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It is always essential but difficult to capture incomplete, partial or uncertain
knowledge when using ontologies to conceptualize an application domain or to
achieve semantic interoperability among heterogeneous systems. This chapter
presents an on-going research on developing a framework which augments and
supplements OWL 5 for representing and reasoning with uncertainty based on
Bayesian networks (BN) [22], and its application in the field of ontology map-
ping. This framework, named BayesOWL [7, 8], provides a set of rules and
procedures for direct translation of an OWL ontology into a BN directed
acyclic graph (DAG) and a method based on iterative proportional fitting
procedure (IPFP) [17, 6, 5, 29, 1, 3] that incorporates available probability
constraints when constructing the conditional probability tables (CPTs) of
the BN. The translated BN, which preserves the semantics of the original on-
tology and is consistent with all the given probability constraints, can support
ontology reasoning, both within and across ontologies as Bayesian inferences.

A representation in OWL of probability information concerning the entities
and relations in ontologies is also proposed. If ontologies are translated to BNs,
then concept mapping between ontologies can be accomplished by evidential
reasoning across the translated BNs. This approach to ontology mapping is
seen to be advantageous to many existing methods in handling uncertainty in
the mapping. Our preliminary work on this issue is presented at the end of
this chapter.

This chapter is organized as follows: Sect. 1 provides a brief introduction
to semantic web 6, what the term “ontology” means, and the necessity to be
able to do reasoning on partial or noisy input in a disciplined manner; Sect. 2
describes BayesOWL in detail; Sect. 3 proposes a representation of probabil-
ity in OWL; and Sect. 4 focuses on how to apply BayesOWL for automatic

5 http://www.w3.org/2001/sw/WebOnt/
6 http://www.w3.org/DesignIssues/Semantic.html
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ontology mapping. The chapter ends with a discussion and suggestions for
future research in Sect. 5.

1 Semantic Web, Ontology, and Uncertainty

People can read and understand a web page easily, but machines can not. To
make web pages understandable by programs, additional semantic informa-
tion needs to be attached or embedded to the existing web data. Built upon
Resource Description Framework (RDF) 7, the semantic web is aimed at ex-
tending the current web so that information can be given well-defined meaning
using the description logic based ontology definition language OWL, and thus
enabling better cooperation between computers and people 8. Semantic web
can be viewed as a web of data that is similar to a globally accessible database.

The core of the semantic web is “ontology”. In philosophy, “Ontology”
is the study about the existence of entities in the universe. The term “on-
tology” is derived from the Greek word “onto” (means being) and “logia”
(means written or spoken discourse). In the context of semantic web, this
term takes a different meaning: “ontology” refers to a set of vocabulary to de-
scribe the conceptualization of a particular domain [12]. It is used to capture
the concepts and their relations in a domain for the purpose of information
exchange and knowledge sharing. Over the past few years, several ontology
definition languages emerge, which include: RDF(S), SHOE 9, OIL 10, DAML
11, DAML+OIL 12, and OWL. Among them, OWL is the newly released
standard recommended by W3C 13. Below a brief introduction about OWL is
presented.

1.1 OWL: Web Ontology Language

OWL, the standard web ontology language recently recommended by W3C,
is intended to be used by applications to represent terms and their interre-
lationships. It is an extension of RDF and goes beyond its semantics. RDF
is a general assertional model to represent the resources available on the web
through RDF triples of “subject”, “predicate” and “object”. Each triple in
RDF makes a distinct assertion, adding any other triples will not change the
meaning of the existing triples. A simple datatyping model of RDF called
RDF Schema 14 is used to control the set of terms, properties, domains and

7 http://www.w3.org/RDF/
8 http://www.w3.org/2001/sw/
9 http://www.cs.umd.edu/projects/plus/SHOE/

10 http://www.ontoknowledge.org/oil/
11 http://www.daml.org/
12 http://www.daml.org/2001/03/daml+oil-index
13 http://www.w3.org
14 http://www.w3.org/TR/rdf-schema/
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ranges of properties, and the “rdfs:subClassOf” and “rdfs:subPropertyOf” re-
lationships used to define resources. However, RDF Schema is not expressive
enough to catch all the relationships between classes and properties. OWL
provides a richer set of vocabulary by further restricting on the set of triples
that can be represented. OWL includes three increasingly complex variations
15: OWL Lite, OWL DL and OWL Full.

An OWL document can include an optional ontology header and any
number of classes, properties, axioms, and individual descriptions. In an
ontology defined by OWL, a named class is described by a class identifier
via “rdf:ID”. An anonymous class can be described by value (owl:hasValue,
owl:allValuesFrom, owl:someValuesFrom) or cardinality (owl:maxCardinality,
owl:minCardinality, owl:cardinality) restriction on property (owl:Restriction);
by exhaustively enumerating all the individuals that form the instances
of this class (owl:oneOf); or by logical operation on two or more classes
(owl:unionOf, owl:intersectionOf, owl:complementOf). The three logical op-
erators are corresponding to AND (conjunction), OR (disjunction) and NOT
(negation) in logic, they define class of all individuals by standard set-
operation: intersection, union, and complement, respectively. Three class ax-
ioms (rdfs:subClassOf, owl:equivalentClass, owl:disjointWith) can be used for
defining necessary and sufficient conditions of a class.

Two kinds of properties can be defined in an OWL ontology: object prop-
erty (owl:ObjectProperty) which links individuals to individuals, and datatype
property (owl:DatatypeProperty) which links individuals to data values. Sim-
ilar to class, “rdfs:subPropertyOf” is used to define that one property is a sub-
property of another property. There are constructors to relate two properties
(owl:equivalentProperty and owl:inverseOf), to impose cardinality restrictions
on properties (owl:FunctionalProperty and owl:InverseFunctionalProperty),
and to specify logical characteristics of properties (owl:TransitiveProperty
and owl:SymmetricProperty). There are also constructors to relate individuals
(owl:sameAs, owl:sameIndividualAs, owl:differentFrom and owl:AllDifferent).

The semantics of OWL is defined based on model theory in the way analo-
gous to the semantics of description logic (DL) 16. With the set of vocabulary
(mostly as described above), one can define an ontology as a set of (restricted)
RDF triples which can be represented as a RDF graph.

