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Abstract. In this paper, we describe our on-going research on uncertainty 
analysis in Multi-agent Systems for Supply Chain Management (MASCM). In a 
MASCM, an agent consists of automation processes within a legal entity in the 
specific supply chain network. It conducts supply chain planning, execution and 
cooperation on behalf of its owner. Each day these agents have to process a 
large volume of data from different sources with mixed signals not to be antici-
pated in advance. Thus, one challenge every agent has to face in this volatile 
environment is to quickly identify the impact of unexpected events, and take 
proper adjustments in both local procedures and related cross-boundary interac-
tions. To facilitate the study of uncertainty in the complex system of MASCM, 
we model agent system behaviors by abstracting its significant operational as-
pects as observation, propagation and update of uncertainty ifnromation. The 
resulting theoretical model, called an extended Bayesian Belief Network 
(eBBN), may serve as the basis for developing an uncertainty management 
component for a large-scale electronic supply chain system. We also briefly de-
scribe ways this model can be used to solve different supply chain tasks and 
some simulation results that demonstrate the power of this model in improving 
the system performance. 

1   Introduction 

A Multi-agent System for Supply Chain Management (MASCM) comprises of a 
number of software agents (or agents for short in this paper) that sell and buy prod-
ucts (goods or services) on behalf of their owners. In a MASCM, the essential busi-
ness activities of individual agents can be defined as an Order Fulfillment Process 
(OFP), which is the effort for an agent to satisfy the requests triggered by its custom-
ers’ orders. At the system level, the supply chain management is the combination of 
all agents’ activities ignited by one end order from the system’s end customer. When 
an end order arrives, a Virtual Supply Chain (VSC), consisting of agents at different 
tiers in the chain, may emerge through multiple interconnected OFPs. The ultimate 
goal of the system management is to form VSCs that can successfully complete this 
end order, and the system’s performance can be measured by the rate that all end 
orders are completed. 



  

In the real life the formation of VSCs is affected by many unexpected factors 
within the system. They can be physical failures such as electricity outages, virus 
attacks, strikes, and so on. In addition, agents may change their trading partners fol-
lowing the owners’ instructions, reflecting the change of the market. Uncertainty 
brought by these unexpected events may have negative impact on the system per-
formance, e.g. prolong the time of VSC formation or breaking down an already 
formed VSC [1]. To protect their common interest of attracting more customers from 
such negative impacts, agents in a MASCM are often willing to cooperate with each 
other by sharing uncertainty information and analysis.  

Bayesian Belief Network (BBN) has been established as a powerful and theoreti-
cally well-founded framework for representing and reasoning with ucnertainty. BBN 
initially arose from an attempt to incorporate the probability theory into expert sys-
tems, and has an origin and  long history in decision analysis [2]. Nowadays, BBN 
model has been used in the fields such as diagnosis, reinforce learning, speech recog-
nition, tracking, data compression, etc. One of the best-known examples of BBN 
applications is a decision-theoretic reformulation of the Quick Medical Reference 
(QMR) model [3] for internal medicine. Other practical applications include real time 
decision under uncertain situations [4], human-computer interaction analysis [5], 
deep-space exploration and knowledge acquisition [6], and the popular productive 
software Microsoft Office, to mention just a few.  

In this paper, we present our research effort to develop a theoretical model, by ex-
tending the conventional BBN formulation, that formalizes agents’ interactions in an 
uncertain environment. The model can be directly implemented as a separate compo-
nent for MASCM system uncertainty management, and may also serve as the plat-
form to analyze the relationship between uncertainty and various measures of system 
performance. 

The rest of this paper is organized as follows. Section 2 gives a description of 
agent behaviors in OFPs and a general discussion on eBBN approach to modeling 
agent interactions; Section 3 introduces a simplified type of MASCM, called 
MASCM1; Section 4 presents two eBBN models for the formation and evolution of 
VSCs in a MASCM1. Finally, Section 5 concludes the paper with a brief discussion on 
how this model can be used to solve some important supply chain management tasks 
together with some simulation experiment results, and suggestions for further re-
search. Due to the page limitation, proofs for theorems and lemmas are omitted. 

2  Modeling agent behaviors 

Suuply chain activities an agent is involved in can be abstracted as an order fulfill-
ment process (OFP) [9], which can be logically divided into the following steps. 

