defined data struc-

tures. IPFP based algorithms are packed in the package

“coreAlgorithms”. Both T-Parser and P-Parser are de-

fined in package “parser”. The package “constructor”

consists of BN structure constructor and CPT constructor.

Finally, the package “GUI” implements the system’s

Graphical User Interface. All of these packages work to-

gether to complete the Ontology-to-BN translation. Each

of these packages can also be used separately.

Figure 5. BayesOWL API

3.3 BayesOWL GUI

The system GUI is given in Figure 6. The layout is di-

vided into several areas:

• File input area, which is used to input OWL ontol-

ogy files and probability files;

• Options area, which is designed for optional opera-

tions such as requesting Netica license for large BN,

the location the result BN is to be saved, and if you

want to open and view the result BN when it is gen-

erated;

• Log area, which is built for showing the running

status;

• Result BN area, which shows the translated BN in a

tree structure; and

• Node detail area, which gives node details, including

its prior beliefs and its parents, when a node is se-

lected in result BN area.

The BayesOWL GUI is executable. After the input on-

tology and probability files are specified, the “start” but-

ton starts the translation, the result BN will be generated

and saved, and the network structure is shown in the

translation result area.

3.4 Examples

We demonstrate the validity of our approach and the
implementation by a simple example ontology called
“nature”, taken from [5]. This ontology defines the
following six concept classes and several logical rela-
tions among these concepts:

Figure 6. GUI of BayesOWL

• “Animal” is a primitive concept class;
• “Male”, “Female” and “Human” are subclasses of

“Animal”;
• “Man” and “Woman” are two subclasses of “Hu-

man”;
• “Male” and “Female” are disjoint with each other;
• “Man” is an intersection of “Human” and “Male”;
• “Woman” is an intersection of “Human” and “Fe-

male”;
• “Human” is the union of “Man” and “Woman”.

Figure 7 gives the BN structure translated from this on-

tology. It contains six concept nodes, one per each con-

cept class, together with directed links for the defined

subclass relations. The BN also contains four L-Nodes

for the four defined logical relations, together with the

proper links as dictated by the structure translation rules

for these logical relations. All nodes’ CPTs are initialized

using rules discussed in Subsections 2.2.1 and 2.2.3.

Figure 7. Translated BN structure from the “nature” ontology

Figure 8 shows the final BN after CPTs are modified by

the following probabilistic constraints:

• P(Animal) = 0.5

• P(Male|Animal) = 0.5

• P(Female|Animal) = 0.48

• P(Human|Animal) = 0.1

• P(Man|Human) = 0.49

• P(Woman|Human) = 0.51

Figure 8. Translated BN of the “nature” ontology

The final CPTs for the six concept nodes are given in

Figure 9 below.

Figure 9. Final CPTs of BN for “nature” ontology

In Figure 8 we can see that all L-Nodes are set to “True”,

and that, when “Animal” is set to “True”, probabilities of

“Male”, “Female” and “Human” are all consistent with

the given probabilistic constraints.

We have also experimented BayesOWL with several large

ontologies. One example is the ontology “SWRC.owl”

for modeling entities of research communities [11]. The

result BN for SWRC.owl contains 125 variables, includ-

ing 70 mapped from concept classes and 55 L-Nodes.

3.5 Applications

The translated BN can support common ontological rea-

soning tasks as probabilistic inferences in the subspace of

LT (i.e., all L-Nodes are set to “True”). One of such tasks

is Concept Satisfiability: deciding whether a concept class

represented by a description x is null. This can be done by
calculating if (|) 0.P e LT = Another task is Concept

Overlapping: deciding if and to what extent a description x

overlaps with a concept C. This can be measured
by (| ,)P c x LT , which can be computed by applying gen-

eral BN belief update algorithms.

Another reasoning task with wide applications is to find

the concept C defined in an ontology that is semantically

most similar to a description x. Without the probabilistic

extension, this task is often accomplished by finding the

most specific subsumer of x. With BayesOWL, this can

be done by finding the concept with the maximum simi-

larity score in some similarity measure such as Jaccard

coefficient
(,) (|) / (|)J c x P c x CT P c x CT= ∧ ∨ .

For example, let x Male Animal= ¬ ∧ in our “nature”

ontology. The most specific subsumer found by the se-

mantic web reasoner Racer is “Animal”. But using Baye-

sOWL the most similar concept is “Female” with J(x,

Female) = 0.9593, which is certainly a more reasonable

answer than “Animal”.

BayesOWL also supports reasoning for uncertainty de-

scriptions. Continuing our example, suppose now x is

described as belonging to class “Male” with probability

0.1 and to “Animal” with probability 0.7. Then J(c, x)

can be computed by inputting these probabilities as vi r-

tual evidence to the BN [9]. Class “Female” remains the

most similar concept to x, but its similarity score J(x,

Female) now decreases to 0.5753.

