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Abstract. We describe a research project on resolving semantic differ-
ences for multi-agent systems (MAS) in electronic commerce. The a p -
proach can be characterized as follows: (1) agents in a MAS may have 
their own specific ontologies defined on top of a shared base ontology; 
(2) concepts in these ontologies are represented as frame -like structures 
based on DAML+OIL language; (3) the semantic differences between 
agents are resolved at runtime through inter-agent communication; and 
(4) the resolution is viewed as an abductive inference process, and thus 
necessarily involves approximation reas oning. 

1   Introduction 

Understanding the meaning of messages exchanged between software agents has 
long been recognized as a key challenge to interoperable multi-agent systems (MAS). 
Forcing all agents to use a common vocabulary defined in shared ontologies is an 
oversimplified solution when agents are designed independently. This is the case for 
agent applications in E-Commerce which (1) is a huge, open marketplace accommodat-
ing many companies capable of entering and leaving the market freely; (2) involves  
dynamic  partnerships which are formed and dissolved easily and frequently; and (3) 
contains heterogeneous  representations of agents for different enterprises [4].  It is, 
therefore, impractical to restrict all agents to use the same vocabulary or to require the 
availability of inter-ontology translation services prior to the deployment of the agent 
systems. Semantic differences between individual agents in the system should be 



allowed and be resolved when they arise during agent interaction. These points are 
captured by the following assumptions, which are similar to those made in [1, 20]:  

1. Interacting agents share one or more base ontologies;  
2. Agents use different ontologies defined on top of the base ontology; and  
3. Runtime, semantic res olution is unavoidable. 

Assumption 1 is reasonable because it is hard to imagine heterogeneous agents built 
in a total vacuum – at least some shared vocabulary and understanding of that vo-
cabulary should be assumed. The base ontology can be viewed as an ontology for a 
community, it defines general terms shared by members of that community, and should 
be relatively stable (any change must be based on a community-wide consensus). It 
can be defined either in some agreed-upon ontology specification languages (e.g., 
Ontolingua [7] or DAML+OIL) or in some other forms (e.g., WordNet, a natural lan-
guage-based taxonomy, as in work in [1]). Assumption 2 allows each agent to develop 
its own specialized vocabulary, reflecting its particular needs or perspectives. Usually, 
the agent-specific ontologies are changed more frequently than the base ontology. 
Since these ontologies are defined on top of the base ontologies, they are also called 
differentiated ontologies in the literature [20].  

Research work on ontology engineering attempts, in part, to provide semantics for 
information exchanged over the Internet [5, 6, 12]. The most noticeable, recent devel-
opment in this direction is the Semantic Web effort jointly launched by W3C [2, 16], 
the DARPA Agent Markup Language Project [5], and EU’s  Information Society Tech-
nologies Program (IST) [12]. One result from this effort is the set of DAML+OIL speci-
fications, a language for ontology definition, manipulation, and reasoning [5]. Al-
though the technologies developed in this effort are aimed at ma king Web pages u n-
derstandable by programs, they may serve, we believe, as a basis for resolving sema n-
tic differences between heterogeneous agents. However, additional methodology and 
mechanisms need to be developed if semantic resolution is to be done at runtime 
through agent interaction. This is the primary objective of our project, which is per-
formed jointly by The Laboratory for Advanced Information Technology at UMBC 
and the Manufacturing Systems Integration Division at NIST.  

The rest of this paper is organized as follows. Section 2 further motivates our ap-
proach for semantic resolution with a simple E-Commerce scenario of buying and sell-
ing computers over the internet; Section 3 describes how the base and agent -specific 
ontologies are defined using DAML+OIL language; Section 4 defines the two basic 
operations needed for our semantic resolution approach; Section 5 presents an agent 
communication protocol; and Section 6 outlines several approximate alg orithms for 
semantic mapping. Section 7 concludes the paper with directions of future research. 