Order generation. Based on the commitment that is made to its customer’s order 
or set by its human owner, the agent selects suppliers for the products needed to ful-
fill this commitment, generates orders and chooses negotiation strategies for each of 
the selected suppliers. The agent may generate more than one order in order to fulfill 
a given commitment.  



  

Negotiation. The agent sends orders to the selected suppliers and negotiates with 
them. An agent can negotiate simultaneously with different suppliers. However, we 
assume in this paper that at any time, the agent only negotiates with one supplier. 
That is, the default negotiation protocol between two agents is bilateral. At the end of 
this stage, through negotiation, a mutual commitment between two agents may be 
reached. 

Commitment processing. The agent processes the outstanding commitment it 
made to its customer, handles the unexpected events, and exchanges information with 
its supplier and customers about the status of the commitment. At the end of this 
stage, an order an agent receives (e.g., the commitment its made to its customer) may 
or may not be eventually fulfilled. When one of the agent’s suppliers aborts the com-
mitment and there is no alternative supplier to provide the same product, it has to 
cancel the commitment to its customer. The consequence of commitment cancellation 
also causes the agent to cancel all orders to other direct suppliers involved in this 
particular transaction, provided these orders have not yet been eventually solved. The 
order cancellation may propagate both upstream and downstream. However, when all 
direct suppliers of an agent fulfill their commitments, that is, deliver all the products 
the agent needs, an OFP initialized by this agent is considered completed.  

The OFP triggered by an end order will propagate through OFPs of its suppliers, 
and suppliers’ suppliers, etc. and a virtual supply chain (VSC) consisting of all agents 
involved is dynamically formed. In OFPs, agents interact with each other in order to 
reach mutual agreement and when they indeed reach one, agents will keep contacting 
the other parties until their agreed commitments are fulfilled. In other words, the 
commitment plays a central role in agent interactions. Therefore, the probability that a 
commitment will be fulfilled successfully or unsuccessfully can be used to measure 
the uncertainty of an agent’s behaviors in the process. Accordingly, the system per-
formance in an uncertain environment can be described as the likelihood of commit-
ments held by the end customer agents being successfully fulfilled. 

Also note that in a particular OFP, as described above, the customer agent initiates 
the process, but the supplier agents determine the progress of the process. From this 
perspective, the supply-demand relationship between an agent and its direct suppliers 
can be viewed as a causal one where the failure of fulfilling commitments by one’s 
suppliers may cause its commitment to its downstream customers to fail. Therefore, 
the failure probability of commitments held by a pair of supply and customer agents 
are causally linked. More specifically, in a VSC, commitments held by individual 
agents and the supply-demand relationships between them form a casual network. 
This observation allows us to use BBN as a framework to formalize agents’ interac-
tion in the uncertain environment as the following. 

• Model commitment failure probabilities as agents’ beliefs. 
• Model direct supply-demand relationships between pairs of agents as di-

rected causal links (from the direct supplier to the customer). 
• Model information sharing between agents as belief propagation. 

However, the conventional BBN framework is inadequate in modeling MASCM 
agent interactions for at least the following reasons. First, causal links in conventional 
BBNs are static (unless learning or adaptation is involved) while the supply-demand 



  

relationships among MASCM agents may change over time. Although each agent in 
the system has in its inventory a certain level of safety stock of products it needs, 
such safety stock can only smooth out the uncertain fluctuation of supplies to an ex-
tent. Significant change of current suppliers’ commitments may cause an agent to 
terminate its current orders to one supplier and switch to another one for the same 
product. Therefore, the causal network of commitments is not static but dynamically 
created and updated with the evolution of a VSC. Secondly, conventional BBN can 
only represent observations but not actions [???]. However, agents’ actions such as 
the decisions to cancel a commitment or to switch suppliers, as well as other strategic 
actions, are the important uncertain sources that impact the failure probabilities of 
commitments of other agents. These impacts can be propagated through agents in the 
whole VSC through interconnected OFPs and, thus, have to be modeled within the 
framework. In the following sections, we introduce extended Bayesian Belief Net-
work (eBBN) models for a simply type of MASCM that can represent the dynamic 
casual structure and actions according to VSC evolution.  

3 MASCM1 

In this section we define a simple type of MASCM, called MASCM1. We first intro-
duce the notations used, then state the assumptions that define MASCM1. 