4 Conclusions and Future Work

In this paper, we described a prototype implementation

for BayesOWL, a probabilistic framework for uncertainty

in semantic web ontologies based on Bayesian networks.

The implementation contains a series of APIs, including

algorithms for structure translation of an OWL termino-

logical taxonomy to a BN DAG and for incorporating

probabilistic constraints into the BN CPTs. A graphical

user interface is also implemented for facilitating the

execution of the system. Experiments show the system

runs well on OWL taxonomies of different size.

As a software tool, the BayesOWL system can be used by

researchers and practitioners on ontology engineering

such as domain modeling, ontology reasoning and ontol-

ogy concept mapping [8].

Further research is required along several directions. One

is to extend the theoretical framework from taxonomies to

full OWL ontologies that include properties and data

types. Another is to deal with probabilistic constraints

that are inconsistent with each other, a situation often

occurring with real applications. Several proposals have

been made to modify a joint distribution with inconsistent

constraints [12,13], including our own [14]. It is our plan

to adopt some of these methods into the CPT constructor

in the next release of BayesOWL. Finally, it is desirable

to automatically learn the probabilistic constraints from

existing resources such as the relevant websites and/or

text corpora when such constraints are not available from

the domain experts or the ontology designers.

5 References

[1] Csiszar, I., "I-divergence Geometry of Probability
Distributions and Minimization Problems", The An-
nuals of Probability, 3(1): 146-158, 1975.

[2] Costa, P., Laskey, K. B., and Laskey, K. J.,
"PR-OWL: A Bayesian ontology language for the
semantic web", in Proceedings of Workshop on Un-
certainty Reasoning for the Semantic Web (URSW)
at the 4th International Semantic Web Conference
(ISWC), Galway, Ireland, November 2005.

[3] Ding, Z., Peng, Y., "A Probabilistic Extension to
Ontology Language OWL", In Proceedings of the
37th Hawaii International Conference on System Sci-
ences, Big Island, HI, 2004.

[4] Ding, Z., Peng, Y., Pan, R., "A Bayesian Approach
to Uncertainty Modeling in OWL Ontology", In
Proceedings of 2004 International Conference on
Advances in Intelligent Systems - Theory and Appli-
cations (AISTA), Luxembourg-Kirchberg, Luxem-
bourg, 2004.

[5] Ding, Z., Peng, Y. and Pan, R., "BayesOWL: Un-
certainty Modeling in Semantic Web Ontologies", in

Soft Computing in Ontologies and Semantic Web,
Springer-Verlag, March 2006.

[6] Fukushige, Y., "Representing Probabilistic Knowl-
edge in the Semantic Web", Position paper for the
W3C Workshop on Semantic Web for Life Sciences,
Cambridge, MA, USA, October 2004.

[7] Kruithof, R., Telefoonverkeersrekening, De In-
genieur 52, E15-E25, 1937.

[8] Pan, R., Ding, Z., Yu, Y. and Peng, Y., "A Bayesian
Network Approach to Ontology Mapping", in Pro-
ceedings of the Fourth International Semantic Web
Conference (ISWC2005), Galway, Ireland, Novem-
ber 6-10, 2005.

[9] Pearl, J., "Jeffery’s Rule, Passage of Experience,
and Neo-Bayesianism", In Knowledge Representa-
tion and Defeasible Reasoning, H.E. Kyburg Jr. et al
(eds), 245-265, Kluwer Academic Publishers, 1990.

[10] Peng, Y. and Ding, Z., "Modifying Bayesian Net-
works by Probability Constraints", in Proceedings
of 21st Conference on Uncertainty in Artificial Intel-
ligence (UAI-2005), Edinburgh, Scotland, July
26-29, 2005.

[11] Sure, Y., et. al, "The SWRC Ontology - Semantic
Web for Research Communities", In Proceedings of
the 12th Portuguese Conference on Artificial Intelli-
gence (EPIA 2005), Springer, Covilha, Portugal,
December 2005.

[12] Vomlel, J., "Methods of Probabilistic Knowledge
Integration", PhD thesis, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical
University, 1999.

[13] Vomlel, J., "Integrating Inconsistent Data in a Prob-
abilistic Model", Journal of Applied NonClassical
Logics , pp. 1-20, 2003.

[14] Zhang, S. and Peng, Y., "An Efficient Method for
Probabilistic Knowledge Integration", in Proceed-
ings of the 20th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI-2008),
Dayton, Ohio, Nov. 3-5, 2008.

[15] http://www.w3.org/2004/OWL

[16] http://jena.sourceforge.net/

[17] http://www.norsys.com/

[18] http://ontoware.org/projects/swrc/