1.2 Why Uncertainty?

Ontology languages in the semantic web, such as OWL and RDF(S), are based
on crisp logic and thus can not handle incomplete or partial knowledge about
an application domain. However, uncertainty exists in almost every aspects
of ontology engineering. For example, in domain modelling, besides knowing
that “A is a subclass of B”, one may also know and wishes to express that

15 http://www.w3.org/TR/owl-guide/
16 http://www.w3.org/TR/owl-semantics/



4 Zhongli Ding, Yun Peng, and Rong Pan

“A is a small subclass of B”; or, in the case that A and B are not logically
related, one may still wishes to express that “A and B are largely overlapped
with each other”. In ontology reasoning, one may want to know not only if
A is a subsumer of B, but also how close of A is to B; or, one may want
to know the degree of similarity even if A and B are not subsumed by each
other. Moreover, a description (of a class or object) one wishes to input to an
ontology reasoner may be noisy and uncertain, which often leads to generalized
conclusions. Uncertainty becomes more prevalent in concept mapping between
two ontologies where it is often the case that a concept defined in one ontology
can only find partial matches to one or more concepts in another ontology.

In summary, there are at least three important issues need to be addressed
when dealing with uncertainty in ontology engineering tasks (i.e., domain
modelling, ontology reasoning, and concept mapping between ontologies):

(1) How to quantify the degree of the overlap or inclusion between two
concepts?

(2) How to support the type of reasoning in how close a description is to
its most specific subsumer and most general subsumee?

(3) How to improve the over-generalization with noisy input in subsump-
tion reasoning?

BayesOWL, the probabilistic framework presented in Sect. 2, aims to
tackle these issues, it augments and supplements OWL for representing and
reasoning with uncertainty based on Bayesian networks (BN) [22]. The basic
BayesOWL model includes a set of structural translation rules to convert an
OWL ontology into a directed acyclic graph (DAG) of BN, and a mechanism
that utilize available probabilistic information in constructing of conditional
probability table (CPT) for each node in the DAG. To help understand the
approach, in the remaining of this section, a brief review of BN [22] is provided.

1.3 Bayesian Network

In the most general form, a BN of n variables consists of a directed acyclic
graph (DAG) of n nodes and a number of arcs. Nodes Xi in a DAG correspond
to variables, and directed arcs between two nodes represent direct causal or
influential relation from one node to the other. The uncertainty of the causal
relationship is represented locally by the conditional probability table (CPT)
P (Xi|πi) associated with each node Xi, where πi is the parent set of Xi.
Under a conditional independence assumption, the graphic structure of BN
allows an unambiguous representation of interdependency between variables,
which leads to one of the most important feature of BN: the joint probability
distribution of X = (X1, . . . , Xn) can be factored out as a product of the CPT
in the network (named “the chain rule of BN”):

P (X = x) =
n

∏

i=1

P (Xi|πi)
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With the joint probability distribution, BN supports, at least in theory, any
inference in the joint space. Although it has been proven that the probabilistic
inference with general DAG structure is NP -hard [2], BN inference algorithms
such as belief propagation [21] and junction tree [18] have been developed to
explore the causal structure in BN for efficient computation.

Besides the expressive power and the rigorous and efficient probabilistic
reasoning capability, the structural similarity between the DAG of a BN and
the RDF graph of an OWL ontology is also one of the reasons to choose BN
as the underlying inference mechanism: both of them are directed graphs, and
direct correspondence exists between many nodes and arcs in the two graphs.

2 The BayesOWL Framework in Detail

In the semantic web, an important component of an ontology defined in
OWL or RDF(S) is the taxonomical concept subsumption hierarchy based
on class axioms (defined by rdfs:subClassOf, owl:equivalentClass, and
owl:disjointWith) and logical relations among the concept classes (defined
by owl:unionOf, owl:intersectionOf, and owl:complementOf). To focus
attention, in the current stage an OWL ontology is assumed to use only these
constructors. Constructors related to properties, individuals, and datatypes
will be considered in the future.

2.1 Structural Translation

This subsection focuses on the translation of an OWL ontology file into the
network structure, i.e., the DAG of a BN. The task of constructing CPTs will
be given in the next subsection. For simplicity, constructors for header compo-
nents in the ontology, such as “owl:imports” (for convenience, assume an ontol-
ogy involves only one single OWL file), “owl:versionInfo”, “owl:priorVersion”,
“owl:backwardCompatibleWith”, and “owl:incompatibleWith” are ignored
since they are irrelevant to the concept definition. If the domain of discourse
is treated as a non-empty collection of individuals (“owl:Thing”), then ev-
ery concept class (either primitive or defined) can be thought as a countable
subset (or subclass) of “owl:Thing”.

Conversion of an OWL taxonomy into a BN DAG is done by a set of
structural translation rules. The general principle underlying these rules is
that all classes (specified as “subjects” and “objects” in RDF triples of the
OWL file) are translated into nodes in BN, and an arc is drawn between two
nodes in BN only if the corresponding two classes are related by a “predicate”
in the OWL file, with the direction from the superclass to the subclass. A
special kind of nodes (named it L-Nodes) are created during the translation
to facilitate modelling relations among class nodes that are specified by OWL
logical operator. These structural translation rules are summarized as follows:
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(1) Every primitive or defined concept class C, is mapped into a binary
variable (either “True” or “False”, represented as c or c̄) in the translated BN,
C is in “True” state when an instance o belongs to it;

(2) Constructor “rdfs:subClassOf” is modelled by a directed arc from
the parent superclass node to the child subclass node, for example, a concept
class C defined with superconcept classes Ci(i = 1, ..., n) by “rdfs:subClassOf”
is mapped into a subnet in the translated BN with one converging connection
from each Ci to C, as illustrated in (Fig. 1) below;

C

1C 2C nC

CC

1C 2C2C nCnC...