2  A Simple E-Commerce Scenario 

Consider the following simple, E-Commerce scenario of RFQ (Request For Quote) 
involving two agents: the buyer A1 representing a whosaler of computers and the 
seller A2 representing a computer manufacturer. Both A1 and A2 share a common 



ontology ONT-0, which gives semantics of some basic terms that describe business 
transactions such as RFQ and generic names for computer systems and components 
such as notebooks, CPU, and memory. Each of the two agents has its own specialized 
ontology. ONT-1 defines semantics of products to order for A1, organized to meet the 
intended usage of its customers. ONT-2 defines items in the product catalog for A2, 
based on technical specifications of manufactured computer systems.   

 
 

 
 

 
 
 

 
 
 
 
Suppose A1 sends an RFQ to A2 for a number of “PC_for_Gamers”, a term defined in 
ONT-1. Before A2 can determine a quote, it needs to understand what A1 means by 
this term and if a semantically similar term is in its catalog as defined in ONT-2. We use 
phrase “Semantic Resolution” for the process of identifying the meaning of terms 
defined in different ontologies and, if possible,  matching these terms semantically.  

3 Ontology Design and Representation 

The bulk of the base ontology ONT-0 is devoted to define the common terms for com-
puter systems and their components. Here we adopt part of the classification of 
UNSPSC (Universal Standard Products and Services Classification Code by United 
Nations Development Program and Dun & Bradstreet) [19], and organize these terms 
as a taxonomy. For example, “notebook-computers” is defined as a subclass of “com-
puters”, which is in turn defined a subclass of “Hardware”, etc. Common terms used in 
RFQ such as price, weight, size, date, are also defined in ONT-0.  

Agent specific ontologies ONT-1 and ONT-2 define terms that reflect  different 
views of A1 and A2, respectively, of computer systems. As a computer retailer, A1 
names their computer systems according to different usage of these comp uters by its 
cus tomer, e.g., “PC for Gamers”, PC for Family”, “PC for Students”, etc. On the other 
hand, A2, as a computer manufacturer, organizes its catalog of products according to 
their technical and configuration specifications, e.g., “Entry Level”, Professional 
Level”, “Portable”, etc.  ONT-1 and ONT-2 organize their respective terms into tax-
onomies. In addition, each term is also given a set of properties. Therefore, each term 
is defined by the set of its superclasses in the taxonomy and its properties. Also note 
that, these two agent specific ontologies are defined on top of the base ontology 
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Figure 1.  A simple RFQ scenario involving two agents 



ONT-0, this can be seen in the example in Figure 2 where the term “PC for Gamers” in 
ONT-1 is defined in part by terms from ONT-0. 

Although some researchers have used full first-order logic for ontology representa-
tion (see Ontolingua [7]), the current trend has been to use description logics (DL) of 
different flavors [5, 6, 17 - 20]. DAML+OIL can be seen as a combination of DL and 
web standards such as RDF, RDF Schema [10], and XML. One of its useful features is 
the use of namespaces to reference individual ontologies. We use ns0, ns1, and ns2 as 
namespaces for the three ontologies ONT-0, ONT-1, and ONT-2 in the above E-
Commerce scenario.  

The following is an example of an XML-encoded DAML+OIL definition of a class 
of  “PC_for_Gamers” in ONT-1. Symbols starting with “#” are terms defined in the 
home ontology ONT-1, whose namespace ns1 is omitted, and prefix symbols “daml” 
and “rdfs” denote namespaces for DAML and RDF Schema specification, their URIs 
(e.g., xmlns:daml = http://www.daml.org/2001/03/daml+oil#) are given as part of XML 
Schema at the beginning of the ontology definition.  

In essence, this definition says that the concept of “PC_for_Gamers” is a sub-class 
of “Computers-to-order” in ONT-1 and sub-class of “Workstations, desktop-
computers” defined in ONT-0, with “good video card”, “good sound card”, and “fast 
CPU”, the meanings of these terms are also defined in ONT-1, the home ontology and 
ONT-0, the base ontology. 