3.1 Symbols  

We use symbol Ai to denote an agent. Accordingly, the MASCM is defined as a set of 
agents S = {A1, A2, ... An}. The set of all products provided by all agents in a MASCM 
is denoted as G = {g1, g2, ... gm}. The final product that sells to the end customers is 
denoted as gF, and usually is the first element in G, i.e., g1 = gF. We use notation 
G(Ai) to denote the products agent Ai provides to its direct customers. We use sym-
bols s

iA , c
iA  to denote the sets of Ai’s direct suppliers and customers, respectively in a 

VSC; and | s
iA | and | c

iA | their cardinalities.  Symbol ji AA ⋅  is used to denote that agent 
Ai  and its direct supplier agent Aj are currently engaged in some business activities 
such as negotiation and exchange of commitment information.  

3.2 Assumptions 

Our work in this paper is based on a simplified MASCM system, 1MASCM , which is 
defined by the following assumptions.  

• Assumption 1. There is only one end customer agent in the system, denoted as 
1A  ∈ S. In other words, cA1 = φ since its customer is not an agent but an entity 

outside the MASCM. 



  

• Assumption 2. Each agent, except agent 1A , has exactly one customer in a VSC. 
That is, ∀ iA ∈ S, if 1≠i , then | c

iA | =1.  
• Assumption 3. Each agent makes or holds no more than one commitment to its 

customer agent at a given time. 
• Assumption 4. No agent will order the same product from two or more different 

suppliers at the same time. That is, at any given time, if ji AA ⋅∃  and ki AA ⋅∃ , and 

)()( kj AGAG = , then kj = .  

• Assumption 5. ∀ iA ∈ S, its commitment made to its customer has certain prob-
ability to fail when any of its demand for certain product to its suppliers is not 
satisfied. However, if all these demands are satisfied, the commitment will be 
fulfilled  successfully, unless its owner decides to cancel it.  

• Assumption 6. Different OFPs triggered by iA  are independent of each other. 
Assumptions 1 and 2 simplify the system architecture, and Assumptions 3 and 4 

simplify the agent interaction transactions. Assumption 5 says any failure from an 
agent iA ’s direct supplier may cause its own commitment to fail. When all commit-
ments (if there are any) by its direct suppliers have been fulfilled, the commitment 
that an agent made to its own customer agent is considered as successful accom-
plished. Assumption 6 regulates that OFPs between two agents, agent iA  and one of 
its direct supplier agent jA , are not created or affected by other on-going or finished 
OFPs initiated of iA ’s other suppliers. Assumptions 5 and 6 are similar to “Account-
ability” and “Exception Independence” assumptions made for Noisy-Or networks, a 
type of special BBN. A MASCM that follows above assumptions (Assumptions 1 - 6) 
is a system of 1MASCM . 

4 eBBN Models for 1MASCM  

In this section we show how to use and extend BBN framework to model 1MASCM  
agent interactions in an uncertain environment. Two models, 0eBBN  and 1eBBN , 
will be presented. 

4.1 0eBBN : Modeling a Formed VSC 

A formed VSC in a 1MASCM  consists of agents connected by OFPs, all the way to 
the upper most tiers of suppliers, triggered by one end order. If all commitments made 
by the agents in the VSC are successfully fulfilled, the order of the end customer will 
be accomplished. A formed VSC is thus represents an possible solution to an end 
order. The likelihood of the end order been accomplished is affected by the likelihood 
of commitments made by other agents to fail. Since a formed VSC is static, it can be 



  

modeled by a standard BBN without involving actions. This leads to our first model 
0eBBN  as follows. 

Definition 1. Commitment Failure Variable (CFV) ix  is a binary random variable. 
Each CFV ix  is associated with an agent iA  in a formed VSC,  representing the cur-
rent belief of the status of the commitment made by agent iA to its customer. 1=ix  
means the commitment fails; 0=ix  means the commitment is successfully accom-
plished.  

The CFVs are represented as nodes in the belief network, connected by direct 
causal links. Specifically, for any pair of agents jA  and iA  in a formed VSC and 

S
ij AA ∈ , there is a directed link >< ij xx ,  from jx  to ix , as illustrated in the follow-

ing figure, indicating that jx  (failure of commitment of jA  to iA ) is a direct cause of 

ix  (failure of commitment of iA to its customer). 
 