Fig. 1. “rdfs:subClassOf”

(3) A concept class C defined as the intersection of concept classes Ci(i =
1, ..., n), using constructor “owl:intersectionOf” is mapped into a subnet
(Fig. 2) in the translated BN with one converging connection from each Ci

to C, and one converging connection from C and each Ci to a L-Node called
“LNodeIntersection”;

...
nC1C 2C

C

LNodeIntersection

nCnC1C1C 2C2C

CC

LNodeIntersection

Fig. 2. “owl:intersectionOf”

(4) A concept class C defined as the union of concept classes Ci(i =
1, ..., n), using constructor “owl:unionOf” is mapped into a subnet (Fig. 3) in
the translated BN with one converging connection from C to each Ci , and one
converging connection from C and each Ci to a L-Node called “LNodeUnion”;
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...
nC1C 2C

C

LNodeUnion

nCnC1C1C 2C2C

CC

LNodeUnion

Fig. 3. “owl:unionOf”

(5) If two concept classes C1 and C2 are related by constructors “owl:-
complementOf”, “owl:equivalentClass”, or “owl:disjointWith”, then a
L-Node (named “LNodeComplement”, “LNodeEquivalent”, “LNodeDisjoint”
respectively, as in Fig. 4) is added to the translated BN, and there are directed
links from C1 and C2 to this node.

Fig. 4. “owl:complementOf, owl:equivalentClass, owl:disjointWith”

Based on rule (1) to (5), the translated BN contains two kinds of nodes:
regular class nodes for concepts and L-Nodes which bridge nodes that are as-
sociated by logical relations. By using L-Nodes, the “rdfs:subClassOf” relation
is separated from other logical relations, so the in-arcs to a regular class node
C will only come from its parent superclass nodes, which makes C’s CPT
smaller and easier to construct. In the translated BN, all the arcs are directed
based on OWL statements, two concept class nodes without any defined or
derived relations are d-separated with each other, and two implicitly depen-
dent concept class nodes are d-connected with each other but there is no arc
between them. Note that, this translation process may impose additional con-
ditional independence to the nodes by the d-separation in the BN structure
[22]. For example, consider nodes B and C, which are otherwise not related
except that they both are subclasses of A. Then in the translated BN, B is
conditionally independent of C, given A. Such independence can be viewed
as a default relationship, which holds unless information to the contrary is
provided. If it does not hold, additional nodes similar to the L-Nodes may be
used to capture the dependency.
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2.2 CPT Construction

To complete the translation the remaining issue is to assign a conditional
probability table (CPT) P (C|πC) to each variable node C in the DAG, where
πC is the set of all parent nodes of C. As described earlier, the set of all nodes
X in the translated BN can be partitioned into two subsets: regular class nodes
XR which denote concept classes, and L-Nodes XC for bridging nodes that are
associated by logical relations. In theory, any arbitrary probabilistic relations
among concept nodes may be available, this chapter focuses on two types of
probabilities with respect to a regular class node C ∈ XR: prior probability
with the form P (C), and conditional probability with the form P (C|OC) if
its parent set πC 6= ∅ and πC ⊇ OC 6= ∅. Both types of information are most
likely to be available from the domain experts and from statistics. Methods for
utilizing probabilities in arbitrary forms and dimensions is reported elsewhere
[24].

Before going into the details about how to construct CPTs for regular
class nodes in XR based on available probabilistic information (Subsect.2.2.3),
CPTs for the L-Nodes in XC are discussed first.

2.2.1 CPTs for L-Nodes

CPT for a L-Node can be determined by the logical relation it repre-
sents so that when its state is “True”, the corresponding logical relation
holds among its parents. Based on the structural translation rules, there
are five types of L-Nodes corresponding to the five logic operators in OWL:
“LNodeComplement”, “LNodeDisjoint”, “LNodeEquivalent”, “LNo-
deIntersection”, and “LNodeUnion”, their CPTs can be specified as fol-
lows:

(1) LNodeComplement: The complement relation between C1 and C2 can
be realized by “LNodeComplement = True iff c1c̄2 ∨ c̄1c2”, which leads to the
CPT in Table 1;

C1 C2 True False

True True 0.000 100.00

True False 100.00 0.000

False True 100.00 0.000

False False 0.000 100.00

Table 1. CPT of LNodeComplement

(2) LNodeDisjoint: The disjoint relation between C1 and C2 can be realized
by “LNodeDisjoint = True iff c1c̄2 ∨ c̄1c2 ∨ c̄1c̄2”, which leads to the CPT in
Table 2;
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C1 C2 True False

True True 0.000 100.00

True False 100.00 0.000

False True 100.00 0.000

False False 100.00 0.000

Table 2. CPT of LNodeDisjoint

(3) LNodeEquivalent: The equivalence relation between C1 and C2 can be
realized by “LNodeEquivalent = True iff c1c2∨ c̄1c̄2”, which leads to the CPT
in Table 3;

C1 C2 True False

True True 100.00 0.000

True False 0.000 100.00

False True 0.000 100.00

False False 100.00 0.000

Table 3. CPT of LNodeEquivalent

(4) LNodeIntersection: The relation that C is the intersection of C1 and C2

can be realized by “LNodeIntersection = True iff cc1c2∨ c̄c̄1c2∨ c̄c1c̄2∨ c̄c̄1c̄2”,
which leads to the CPT in Table 4;

C1 C2 C True False

True True True 100.00 0.000

True True False 0.000 100.00

True False True 0.000 100.00

True False False 100.00 0.000

False True True 0.000 100.00

False True False 100.00 0.000

False False True 0.000 100.00

False False False 100.00 0.000

Table 4. CPT of LNodeIntersection

If C is the intersection of n > 2 classes, the 2n+1 entries in its CPT can
be determined analogously.

(5) LNodeUnion: The relation that C is the union of C1 and C2 can be
realized by “LNodeUnion = True iff cc1c2 ∨ cc̄1c2 ∨ cc1c̄2 ∨ c̄c̄1c̄2”, which leads
to the CPT in Table 5;

Similarly, if a C is the union of n > 2 classes, then the 2n+1 entries in its
CPT can be obtained analogously.
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C1 C2 C True False

True True True 100.00 0.000

True True False 0.000 100.00

True False True 100.00 0.000

True False False 0.000 100.00

False True True 100.00 0.000

False True False 0.000 100.00

False False True 0.000 100.00

False False False 100.00 0.000

Table 5. CPT of LNodeUnion

When the CPTs for L-Nodes are properly determined as above, and the
states of all the L-Nodes are set to “True”, the logical relations defined in the
original ontology will be held in the translated BN, making the BN consistent
with the OWL semantics. Denoting the situation in which all the L-Nodes in
the translated BN are in “True” state as CT , the CPTs for the regular class
nodes in XR should be constructed in such a way that P (XR|CT ), the joint
probability distribution of all regular class nodes in the subspace of CT , is
consistent with all the given prior and conditional probabilistic constraints.
This issue is difficult for two reasons. First, the constraints are usually not
given in the form of CPT. For example, CPT for variable C with two parents A
and B is in the form of P (C|A, B) but a constraint may be given as Q(C|A) or
even Q(C). Secondly, CPTs are given in the general space of X = XR∪XC but
constraints are for the subspace of CT (the dependencies changes when going
from the general space to the subspace of CT ). For the example constraint
Q(C|A), P (C|A, B), the CPT for C, should be constructed in such a way that
P (C|A, CT ) = Q(C|A).