 
<daml:Class rdf:ID=”PC_for_Gamers “>  

<rdfs:subClassOf rdf:resource=”#Computers -to -order”/>           
<rdfs:subClassOf rdf:resource=” 
      ns0: Workstations, desktop -computers “/> 
<rdfs:subClassOf>  
      <daml:Restriction> 
           <daml:onPr operty rdf:resource=”ns0:hasVideoCard”/> 
               <daml:hasValue rdf:resource=”#GoodVideoCard “/> 

          </daml:Restriction> 
</rdfs:subClassOf> 

     <rdfs:subClassOf>  
     <daml:Restriction> 
          <daml:onProperty rdf:resource=”ns0:hasSoundca rd”/> 
          <daml:hasValue rdf:resource=”#GoodSoundcard”/> 
     </daml:Restriction> 
</rdfs:subClassOf> 

     <rdfs:subClassOf>  
     <daml:Restriction> 
          <daml:onProperty rdf:resource=”ns0:hasCPU”/> 
          <daml:hasValue rdf:resource=”#FastCPU “/> 
     </daml:Restriction> 
</rdfs:subClassOf> 

</daml:Class> 
 
 

Figure 2.  An example ONT-1 class defined in DAML-OIL. 



4 Operations for Semantic Resolution 

Our approach to semantic resolution is motivated by the way humans resolve their 
semantic differences. When two people engage in a conversation and one does not 
understand a term mentioned by the other, the listener would ask  the other to clarify or 
explain the meaning of the term. The other person would try to answer it by define the 
term in terms she thinks the listener would understand. If the answer is not under-
stood, more questions may follow. This process may continue until the term in ques-
tion is completely understood (either the term is mapped to one the listener is familiar 
with or a new term with clear semantics is learned) or the listener gives it up. The lis-
tener can understand a foreign term because the two people share the meanings of 
some common terms, which we attempt to model by the base ontology in our ap-
proach. The process of achieving semantic resolution here involves two basic opera-
tions, Semantic Querying, which gradually reveals the definition of the foreign term in 
the terms of the base ontology, and Semantic Mapping, in which the definition of the 
foreign term is mapped to a term in the listener’s ontology. Each of these two op-
eraions has its own research issues. We briefly describe each in the following subs ec-
tions, and address technical issues involved in the subsequent sections. 

Semantic Querying. Following the example in the simple E-Commerce scenario, since 
A2 only understands ONT-0 and ONT-2, it does not understand the term such as 
ns1:PC_for_Gamers in the RFQ from A1 defined in ONT-1.  Similar to a conversation 
of two strangers, A2 would ask what A1 means by this term via some agent communi-
cation language. We call this process of obtaining the description of a term from a 
different ontology  Semantic Querying, and the two agent-specific ontologies ONT-1 
and ONT-2 in our example are called the source and target ontologies. The description 
of a source term includes both slot name and filler name of each slot in its definition in 
the source ontology. In our example, the first semantic query to A1 gives A2 the fol-
lowing information (with proper namespace designations).  

ns1:PC_for_Gamers 
 List of primitive super-classes 

• ns1: Computers-to-order 
• ns0:Workstations, desktop-computers  

List of properties 
• ns0:HasGraphics_card = ns1:GoodGraphicCard 
• ns0:HasSound_card = ns1:GoodSoundCard 
• ns0:HasCPU= ns1:FastCPU 
• ns0:Memory=ns1:BigMemory 

Additional queries on ns1 terms in the above description gives  

ns1:PC_for_Gamers 
List of primitive super-classes 

• ns1: Computers-to-order 
• ns0:Workstations, desktop-computers  
• ns0:Computers  



List of properties 
• ns0:HasGraphics_card = (ns0:size >= 1000) 
• ns0:HasSound_card = (ns0:size >= 24) 
• ns0:HasCPU = (ns0:size >= 1000) 
• ns0:Memory = (ns0:size >= 256). 

This can be viewed as an extended normal form of the given ONT-1 concept with re-
spect to ONT-01. 

Semantic Mapping. The extended normal form of ns1:PC_for_Gamers  from the  sema n-
tic querying step provides much information to A2. However, for A2 to truly under-
stand this concept, it needs to map or re-classify  this description into one or more 
concepts defined in its own ontology ONT-2. This is accomplished by the Semantic 
Mapping  step. Note that due to the structural differences, concepts from different 
ontologies are likely to match each other only partially.  