 
 
 

Figure 1. A direct link between two CFVs 
 

Definition 2. For a given formed VCS, define ),( 000 EVeBBN = , where 
}|{0 VSCxxV ii ∈=  and }|,{0 VSCAAxxE jiij ∈⋅><= . 

Model 0eBBN  has two important properties.  

Theorem 1. Model 0eBBN is a tree. 

Theorem 1 comes directly from Assumptions 1 – 4 and Definition 2. To represent the 
underlying causal mechanism, as suggested in [7, 8], we use a random  variable jic  

to denote the causal connection from jx  to ix . If 1=jic , then 1=jx  indeed causes 

1=ix . Otherwise, 1=jx  does not affect 1=ix . Then, we have the following 
Lemma, which comes directly from Assumptions 5 and 6.. 

Theorem 2. The model 0eBBN  is a Noisy-Or network. 

Theorems 1 and 2 show agent interaction in a formed VSC can be formalized as a 
Noisy-Or network. Therefore, agents can share and analyze uncertain information 
through the well-established rules for this type of belief networks. For example, at 
any given time, an agent can estimate the failure probability of the current commit-
ment it holds based on the failure probabilities of its direct suppliers using the follow-
ing equation [7,8], 

ixjx
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π
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where jie is the causal strength of link >< ij xx , , iπ  is the set of parents of ix  (i.e., 

direct suppliers of iA ). Moreover, since 0eBBN  has a tree structure, belief propaga-
tion in 0eBBN  can be computed in time polynomial to the network size |VSC| [7]. 

0eBBN  captures causal relations in a static VSC. However, in the uncertain envi-
ronment, VSC hardly remain static. Cancellation of a commitment by an agent (either 
due to failures of its suppliers or other reasons) may cause the agent’s customer to 
seek another, alternative supplier. In other words, the structure of a VSC in a 

1MASCM  may undergo changes over time, moving from one formed VSC to an-
other, until a final solution VSC is realized or the end order fails eventually. To 
model the dynamic change of VSC in a 1MASCM ,  we introduce the model of 

1eBBN  in the following subsection. 

4.2 1eBBN : Modeling an Evolving VSC 

After an end order arrives at the system until it is eventually resolved, a VSC keeps 
evolving as agents adjust their behaviors, e.g. canceling orders to one supplier and 
switching to another one, according to its accumulated uncertain information. To 
model the evolution of VSC, two types of nodes/variables are introduced and added 
into 0eBBN . The resulting model is called 1eBBN .  

4.2.1 Definition of  1eBBN  
 
To model the dynamic change of the VSC, we need to represent the selection of a 
particular supplier for a given product an agent needs at a given time, as well as the 
change of the selection as the VSC evolves. We also need to ensure that, when all 
selections are made at a time, the model should works like 0eBBN  because all se-
lected agents form a VSC. This is achieved by the introducing into 0eBBN the fol-

lowing two types of new variables, jil  and jiy .  

 
Definition 3. jil  is a binary random variable associated with an agent iA  and one of 

its supplier jA . If 1=jil , then ji AA ⋅  is in iA ’s OFP (i.e., jA  is selected as one of iA ’s 

supplier), if 0=jil , then agent jA  is not currently involved in agent iA ’s OFP.  

Variable jil  represents an observable consequence of agent iA ’s decisions for se-

lecting or switching negotiation partners (suppliers). According to Assumption5, each 
agent in a 1MASCM  can only chooses one direct supplier for certain product it needs 
at a time. This lead to the following lemma. 



  

Lemma 1.  At any given time, if jil  =1 and kil =1, ),()(,, kj
S
ikj AGAGAAA =∈ , then 

kj = . 

The commitment failure variable jx  becomes a direct cause of ix  only when jA  

is selected as a direct supplier of iA  (i.e., 1=jil ). Otherwise, they are causally unre-

lated. This is captured by another type of node jiy .  

Definition 4. The binary random variable jiy  has two parents jil , and jx ; and one 

child ix , with the following conditional probability distribution   

),1|( jjijji xlxyP == = )1|( == jijji lxyP =1; 

),0|0( jjiji xlyP == = )0|0( == jiji lyP =1. 