To overcome these difficulties, an algorithm is developed to approximate
these CPTs for XR based on the “iterative proportional fitting procedure”
(IPFP) [17, 6, 5, 29, 1, 3], a well-known mathematical procedure that modifies
a given distribution to meet a set of constraints while minimizing I-divergence
to the original distribution.

2.2.2 Brief Introduction to IPFP

The iterative proportional fitting procedure (IPFP) was first published by
Kruithof in [17] in 1937, and in [6] it was proposed as a procedure to estimate
cell frequencies in contingency tables under some marginal constraints. In
1975, I. Csiszar [5] provided an IPFP convergence proof based on I-divergence
geometry. J. Vomlel rewrote a discrete version of this proof in his PhD thesis
[29] in 1999. IPFP was extended in [1, 3] as conditional iterative propor-
tional fitting procedure (CIPF-P) to also take conditional distributions as
constraints, and the convergence was established for the discrete case.
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Definitions of I-divergence and I-projection are provided first before going
into the details of IPFP.

Definition 1 (I-divergence)

Let P be a set of probability distributions, and for P , Q ∈ P, I-divergence
(also known as Kullback-Leibler divergence or Cross-entropy, which is often
used as a distance measure between two probability distributions) is defined
as:

I(P‖Q) =







∑

x∈X,P (x)>0

P (x) log P (x)
Q(x) if P � Q

+∞ if P ! � Q
(1)

here P � Q means P is dominated by Q, i.e.

{x ∈ X |P (x) > 0} ⊆ {y ∈ X |Q(y) > 0}

where x (or y) is an assignment of X , or equivalently:

{y ∈ X |Q(y) = 0} ⊆ {x ∈ X |P (x) = 0}

since a probability value is always non-negative. The dominance condition in
(1) guarantees division by zero will not occur because whenever the denomi-
nator Q(x) is zero, the numerator P (x) will be zero. Note that I-divergence is
zero if and only if P and Q are identical and I-divergence is non-symmetric.

Definition 2 (I-projection)

The I1-projection of a probability distribution Q ∈ P on a set of probability
distributions ε is a probability distribution P ∈ ε such that the I-divergence
“I(P‖Q)” is minimal among all probability distributions in ε. Similarly, the
I2-projections of Q on ε are probability distributions in ε that minimize the
I-divergence “I(Q‖P )”.

Note that I1-projection is unique but I2-projection in general is not. If ε is
the set of all probability distributions that satisfies a set of given constraints,
the I1-projection P ∈ ε of Q is a distribution that has the minimum distance
from Q while satisfying all constraints [29].

Definition 3 (IPFP)

Let X = {X1, X2, ..., Xn} be a space of n discrete random variables, given
a consistent set of m marginal probability distributions {R(Si)} where X ⊇
Si 6= ∅ and an initial probability distribution Q(0) ∈ P, iterative proportional
fitting procedure (IPFP) is a procedure for determining a joint distribution
P (X) = P (X1, X2, ..., Xn) � Q(0) satisfying all constraints in {R(Si)} by
repeating the following computational process over k and i = ((k − 1) mod
m) + 1:
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Q(k)(X) =

{

0 if Q(k−1)(Si) = 0

Q(k−1)(X) · R(Si)
Q(k−1)(Si)

if Q(k−1)(Si) > 0
(2)

This process iterates over distributions in {R(Si)} in cycle. It can be shown
[29] that in each step k, Q(k)(X) is an I1-projection of Q(k−1)(X) that satisfies
the constraint R(Si), and Q∗(X) = limk→∞ Q(k)(X) is an I1-projection of
Q(0) satisfying all constraints, i.e., Qk(X) converges to Q∗(X) = P (X) =
P (X1, X2, ..., Xn).

CIPF-P from [1, 3] is an extension of IPFP to allow constraints with the
form of conditional probability distributions, i.e. R(Si|Li) where Si, Li ⊆ X .
The procedure can be written as:

Q(k)(X) =

{

0 if Q(k−1)(Si|Li) = 0

Q(k−1)(X) · R(Si|Li)
Q(k−1)(Si|Li)

if Q(k−1)(Si|Li) > 0
(3)

CIPF-P has similar convergence result [3] as IPFP and (2) is in fact a
special case of (3) with Li = ∅.

2.2.3 Constructing CPTs for Regular Class Nodes

Let X = {X1, X2, ..., Xn} be the set of binary variables in the translated BN.
As stated earlier, X is partitioned into two sets XR and XC , for regular class
nodes, and L-Nodes, respectively. As a BN, we have by chain rule [22] Q(X) =
∏

Vi∈X Q(Vi|πVi
). Suppose we are given a set of probability constraints in the

forms of either
(1) prior or marginal constraint: P (Vi); or
(2) conditional constraint: P (Vi|OVi

) where OVi
⊆ πVi

, πVi
6= ∅, OVi

6= ∅;
also recall that all logical relations defined in the original ontology hold in the
translated BN only if CT is true (i.e., all variables in XC are set to ”True”),
our objective here is to construct CPTs Q(Vi|πVi

) for each Vi in XR such that
Q(XR|CT ), the joint probability distribution of XR in the subspace of CT ,
is consistent with all the given constraints. Moreover,we want Q(XR|CT )
to be as close as possible to the initial distribution, which may be set by
human experts, by some default rules, or by previously available probabilistic
information).