Semantic resolution is thus similar to abductive reasoning process, semantic querying 
corresponding to evidence collection, and semantic mapping to hypothesis genera-
tion. All partially matched target concepts are considered candidate or hypothesized 
maps of the source concept, each of which can explain the source concept to different 
degrees based on the base ontology. If the best candidate is satisfactory, then a quote 
is  generated by A2 and sent to A1. Otherwise, additional steps of inter-agent intera c-
tions may be taken. For example, if the best candidate, although unsatisfactory, is 
sufficiently better than all others, then its description is sent back to A1 for confirma-
tion. If the first few leading candidates have similar level of satisfaction, then ques-
tions that discriminate some candidates over others will be sent to A1. The details of 
the algorithms are described in Section 6.  

5    Communication Protocol for Semantic Resolution 

To support agent communication for both semantic querying and semantic mapping, 
we need to have (1) an agent communication language (ACL) to encode messages, (2) 
a content language to encode the content of a message, and (3) a communication pro-
tocol that specifies how these messages can be used for meaningful conversations. 
For reasons including clearly defined semantics and standardization support, we have 
selected FIPA ACL [9] as the ACL for our project. We choose DAML+OIL as the 
content language because it is also the language for ontology specification. The most 
relevant work to date on developing agent communication protocols for semantic 
resolution between  different ontologies can be found in [1]. Their Ontology Negotia-

                                                                 
1 In description logics, a normal (or canonical) form of a concept C consists of two 

lists: a list of all of C’s primitive super-classes and a list of all of C ’s properties, i n -
cluding those inhe rited from its super-classes. These two lists are called P  list and R 
list in this paper. 



tion Protocol is an extension of KQML [8] with additional performatives, such as Re-
quest Clarification, Clarification, Interpretation , Confirmation, etc.  

Our Semantic Resolution Protocol combines our earlier work [4] and the work in 
[1]. The design follows FIPA Interaction Protocol convention, which requires the defi-
nitions of (1) the acts involved in interaction processes, (2) the roles played by the 
actors in interaction processes, and (3) the phase transitions of the interaction pro c-
ess. There are two players in our  protocol (it may be easily extended to involving 
multiple players), the buyer (A1) and the seller (A2). The buyer plays the role of the 
initiator while the seller is the participant. Performatives used in the protocol repre-
sent the communicative acts intended by the players. The following FIPA performa-
tives are selected for the protocol. 

• call-for-proposal (CFP): the action of calling for proposals to perform a given ac-
tion. This is used by buyer to ask the seller to propose a quote for a RFQ. 

• propose: the action of submitting a proposal to perform a certain action, given 
certain preconditions. This is used to turn a proposed quote. 

• accept-proposal: the action of accepting a previously submitted proposal to per-
form an action. 

• reject-proposal: the action of rejecting a submitted proposal to perform an action  
• terminate: the action to finish the interaction process. 
• inform: the action of informing that certain propositions are believed true. 
• not-understood: the action of informing the other party that its message was not 

understood. This is used by the seller to request the buyer to send the descrip-
tion of a term it does not understand in the previous message. 

• query-if: The action of asking another agent whether or not a given proposition is 
true. This is used by the  seller in semantic mapping to ask the buyer to confirm if a 
candidate concept is an acceptable match for the given source concept. 

• confirm: the action of confirming that given propositions are believed to be true. 
This is used by the buyer to confirm a target concept received in the incoming 
“query-if” message from the seller.  

• disconfirm: the action of informing that given propositions are believed false 

The first 5 performatives are for RFQ; the rest are for semantic querying and mapping. 
(See [9] for a detailed description of these performatives.) The phase transitions in the 
protocol are given in the message-flow diagram in Figure 3. 

6 Algorithms for Semantic Mapping 

The objective of semantic resolution is to find a concept in the target ontology whose 
description best matches the description of a given concept defined in the source 
ontology. Because agent-specific ontologies often have different structures and use 
different concept names, concept matching is seldom exact. Partial matches, which can 
occur even if a single ontology is involved, become more prevalent when different 



agent-specific ontologies are involved.  Consequently, the simple techniques used in 
DL for partial matches (e.g., most general subsumees and most specific subsumer)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
are no longer adequate. Approximate reasoning that at least gives a ranking for all 
partially matched target concepts is required. Commonly used approximate reasoning 
techniques include rough set theory [18], fuzzy set theory [15], and probabilistic clas-
sification  [13, 15]. In many applications, these more formal approaches may not work, 
either because the assumptions made for them cannot be met or the information 
needed is not available. Heuristic approximation becomes necessary [18]. 