The node jiy  serves as a “gate” between two CFV jx  and ix , and is controlled by 

variable jil . When the gate is open (when 1=jil ), node jiy  serves as the proxy node 

of jx  and passes its influence to ix , causing ix  to update its belief. When the gate 

is closed (when 0=jil ), jiy  becomes zero regardless the value of jx , implying that 

jx  does not influence ix  (i.e., jA is not part of the current VSC). With these vari-

ables and the links >< jij yx , , >< iji xy , , and >< jiji yl ,  among them, we can for-

mally define  1eBBN .  

Definition 5. For a given 1MASCM , define ),( 111 EVeBBN = , where  
=1V },,|,,{ S

ijjijijii AASAAylx ∈∈  and  

><><><= jijiijijij ylxyyxE ,,,,,{1  },,| S
ijji AASAA ∈∈ . 

The following figure shows a portion of an 1eBBN  
 
 

 
 
 
 

Figure 2. Nodes and links related in 
1eBBN  

4.2.2 Properties of 1eBBN  
We have the following theorem about the structure of 1eBBN , based on Theorem 1 
and Definition 5. 

Theorem 3. Mode of 1eBBN  is a tree.  

jx jiy ix

jil



  

Similar to model of 0eBBN , 1eBBN  formalize agents’ interactions in an evolving 
VSC as the probability distributions of individual CFV change. But unlike 0eBBN , 
this model can represent dynamically changing causal structures with evolving VSC 
and extends the representation capability of conventional BBN. Accordingly, agents 
can use the following theorem to estimate the impact of outside uncertain factors on 
the commitment it holds. 

Theorem 4. .,,)),1(1()1(
1

S
ijji

x
l

jjii AASAAxPexP

ij
ji

∈∈=−== ∏
∈
=
π

 

Theorem 4 can be proved using Theorems 2 and 3, Lemma 1, Definitions 4 and 5, 
and Eq. (1) in Subsection 4.1. The apparent similarity of Theorem 4 and Eq. (1) is 
due to the fact that all agents in 1MASCM  paired with 1=jil  form a VSC which can 

be modeled by . Therefore, The belief updates in 1eBBN  can be carried our in a way 
similar to 0eBBN , provided the values of jil  are properly determined. 

5 Experiment 

Limited computer simulations have been conducted to validate our theoretical models 
and to see if the system performance can be improved when some of these algorithms 
are used. In this section, we briefly discuss the simulation and experiment result. 
 

The implemented MASCM consists of eight different agents. They sit at three dif-
ferent tiers. At Tier 0, there is only one end customer agent. At Tier 1, there are three 
agents. They are suppliers of the end customer agents. At Tier 2, there are four 
agents. Agents have known their direct customer and suppliers at system design time. 
When there is an end order arrives, the inter-connected OFPs will be triggered and an 
evolving VSC emerges.  Each agent has similar architectures to complete an OFP 
with three processes inside, a supplier selection procedure, a customer relationship 
management process, and a local order fulfillment decision process. The system satis-
fied all of the assumptions we listed in Section 4, thus it can be modeled by an 

1eBBN . 
 
 We intend to compare different information cooperation schemas in an uncertain 

environment based on the model of 1eBBN . The uncertain environment here is meas-
ured by the rate of unexpected events that occurring in the agents at Tier 2 during the 
time period between an end order’s arrival and its disappearance. The unexpected 
events represent the uncontrollable factors from inside or outside of MASCM that are 
observed by agents. These events change the possibility of the on-going OFP that the 
agent is currently processing. Use the term of 1eBBN , these changes update the fail-
ure probability distribution of variable of ix  

 



  

Two cooperation schemas in the experiment represent the most likely long-term 
cooperation strategies in terms of supply chain management. The first one is that 
agent will notify others whenever there are some observed changes that might cause 
the OFP not to be finished according to the original negotiated contracts; in the sec-
ond schema, an agent notifies the others when an OFP has been finalized, that is, 
either is successfully accomplished or aborted in the half way. We called these two 
schemas as S1 and S2 respectively. 