Note that all parents of Vi are nodes which are superclasses of Vi defined in
the original ontology. The superclass relation can be encoded by letting every
entry in Q(Vi|πVi

) be zero if any of its parents is “False” in that entry. The
only other entry in the table is the one in which all parents are “True”. The
probability distribution for this entry indicates the degree of inclusion of Vi

in the intersection of its parents, and it should be filled in such a way that is
consistent with the given probabilistic constraints relevant to Vi. Construction
of CPTs for all regular class nodes thus becomes a constraint satisfaction
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problem in the scope of IPFP. However, it would be very expensive in each
iteration of (2) or (3) to compute the joint distribution Q(k)(X) over all the
variables and then decompose it into CPTs at the end. A new algorithm
(called Decomposed-IPFP or D-IPFP for short) is developed to overcome
this problem.

Let Q(k)(XR|CT ) be a distribution projected from Q(k)(XR, XC) with
XC = CT . Then by chain rule,

Q(k)(XR|CT )
= Q(k)(XR, CT )/Q(k)(CT )
= (Q(k)(Vi|πVi

) ·
∏

Bj∈XC

Q(k)(bj |πBj
) ·

∏

Xj∈XR,j 6=i

Q(k)(Vj |πVj
))/Q(k)(CT )

(4)
Suppose all constraints can be decomposed into the form of R(Vi|Li ⊆

πVi
), that is, each constraint is local to the CPT for some Vi ∈ XR. Apply (3)

to Q(k)(XR|CT ) with respect to constraint R(Vi|Li) at step k,

Q(k)(XR|CT ) = Q(k−1)(XR|CT ) ·
R(Vi|Li)

Q(k−1)(Vi|Li, CT )
(5)

Then, substituting (4) to both sides of (5) and cancelling out all CPTs
other than Q(Vi|πVi

), we have our D-IPFP rule:

Q(k)(Vi|πVi
) = Q(k−1)(Vi|πVi

) ·
R(Vi|Li)

Q(k−1)(Vi|Li, CT )
· α(k−1)(πVi

) (6)

where α(k−1)(πVi
) = Q(k)(CT )/Q(k−1)(CT ) is the normalization factor.

The process starts with Q(0) = Pinit(X), the initial distribution of the
translated BN where CPTs for L-Nodes are set as in Subsect.2.2.1 and CPTs
for regular class nodes in XR are set to some distributions consistent with the
semantics of the subclass relation. At each iteration, only one table, Q(Vi|πVi

),
is modified. D-IPFP by (6) converges because (6) realizes (5), a direct appli-
cation of (3), which has been shown to converge in [3].

It will be more complicated if some constraints cannot be decomposed into
local constraints, e.g., P (A|B), where A, B ⊂ XR = {V1, ..., Vs}, A ∩ B 6= ∅,
and A 6= ∅, B 6= ∅. Extending DIPFP to handle non-local constraints of more
general form can be found in [24].

Some other general optimization methods such as simulated annealing
(SA) and genetic algorithm (GA) can also be used to construct CPTs of
the regular class nodes in the translated BN. However, they are much more
expensive and the quality of results is often not guaranteed. Experiments show
that D-IPFP converges quickly (in seconds, most of the time in less than 30
iterative steps), despite its exponential time complexity in theoretical analysis.
The space complexity of D-IPFP is trivial since each time only one node’s
CPT, not the entire joint probability table, is manipulated. Experiments also
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verify that the order to apply the constraints will not affect the solution, and
the values of the initial distribution Q(0)(X) = Pinit(X) (but avoid 0 and 1)
will not affect the convergence.

2.3 A Simple Translation Example

A simple example ontology is used here to demonstrate the validity of the
approach. In this ontology,

“Animal” is a primitive concept class;
“Male”, “Female”, “Human” are subclasses of “Animal”;
“Male” and “Female” are disjoint with each other;
“Man” is the intersection of “Male” and “Human”;
“Woman” is the intersection of “Female” and “Human”; and
“Human” is the union of “Man” and “Woman”.

The following probability constraints are attached to XR = {Animal, Male,
Female, Human, Man, Woman}:

P (Animal) = 0.5
P (Male|Animal) = 0.5
P (Female|Animal) = 0.48
P (Human|Animal) = 0.1
P (Man|Human) = 0.49
P (Woman|Human) = 0.51

First the DAG of the BN is constructed (as described in Sect. 2.1), then
the CPTs for L-Nodes in XC (as described in Subsect.2.2.1) are specified, and
finally the CPTs of regular class nodes in XR are approximated by running
D-IPFP. Fig. 5 below shows the result BN. It can be seen that, when all L-
Nodes are set to “True”, the conditional probability of “Male”, “Female”, and
“Human”, given “Animal”, are 0.5, 0.48, and 0.1, respectively, the same as
the given probability constraints. All other constraints, which are not shown
in the figure due to space limitation, are also satisfied.

The CPTs of regular class nodes obtained by D-IPFP are listed in Fig. 6.
It can be seen that the values on the first rows in all CPTs have been changed
from their initial values of (0.5, 0.5).

2.4 Comparison to Related Work

Many of the suggested approaches to quantify the degree of overlap or in-
clusion between two concepts are based on ad hoc heuristics, others combine
heuristics with different formalisms such as fuzzy logic, rough set theory, and
Bayesian probability (see [27]) for a brief survey). Among them, works that
integrate probabilities with description logic (DL) based systems are most
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Fig. 5. An Example: DAG

relevant to BayesOWL. This includes probabilistic extensions to ALC based
on probabilistic logics [13, 15]; P-SHOQ(D) [11], a probabilistic extension
of SHOQ(D) based on the notion of probabilistic lexicographic entailment;
and several works on extending DL with Bayesian networks (P-CLASSIC [16]
that extends CLASSIC, PTDL [31] that extends TDL (Tiny Description Logic
with only “Conjunction” and “Role Quantification” operators), and the work
of Holi and Hyvönen [14] which uses BN to model the degree of subsumption
for ontologies encoded in RDF(S)).

The works closest to BayesOWL in this field are P-CLASSIC and PTDL.
One difference is with CPTs. Neither of the two works has provided any
mechanism to construct CPTs. In contrast, one of BayesOWL’s major con-
tribution is its D-IPFP mechanism to construct CPTs from given piece-
wised probability constraints. Moreover, in BayesOWL, by using L-Nodes,
the ”rdfs:subclassOf” relations (or the subsumption hierarchy) are separated
from other logical relations, so the in-arcs to a regular class node C will only
come from its parent superclass nodes, which makes C’s CPT smaller and
easier to construct than P-CLASSIC or PTDL, especially in a domain with
rich logical relations.