In this section, we focus on heuristic methods for approximating partial matches. 
The main algorithm subsumption (A, B, theta) is an extension of the structural compari-
son for subsumption operation in DL. It returns a numeric score, theta, in [0, 1] that 
quantifies the degree that concept A subsumes concept B. In DL, A subsumes B if 
and only if every object in A is also an object in B. A structural comparison a pproach 
[3, 11] works with normal forms of concepts, which include a list of all primitive super-

Fig. 3.  State transition diagram of the Semantic Resolution Pro tocol 
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classes  S  and  a list of all properties P for a concept, and requires that (1) Sa is a sub-
set of Sb, and (2) constraints on Pb is compatible  with (i.e., is at least as strict as) that 
of Pa. These requirements cannot be established logically if the normal forms of A and 
B involve terms from different ontologies. This can be seen by comparing the extended 
normal form of ns1:PC_for_Gamers in Section 4 obtained via semantic querying opera-
tion and the extended normal form for ns2:Professional_Use_Desktop given below. 
Besides ns0 terms, these two normal forms contain ns1 and ns2 terms from ONT-1 and 
ONT-2, respectively.  

ns2:Professional _Use_Desktop 
List of primitive super-classes 

• ns2:Desktop 
• ns0:Workstations, desktop-computers  
• ns2:Copmuter_Systems  
• ns0:Computers  

List of properties 
• ProductName = “xxx4” 
• ProductNumber = “yyy4” 
• ns0:HasSound_card = (ns0:size = 24) 
• ns0:HasCPU = (ns0:size = 1800) 
• ns0:Memory = (ns0:size = 512) 
• ns0:Price = (ns0:size = 2300) 
• ns2:HasColorMonitor = subproperty(ns0: HasMonitor ns0:size = 19) 

One may suggest that we ignore all of these ns1 and ns2 terms and conduct the sub-
sumption operation based solely on those ns0 terms. However, doing so would over-
look the important information on the structural differences. Moreover, it is generally 
believed that if two concepts are far apart in structure, they are less likely to match 
each other, even if they agree well on terms of the base ontology. In what follows we 
describe the methods to compute a measure to compare two concepts’ P and R lists 
and the method to combine them into a single score.  

Comparing the superclass lists Sa and Sb . The objective of this comparison is to obtain 
a measure for the degree that Sa is a subset of Sb . First, we check if any member Sa_i 
in Sa is logically inconsistent with any  member Sb_j in Sb, e.g., if (and Sa_i  Sb_j) is 
unsatisfiable. One type of inconsistency would be that Sa_i and Sb_j are disjoint. For 
example, as defined in ONTO_0, “ns0:Notebook-computers”, “ns0:Workstations, 
desktop-computers”, and “ns0:Servers” are disjoint with each other. If inconsistency 
is detected, then A cannot subsume B. Otherwise, we proceed to compute a heuristic 
measure of the degree that Sa is a subset of Sb (e.g., the d egree that A subsumes B in 
terms of their respective super classes).  





∩
−

=
otherwiseSaSbSa

ntinconsisteareSbandSaif
SbSameasureinclusion

||/||
1

),(_  

If this measure is –1, then the entire matching process stops (no comparison of proper-
ties will be performed), and returns –1, meaning that A cannot subsume B. 



This measure is 1 when Sa is a subset of Sb, 0 if none of the members of Sa is also 
a member of Sb. One benefit of this heuristic rule is that is can be viewed as the condi-
tional probability Pr(x in Sb | x in Sa) when members of Sa and Sb are treated as sam-
ple points from the same space. This allows us to generalize the measure with more 
sophisticated probabilistic computation when the interdependency of these members 
are known.  

Applying this rule to our example of ns1:PC_for_Gamers and ns2:Professional_ 
Use_Desktop, we have the inclusion measure of 2/3 because 2 of the 3 members in 
superclass list of the former are members of superclass list of the latter. 

Comparing the property lists Pa and Pb. This comparison is done in two steps.  