 
In the experiment we compare two schemas by counting the ratio of the number of 

successful accomplished orders to total incoming orders given certain amounts of 
unexpected events occurs during one end order life cycle. The ratio is defined as the 
system performance. The experiment shows without considering other factors, the 
overall system performance, which is measured by the rate or the percentage of all 
end orders that can be successfully fulfilled by the formed VSCs, is heavily affected 
by the number of unexpected events occurring in the system. The higher frequency of 
unexpected event occurs, the lower system performance is. However, our result also 
shows if agents interactions follow S1, and when algorithms discussed above are used 
in agent decision procedures, system performance can keep at a relatively stable level 
even when the number of total uncertain events increases. The following figure 
shows the comparison of system performance when agent interactions follow S1 and 
S2 as the number of unexpected events in the system increases with 1000 end orders. 
Additional experiments show that this trend continues when the number of end orders 
increased to 3000. 

System performance with 1000 end orders
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Fig. 4. System performance comparison in computer simulation 

 



  

6 Conclusions 

In the previous sections, we have discussed how to formalize agent interactions in a 
formed and evolving VSC in a 1MASCM  using conventional and extended BBN 
frameworks, 0eBBN  and 1eBBN , respectively. Model 0eBBN  establishes the theoreti-
cal basis to study agent interactions in an OFP. Model 1eBBN  further extends the 
representation capabilities of conventional BBN to describe the dynamically updating 
supply-demand relationship when interactions are exposed in an uncertain environ-
ment. These models can be used to help solving various supply chain management 
tasks, and several algorithms have been developed. They include algorithms for indi-
vidual agents to compute beliefs of their commitments based on beliefs of commit-
ments from their direct suppliers, to select prospective suppliers (either initially or 
when a previously selected supplier fails) during VSC evolution, to cancel an existing 
commitment based on the expected utility function, and algorithms to identify the 
most critical link (the agent in a VSC whose commitment has the highest failure 
probability) and the most fragile link (the agent in a VSC who is most responsible 
when the end order fails).  

 
Work reported in this paper represents the first step of our effort toward a com-

prehensive solution to the uncertain management in supply chain. One obvious limita-
tion of this work is with the assumptions made 1MASCM  and 1eBBN . Future work is 
needed to relax these restrictions so that more realistic situations can be modeled. 
This include allowing each agent to received multiple orders from more than one 
direct customers at the same time, and each type of product to supplied by more than 
one suppliers in a VSC. These may be achieved by extending our models from Noisy-
Or like networks to more general ones with more complex conditional probability 
distributions. Also, one of the important uncertainty source, agents’ strategic actions 
based on its internal decision process, are not included in the representation. How to 
incorporate these actions into our uncertainty models, and what information sharing 
rules and algorithms are needed for that purpose is another direction of further inves-
tigation.   

Acknowledgement. The authors would like to thank Rakesh Mohan, Reed 
Letsinger, and Tim Finin for their valuable contributions to this research. 

References 
1. H. L. Lee, V. Padmanabhan, and S. Whang, “The Bullwhip Effect in Supply Chains,” 

Sloan Management Reviews, Spring, pp. 46-49, 1997  
2. R. E. Neapolitan, Probabilistic Reasoning in Expert System: theory and algorithms, John 

Willey & Sons, Inc, 1989. 
3. K. P. Murphy, “A Brief Introduction to Graphical Models and Bayesian Networks,” 

http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html. 



  

4. E. Horvitz, “Thinking Ahead: Continual Computation Policies for Allocating Offline and 
Real-Time Resources,” in Proceedings of the Sixteenth International Joint Conference on 
Artificial Intelligence, IJCAI '99, pp. 1280-1286, 1999 

5. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, “The Lumiere Project: 
Bayesian User Modeling for Inferring the Goals and Needs of Software Users,” in Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 1068-
1069, July 1998.  

6. J. Stutz, W. Taylor, and P. Cheeseman, “AutoClass C: General Information,” http://ic-
www.arc.nasa.gov/ic/ projects/bayes-group/autoclass/autoclass-cprogram.html#AutoClass 
C. 

7. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 
Morgan Kauffman, CA, 1988. 

8. Y. Peng, and J. Reggia, Abductive Inference Model for Diagnostic Problem Solving, 
Springer-Verlag, New York, 1990. 

9. T. J. Strader, F. Lin, and M. J. Shaw, “Simulation of Order Fulfillment in -Divergent As-
sembly Supply Chains,” Journal of Artificial Societies and Social Simulation, Vol. 1, No. 
2, pp. 36-37, 1998. 

 