Also, BayesOWL is not to extend or incorporate into OWL or any other
ontology language or logics with probability theory, but to translate a given
ontology to a BN in a systematic and practical way, and then treats onto-
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Fig. 6. An Example: CPT

logical reasoning as probabilistic inferences in the translated BNs. Several
benefits can be seen with this approach. It is non-intrusive in the sense that
neither OWL nor ontologies defined in OWL need to be modified. Also, it
is flexible, one can translate either the entire ontology or part of it into BN
depending on the needs. Moreover, it does not require availability of complete
conditional probability distributions, pieces of probability information can be
incorporated into the translated BN in a consistent fashion. With these and
other features, the cost of the approach is low and the burden to the user is
minimal. One thing to emphasis is that BayesOWL can be easily extended
to handle other ontology representation formalisms (syntax is not important,
semantic matters), if not using OWL.

2.5 Semantics

The semantics of the Bayesian network obtained can be outlined as follows.
(1) The translated BN will be associated with a joint probability distribu-

tion P ′(XR) over the set of regular class nodes XR, and P ′(XR) = P (XR|CT )
(which can be computed by first getting the product of all the CPTs in the
BN, and then marginalizing it to the subspace of CT ), on top of the standard
description logic semantics. A description logic interpretation I = (∆I , .I)
consists of a non-empty domain of objects ∆I and an interpretation func-
tion .I . This function maps every concept to a subset of ∆I , every role and
attribute to a subset of ∆I × ∆I , and every individual to an object of ∆I .
An interpretation I is a model for a concept C if CI is non-empty, and C is
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said ”satisfiable”. Besides this description logic interpretation I = (∆I , .I),
in BayesOWL semantics, there is a function P to map each object o ∈ ∆I

to a value between 0 and 1, 0 ≤ P (o) ≤ 1, and
∑

P (o) = 1, for all o ∈ ∆I .
This is the probability distribution over all the domain objects. For a class
C: P (C) =

∑

P (o) for all o ∈ C. If C and D are classes and C ⊆ D, then
P (C) ≤ P (D). Then, for a node Vi in XR, P ′(Vi) = P (Vi|CT ) represents the
probability distribution of an arbitrary object belonging (and not belonging)
to the concept represented by Vi.

(2) In the translated BN, when all the L-Nodes are set to “True”, all the
logical relations specified in the original OWL file will be held, which means:
(i) if B is a subclass of A then “P (b|ā) = 0 ∧ P (a|b) = 1”; (ii) if B is disjoint
with A then “P (b|a) = 0 ∧ P (a|b) = 0”; (iii) if A is equivalent with B then
“P (a) = P (b)”; (iv) if A is complement of B then “P (a) = 1−P (b)”; (v) if C
is the intersection of C1 and C2 then “P (c|c1, c2) = 1∧P (c|c̄1) = 0∧P (c|c̄2) =
0 ∧ P (c1|c) = 1 ∧ P (c2|c) = 1”; and (vi) if C is the union of C1 and C2 then
“P (c|c̄1, c̄2) = 0∧P (c|c1) = 1∧P (c|c2) = 1∧P (c1|c̄) = 0∧P (c2|c̄) = 0”. Note
it would be trivial to extend (v) and (vi) to general case.

Fig. 7. Three Types of BN Connections

(3) Due to d-separation in the BN structure, additional conditional inde-
pendencies may be imposed to the regular class nodes in XR, w.r.t the three
(serial, diverging, converging, as in Fig. 7) kinds of BN connections: (i) serial
connection: consider A is a parent superclass of B, B is a parent superclass of
C, then the probability of an object o belonging to A and belonging to C is
independent if o is known to be in B; (ii) diverging connection: A is the par-
ent superclass for both B and C, then B and C is conditionally independent
given A; (iii) converging connection: both B and C are parent superclasses of
A, then B and C are assumed to be independent if we do not know anything
about A. These independencies can be viewed as a default relationship, which
holds unless we have information to the contrary, and are compatible with the
original ontology defined using OWL.

2.6 Reasoning

The BayesOWL framework can support common ontology reasoning tasks
as probabilistic reasoning in the translated BN. The follows are some of the
example tasks.
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Concept Satisfiability : whether the concept represented by a description e
exists. This can be answered by determining if P (e|CT ) = 0.
Concept Overlapping : the degree of the overlap or inclusion of a description
e by a concept C. This can be measured by P (e|C, CT ).
Concept Subsumption : find concept C that is most similar to a given de-
scription e. This task cannot be done by simply computing the posterior
P (e|C, CT ), because any class node would have higher probability than its
children. Instead, a similarity measure MSC(e, C) between e and C based on
Jaccard Coefficient [26] is defined:

MSC(e, C) = P (e ∩ C|CT )/P (e ∪ C|CT ) (7)

This measure is intuitive and easy-to-compute. In particular, when only con-
sidering subsumers of e (i.e., P (c|e, CT ) = 1), the one with the greatest MSC
value is a most specific subsumer of e.

In previous example ontology (see Fig. 5), to find the concept that is most
similar to the description e = ¬Male u Animal, we compute the similarity
measure between e and each of the nodes in XR = {Animal, Male, Female,
Human, Man, Woman} using (7):

MSC(e, Animal) = 0.5004
MSC(e, Male) = 0.0
MSC(e, Female) = 0.9593
MSC(e, Human) = 0.0928
MSC(e, Man) = 0.0
MSC(e, Woman) = 0.1019

This leads us to conclude that “Female” is the most similar concept to e.
If a DL reasoner is used, the same description would have “Animal” as the
most specific subsumer.

Reasoning with uncertain input descriptions can also be supported. For
example, description e′ containing P (Male) = 0.1 and P (Animal) = 0.7 can
be processed by inputting these probabilities as virtual evidence to the BN
[23]. Class “Female” remains the most similar concept to e′, but its similarity
value MSC(e′, F emale) now decreases to 0.5753.

3 Representing Probabilities

Information about the uncertainty of the classes and relations in an ontology
can often be represented as probability distributions (e.g., P (C) and P (C|D)
mentioned earlier), which we refer to as probabilistic constraints on the ontol-
ogy. These probabilities can be either provided by domain experts or learned
from data.