Step 1: Identify all matching pairs between Pa_i in Pa and Pb_j in Pb. Pa_i 
matches Pb_j if 1) they have the identical property name, including the name space, or 
2) Pb_j is a sub-property of Pa_i or vise versa. For any Pa_i in Pa that does not pair 
with any member of Pb, then a measure of –1 is given for that Pa_i.  

Step 2: Compute compatibility measure for each matching pair Pa_i in Pa and Pb_j 
in Pb.  If their constraints (i.e., cardinalities and value ranges) are incompatible (i.e., the 
logical expressions of their constraints are not satisfiable simultaneously). If incom-
patibility is detected, a measure of –1 is given to that Pa_i. Otherwise (i.e., they are 
compatible), use some  heuristic rule to compute a (positive) measure for that pair. This 
is summarized by the following rule. 


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where ijαα  is the overlapping ratio between range_i and range_j, which can be com-

puted by additional rules that handle different types of value ranges such as close 
intervals, open intervals, and intervals involving infinities. 

Applying this rule to our example, we have one –1 measure (for GraphicCard) and 
three 1 measures (for all other proerties).  

Combining comparison results. When inclusion_measure retunes a positive value, 
then this value and all measures of property comparisons (some may be positive and 
some may be negative) are combined to generate an overall score. Here we use rules 
similar to those given for certainty factors in MYCIN. First, each measure is given a 
weight iw , reflecting the importance that property is for establishing subsumption 

relation for concept A. Recall that each measure is for one property (plus one more for 
superclass) of A. Therefore, there are total of |Pa| + 1 weights. When such weights are 
not provided by the designer of the ontology of A, we use 1/(|Pa| + 1) as the default 
weight for each of them. Then the combination takes the following steps  

Step 1: Combine all positive measures as )1(11 iii measurewC ⋅−Π−= , and com-

bine all negative measures as 1)1(2 −⋅+Π= jji measurewC . 



Step 2: Combine C1 and C2 as |})2||,1min{|1/()21( CCCCC −+=  

Step 3: Finally, normalize C by the weights as   ))1(1/( ii wCCN −Π−= , where, i  

is over all |Pa| + 1 weights. CN  is then returned as theta, the final score of A subsum-
ing B. The rationale for normalization is that when all measure are +1 then CN  = 1, and 
when all measures are –1 then CN  = –1. 

Applying this rule to our example, we have five measures (2/3, -1, 1, 1, 1), each with 
a weight 1/5. This yields C1  = 0.55626, C2  = -0.2, C  = 0.4457, and the overall score CN  
= 0.6629. 
Search for the plausible subsumees. The semantic resolution seeks a most plausible 
target concept B that either approximately subsumes or is subsumed by A, as meas-
ured by the heuristic score theta. Finding the most plausible subsumee can be done by 
a depth-first search plus backtracking or more efficiently by a best-first style search of 
the target ontology graph. Candidate target concepts are normalized when they are 
generated during the search.  

7   Conclusions 

The work presented in this paper represents the first step of our ongoing effort toward 
a comprehensive solution to the problem of semantic resolution. Many issues, both 
practical and theoretical, remain to be addressed. To answer some of them, we will 
continue our project along the following directions. First, we plan to build a prototype 
agent system based on the approach outlined in this paper. This system will be used 
as a testbed to validate the methods we develop and to test emerging tools and ap-
pro aches. It can also serve as a bridge connecting the research community and the 
industry by incorporating ontologies of real-world enterprises engaged in E-Commerce 
activities. Second, we plan to develop a more formal treatment for approximating se-
mantic ma pping with partially matched concepts. One approach is to incorporate prob-
ability theory, in particular the Bayesian belief network [13, 14], into the ontology class 
hierarchies. Finally, we plan to extend the semantic res olution process to become a 
cycle of hypothesize-and-test, as with most abductive, evidential reasoning systems. 
Instead of separating semantic querying and mapping as two steps, they will be inter-
woven together so that additional evidence will be collected only when it is needed, 
and the hypothesized mappings are refined and discriminated against each other with 
each new evidence until the solution is gradually emerged [14].  

Disclaimer 

Certain commercial software products are identified in this paper.  These products 
were used only for demonstrations purposes.  This use does not imply approval or 
endorsement by NIST, nor does it imply that these products are necessarily the best 
available for the purpose. 
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