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Abstract 

This research is motivated by the need t o support inference 
across multiple intelligence systems involving uncertainty. 
Our objective is to develop a theoretical framework and related 
inference methods to map semantically similar variables be-
tween separate Bayesian networks in a principled way. T he 
work is to be conducted in two steps. In the first step, we 
investigate the problem of formalizing the mapping between 
variables in two separate BNs with different semantics and 
distributions as pair-wise linkages. In the second step, we aim 
to justify the mapping between networks as a set of selected 
variable linkages, and then conduct inference along it.  

 
At present, a Bayesian network (BN) is used primarily as a 
standalone system . When the problem scope is large, a large 
network slows down inference process and is difficult to 
review or revise. When the problem itself is distributed, 
domain knowledge and evidence has to be centralized and 
unified before a single BN can be created for the problem. 
Alternatively, separate BNs describing related subdomains 
or different aspects of the same domain may be created, but it 
is difficult to combine them for problem solving –– even if the 
interdependency relations are available. This issue has been 
investigated in  several works, including most notably Mul-
tiply Sectioned Bayesian Network (MSBN) by Xiang (Xiang 
2002) and Agent Encapsulated Bayesian Network (AEBN) by 
Valtorta et al. (Valtorta et al, 2002). However, their results are  
still restricted in scalability, consistency and expressiveness. 
MSBN’s pair-wise variable linkages are between identical 
variables with the same distributions, and, to ensure con-
sistency, only one side of the linkage has a complete CPT. 
AEBN also requires a connection between identical variables, 
but allows these variables with different distributions. Here, 
identical variables are the same variables deployed into 
different BNs. 
 In this paper, we propose a framework that supports in-
ference across  BNs through mappings between semantically 
similar variables. 

Formalization of BN mapping  
We modeled BN mapping as  a set of four-layered concepts. 
The first layer is  called pair-wise probabilistic relations, 
which use joint probabilities to represent the dependency 
between the two variables, which have similar but not nec-
essarily identical semantics and are in two BN. In this 

framework we assume these joint probabilities are available. 
Then pair-wise variable linkages, the second layer concept, 
are created from these probabilistic relations to provide 
channels for propagating probabilistic influences between 
the variables across the two BN. The third layer is called 
valid BN mapping, a selected subset of all available linkages  
that ensures the consistency of mapped ne tworks. The 
fourth layer, Minimum valid BN mapping, is obtained by 
mapping reduction , a process that min imizes the set of 
linkages while maintain ing the consistency.  
 

 
Figure 1. A Variable Linkage 

 
A variable linkage start s from one variable (source variable) 

and ends at another variable (destination variable) in a dif-
ferent BN. The purpose of building lin kages between vari-
ables in different Bayesian networks is to propagate the 
probability influences from one network to the other. Sup-
pose variable A in BNA and variable B in BNB represent two 
identical concepts. An o bservation of A (and hence B since A 
and B are identical) is made in BNA as P (A). This observed 
distribution of variable B can then be used as soft evidence 
(denoted se) to update the distributions of BNB (see Valtorta, 
Kim, and Vomlel 2002) using P(B|se) = P(A). All other vari-
ables VB in BNB are then updated by Jeffery’s rule (Pearl 
1990): 
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If A and B are similar but not identical, the similarity be-
tween them can be represented by a probabilistic relation 
(e.g., joint distribution of A and B). However, in general the 
probabilistic relation is described in a probability space S s 
which is different from SA and SB, the spaces for BNA and BNB, 
respectively . As depicted in Figure 1 , A’ and B’ in Ss rep-
resent the same concept as A in SA and B in SB and. Then we 
can propagate soft evidence P(A’|se) = P(A) from SA to  SB  

Comment: What does consistency 
mean here? 



through conditional probability established in SA, and update 
the belief on B as  
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All other variables in BNB are updated using equation (1). 
This lead us to define a linkage from A in SA and B in SB as: 

< A, B, BNA, BNB, Rel(A, B)> 
where Rel(A, B ) is a probability relation between A and B 
established in some other space.  We say such a linkage is 
the mapping between from A to B. 

Mapping reduction and Inference  
A pair-wise linkage provides a channel to propagate belief 
from A in one BN to influence the belief of B in another BN. 
When the propagate is completed, (1) must hold between the 
distributions of A and B.  If there are multiple such linkages, (1) 
must hold simultaneously for all pairs. If this can be achieved 
to a set of linkages, we say these linkages (or the probability 
relations in these linkages) are consistent. If all probability 
relations in a set of consistent linkages S  can be satisfies by 
a subset S’ of  S, we say S’ is valid. 
 In theory, any pair of variables between two BNs can be 
linked, albeit with different degree of similarities. Fortunately, 
satisfying a given probabilistic relation between A and B 
does not require the utilization, or even the existence, of a 
linkage between A and B. Several probability  relations may 
be satisfied by one linkage. As shown in Figure 2(a), we have 
variables A and B in BN1, C  and D in BN2, and probability 
relations between every pair as below:  









=

6.01.0
03.0

),( ACP , 







=

42.007.0
18.033.0

),( ADP ,






= 378.0112.0

162.0348.0),( BDP , and 





=

54.016.0

03.0
),( BCP . 

 

 
(a) BN1 and BN2 

 
(b) Map variable A to C 

Figure 2. Mapping Reduction Example 
 

However, we do not need to set up  linkages for all these 
relations. As Figure 2(b) depicts, when we have a linkage 

from A to C , all these relations  are satisfied. This is because 
beliefs not only C, but also on D are updated properly by the 
mapping A to C properly  in the BN. 

A process called “Mapping Reduction” will be used to 
form a small valid set of linkages from all available pair-wise 
relations. Our current focus is to develop reduction rules by 
exploring the network structure of BNs on both sides.  

Inference with BN mapping 
Suppose we already have BNA and BNB, and valid BN map-
pings as k linkages L1, …, Lk  between k pairs of nodes A1 , 
A2,…, Ak in BNA and B1, …, Bk in BNB. Note that more than one 
of these linkages may start from one node in BNA and more 
than one may end at one node in BNB. The inference process 
is outlined as below: 

1. Apply the hard evidence in BNA and then obtain the 
posterior distributions of the source nodes A1, …, Ak 
of lin kages L1 , …, Lk: P(Ai| hard_evidence ). 

2. For each linkage, compute the distributions of Bi, Q(Bi), 
using equation (2). 

3. Enter the hard evidence to BNB, and update it  using 
both hard and soft  evidences Q(B1),…, Q (Bk). 

Iterative proportional fitting procedure may be used to sat-
isfy multiple soft evidences (Valtorta et al, 2002).  

Conclusion and Future Work 
Compared with previous works on distributed BN, our 
framework is more expressive in representing probabilistic 
relations and more applicable with the help of the mapping 
reduction  process. A series of experiments have been con-
ducted on synthetic BNs to validate our ideas  of the for-
malization of BN mapping and inference methods. We had 
obtained encouraging results and now is focusing on map-
ping reduction. We are also working on the semantics of BN 
mapping and examine its  scalability and applicability. A 
potential Application of this framework is to support on-
tology mapping, if the ontologies can be translated in BNs as 
suggested in  (Ding et al, 2004). 
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