Although not necessary, it is beneficial to represent the probabilistic con-
straints as OWL statements. We have developed such a representation. At
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the present time, we only provide encoding of two types of probabilities: pri-
ors and pair-wise conditionals. This is because they correspond naturally to
classes and relations (RDF triples) in an ontology, and are most likely to be
available to ontology designers. The representation can be easily extended to
constraints of other more general forms if needed.

The model-theoretic semantics 17 of OWL treats the domain as a non-
empty collection of individuals. If class A represents a concept, we treat it as
a random binary variable of two states a and ā, and interpret P (A = a) as
the prior probability or one’s belief that an arbitrary individual belongs to
class A, and P (a|b) as the conditional probability that an individual of class
B also belongs to class A. Similarly, we can interpret P (ā), P (ā|b), P (a|b̄),
P (ā|b̄) and with the negation interpreted as “not belonging to”.

These two types of probabilities (prior or conditional) correspond naturally
to classes and relations in an ontology, and are most likely to be available to
ontology designers. Currently, our translation framework can encode two types
of probabilistic information into the original ontology, as mentioned earlier in
Subsect.2.2.3: for a concept class C and its parent superconcept class set πC :

(1) prior or marginal probability P (C);
(2) conditional probability P (C|OC) where OC ⊆ πC , πC 6= ∅, OC 6= ∅.
We treat a probability as a kind of resource, and define two OWL classes:

“PriorProb”, “CondProb”. A prior probability P (C) of a variable C is de-
fined as an instance of class “PriorProb”, which has two mandatory proper-
ties: “hasVarible” (only one) and “hasProbValue” (only one). A conditional
probability P (C|OC) of a variable C is defined as an instance of class “Cond-
Prob” with three mandatory properties: “hasCondition” (at least has one),
“hasVariable” (only one), and “hasProbValue” (only one). The range of prop-
erties “hasCondition” and “hasVariable” is a defined class named “Variable”,
which has two mandatory properties: “hasClass” and “hasState”. “hasClass”
points to the concept class this probability is about and “hasState” gives the
“True” (belong to) or “False” (not belong to) state of this probability.

For example, P (c) = 0.8, the prior probability that an arbitrary individual
belongs to class C, can be expressed as follows:

<Variable rdf:ID=“c”>

<hasClass>C</hasClass>
<hasState>True</hasState>

</Variable>
<PriorProb rdf:ID=“P(c)”>

<hasVariable>c</hasVariable>
<hasProbValue>0.8</hasProbValue>

</PriorProb>

17 http://www.w3.org/TR/owl-semantics/direct.html
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and P (c|p1, p2, p3) = 0.8, the conditional probability that an individual
of the intersection class of P1, P2, and P3 also belongs to class C, can be
expressed as follows:

<Variable rdf:ID=“c”>

<hasClass>C</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID=“p1”>

<hasClass>P1</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID=“p2”>

<hasClass>P2</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID=“p3”>

<hasClass>P3</hasClass>
<hasState>True</hasState>

</Variable>
<CondProb rdf:ID=“P(c|p1, p2, p3)”>

<hasCondition>p1</hasCondition>

<hasCondition>p2</hasCondition>

<hasCondition>p3</hasCondition>

<hasVariable>c</hasVariable>
<hasProbValue>0.8</hasProbValue>

</CondProb>

For simplicity we did not consider the namespaces in above examples.
Similar to our work, [10] proposes a vocabulary for representing probabilis-
tic relationships in a RDF graph. Three kinds of probability information can
be encoded in his framework: probabilistic relations (prior), probabilistic ob-
servation (data), and probabilistic belief (posterior). And any of them can
be represented using probabilistic statements which are either conditional or
unconditional.

4 Concept Mapping Between Ontologies

It has become increasingly clear that being able to map concept between
different, independently developed ontologies is imperative to semantic web
applications and other applications requiring semantic integration. Narrowly
speaking, a mapping can be defined as a correspondence between concept A in
Ontology 1 and concept B in Ontology 2 which has similar or same semantics
as A. [20] provides a brief survey about existing approaches for ontology-based
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semantic integration. Most of these works are either based on syntactic and
semantic heuristics, machine learning (e.g., text classification techniques in
which each concept is associates with a set of documents that exemplify the
meaning of that concept), or linguistics (spelling, lexicon relations, lexical
ontologies, etc.) and natural language processing techniques.

It is often the case that, when mapping concept A defined in Ontology 1 to
Ontology 2, there is no concept in Ontology 2 that is semantically identical to
A. Instead, A is similar to several concepts in Ontology 2 with different degree
of similarities. A solution to this so-called one-to-many problem, as suggested
by [25] and [9], is to map A to the target concept B which is most similar to
A by some measure. This simple approach would not work well because 1) the
degree of similarity between A and B is not reflected in B and thus will not be
considered in reasoning after the mapping; 2) it cannot handle the situation
where A itself is uncertain; and 3) potential information loss because other
similar concepts are ignored in the mapping.

To address these problems, we are pursuing an approach that combines
BayesOWL and belief propagation between different BNs. In this approach,
the two ontologies are first translated into two BNs. Concept mapping can
then be processed as some form of probabilistic evidential reasoning between
the two translated BNs. Our preliminary work along this direction is described
in the next subsections.

4.1 The BN Mapping Framework

In applications on large, complex domains, often separate BNs describing re-
lated subdomains or different aspects of the same domain are created, but it
is difficult to combine them for problem solving – even if the interdependency
relations are available. This issue has been investigated in several works, in-
cluding most notably Multiply Sectioned Bayesian Network (MSBN) [30] and
Agent Encapsulated Bayesian Network (AEBN) [28]. However, their results
are still restricted in scalability, consistency and expressiveness. MSBN’s pair-
wise variable linkages are between identical variables with the same distribu-
tions, and, to ensure consistency, only one side of the linkage has a complete
CPT for that variable. AEBN also requires a connection between identical
variables, but allows these variables to have different distributions. Here, iden-
tical variables are the same variables reside in different BNs.

What we need in supporting mapping concepts is a framework that allows
two BNs (translated from two ontologies) to exchange beliefs via variables
that are similar but not identical. We illustrate our ideas by first describing
how mapping shall be done for a pair of similar concepts (A from Ontology
1 to B in Ontology 2), and then discussing how such pair-wise mappings
can be generalized to network to network mapping. We assume the similarity
information between A and B is captured by the joint distribution P (A, B).

Now we are dealing with three probability spaces: SA and SB for BN1 and
BN2, and SAB for P (A, B). The mapping from A to B amounts to determine
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the distribution of B in SB , given the distribution P (A) in SA under the
constraint P (A, B) in SAB .

To propagate probabilistic influence across these spaces, we can apply
Jeffrey’s rule and treat the probability from the source space as soft evidence to
the target space [23, 28]. The rule is given in (8), where Q denotes probabilities
associated with soft evidence

Q(Y ) =
∑

i

P (Y |Xi)Q(Xi) (8)

As depicted in Fig. 8, mapping A to B is accomplished by applying Jeffrey’s
rule twice, first from SA to SAB , then SAB to SB . Since A in SA is identical
to A in SAB , P (A) in SA becomes soft evidence Q(A) to SAB and by (8) the
distribution of B in SAB is updated to

Q(B) =
∑

i

P (B|Ai)Q(Ai) (9)

Q(B) is then applied as soft evidence from SAB to node B in SB , updating
beliefs for every other variable V in SB by

Q(V ) =
∑

j

P (V |Bj)Q(Bj)

=
∑

j

P (V |Bj)
∑

i

P (Bj |Ai)Q(Ai)

=
∑

j

P (V |Bj)
∑

i

P (Bj |Ai)P (Ai)

(10)

A B

P(A) Q(B)Q(A) Q(B)
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BN1 BN2Jeffrey’s rule
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Evidence

Soft
Evidence

A B

P(A) Q(B)Q(A) Q(B)

SAB: P(A,B)

BN1 BN2Jeffrey’s rule

Soft
Evidence

Soft
Evidence

Fig. 8. Mapping Concept A to B

Back to the example in Fig. 5, where the posterior distribution of “Hu-
man”, given hard evidence ¬MaleuAnimal, is (True0.102, False0.898). Sup-
pose we have another BN which has a variable “Adult” with marginal distri-
bution (True0.8, False0.2). Suppose we also know that “Adult” is similar to
“Human” with conditional distribution (“T” for “True”, “F” for “False”)

P (Adult|Human) =
T F

T
F

(

0.7 0.3
0.0 1.0

)
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Mapping “Human” to “Adult” leads to a change of latter’s distribution
from (True0.8, False0.2) to (True0.0714, False0.9286) by (9). This change
can then be propagated to further update believes of all other variables in the
target BN by (10).

4.2 Mapping Reduction

A pair-wise linkage as described above provides a channel to propagate belief
from A in BN1 to influence the belief of B in BN2. When the propagation is
completed, (9) must hold between the distributions of A and B. If there are
multiple such linkages, (9) must hold simultaneously for all pairs. In theory,
any pair of variables between two BNs can be linked, albeit with different
degree of similarities. Therefore we may potentially have n1 · n2 linkages ( n1

and n2 are the number of variables in BN1 and BN2, respectively). Although
we can update the distribution of BN2 to satisfy all linkages by IPFP using
(9) as constraints, it would be a computational formidable task.

Fortunately, satisfying a given probabilistic relation between P (A, B) does
not require the utilization, or even the existence, of a linkage from A to B.
Several probabilistic relations may be satisfied by one linkage. As shown in
Fig. 9, we have variables A and B in BN1, C and D in BN2, and probability
relations between every pair as below:

P (C, A) =

(

0.3 0.0
0.1 0.6

)

, P (D, A) =

(

0.33 0.18
0.07 0.42

)

,

P (D, B) =

(

0.348 0.162
0.112 0.378

)

, P (C, B) =

(

0.3 0.0
0.16 0.54

)

.

Fig. 9. Mapping Reduction Example

However, we do not need to set up linkages for all these relations. As Fig. 9
depicts, when we have a linkage from A to C, all these relations are satisfied
(the other three linkages are thus redundant). This is because not only beliefs
on C, but also beliefs on D are properly updated by the mapping A to C.
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Several experiments with large BNs have shown that only a very small por-
tions of all n1 ·n2 linkages are needed in satisfying all probability constraints.
This, we suspect, is due to the fact that some of these constraints can be
derived from others based on the probabilistic interdependencies among vari-
ables in the two BNs. We are currently actively working on developing a set
of rules that examine the BN structures and CPTs so that redundant linkages
can be identified and removed.

5 Conclusion

This chapter describes our on-going research on developing a probabilistic
framework for modelling uncertainty in semantic web ontologies based on
Bayesian networks. We have defined new OWL classes (PriorProb, Cond-
Prob, and Variable), which can be used to encode probability constraints for
ontology classes and relations in OWL. We have also defined a set of rules for
translating OWL ontology taxonomy into Bayesian network DAG and pro-
vided a new algorithm D-IPFP for efficient construction of CPTs. The trans-
lated BN is semantically consistent with the original ontology and satisfies all
given probabilistic constraints. With this translation, ontology reasoning can
be conducted as probabilistic inferences with potentially better, more accu-
rate results. We are currently actively working on extending the translation
to include properties, developing algorithms to support common ontology-
related reasoning tasks, and formalizing mapping between two ontologies as
probabilistic reasoning across two translated BN. We are also actively work-
ing on resolving remaining issues in ontology mapping based on BayesOWL,
especially the issue of one-to-many mapping and its generalized form of many-
to-many mapping where more than one concepts need to be mapped from one
ontology to another at the same time.

The BayesOWLframework presented in this chapter rely heavily on the
availability of probabilistic information in both ontology to BN translation and
in ontology mapping. This information is often not available (or only partially
available) from domain experts. Learning these probabilities from data then
becomes the only option for many applications. Our current focus in this
direction is the approach of text classification [4] [19]. The most important
and also most difficult problem in this approach is to provide high quality
sample documents to each ontology class. We are exploring ontology guided
search of the web for such document.

Another interesting direction for future work is to deal with inconsistent
probability information. For example, in constructing CPT for the translated
BN, the given constraints may be inconsistent with each other, also, a set of
consistent constraints may itself be inconsistent with the network structure.
This involve detection of inconsistency, identification of sources of inconsis-
tency, and resolution of inconsistency.
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