
ocietal pressures to reduce healthcare costs, coupled with
the pharmaceutical industry’s need to maintain its eco-
nomic incentive to develop new drugs, have required that
the industry increase speed to market and reduce the

number of failures and overall cost of new drug development.
This need has made it imperative for the industry to use effi-
cient, systematic approaches to both drug discovery and for-
mulation design.

To accelerate drug discovery, scientists now use high-
throughput biological screens and combinatorial chemistry that
lead to the rapid discovery and identification of numerous po-
tentially useful drugs. Given this high rate of discovery, drug
delivery system development for these drug substances—rather
than drug discovery itself—is likely to be the rate-limiting step
in getting new drugs to market.

Drug substances must be formulated into dosage forms to
be practical. These dosage forms must meet the prescribed drug
delivery requirements as well as be manufacturable. These re-
quirements present formulation scientists with a complex array
of variables. The days of the traditional trial-and-error approach
to formulation development based on individual formulators’
experiences are gone, and pharmaceutical scientists must adopt
efficient, systematic approaches to keep pace with both the num-
bers and complexity of new therapeutic substances. Indeed, the
challenge to drug delivery has grown significantly in recent years
as new, more-potent compounds are being developed that often
lack the solubility and permeability characteristics needed for
effective oral drug delivery.

Capsules occupy a central role in drug development. Because
they are perceived to be simpler to manufacture than other oral
dosage forms and because of the need to shorten the overall de-
velopment period, capsules are frequently the first dosage form
considered for any orally administered drug, often with the ex-
pectation that a compressed tablet will be the final marketed
form. Among solid dosage forms, the capsule is second only to
the compressed tablet in terms of frequency of use. Given the
unique advantages of this dosage form, the popularity of the cap-
sule should not be surprising. For instance, because the medi-
cation is contained within the capsule shell, the capsule provides
a tasteless, odorless delivery system that doesn’t require a sec-
ondary coating step. Many patients find that swallowing capsules
is easier than swallowing tablets. Furthermore, several surveys
have revealed a generally favorable consumer attitude toward
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capsules (1,2). From the formulator’s
point of view, hard-shell capsules provide
unique capa-bilities and options for
dosage form design and formulation. For
instance, there is no need to design a com-
pact that must withstand the handling needed for a compressed
tablet. Thus, with the appropriate choice of excipients, it may be
possible to direct-fill into capsules many large-dose actives that
could not be tableted without a granulation step. Modern 
capsule-filling machines also enable the multiple filling of beads,
granules, tablets, powders, and pumpable liquids into hard shells.
This capability provides the formulator with numerous options
for designing unique delivery systems or simply for separating
incompatible substances within the same capsule.

Even though hard gelatin capsules are perceived to be a simple
dosage form, the design of formulations for the capsules can
present significant challenges to the formulator. For example,
problems such as ingredient compatibility and stability, powder
blending and homogeneity, and powder fluidity and lubrication
are frequently encountered and must be addressed during any
attempt to design production-feasible formulations. The ability
to measure accurate and precise volumes of a powder or granu-
lar mass and the ability to quantitatively transfer such dry solids
to capsule shells are the determining factors in weight variation,
and to a degree, content uniformity. In addition, the same for-
mulation may be required to run on machines that use differ-
ent dosing principles and have various operating characteris-
tics. Not only must formulations be designed to successfully run
in the production environment, but their ability to function as
drug delivery systems must not be compromised by poor for-
mulation design and failure to properly account for the inter-
play of formulation and process variables.

Instrumented capsule-filling machines (3–6) enable the mea-
surement of force-displacement relationships in plug for-
mation and ejection and have supported the development of
capsule-filling-machine simulation (7,8). These developments
have provided important insights into the interplay between
formulation and machine-operating variables that, when cou-
pled with an understanding of biopharmaceutical principles
(9) and powerful software-driven decision-making and opti-
mization tools, lead to logical and deliberate decisions to facil-
itate systematic formulation design. This article addresses the
application of decision-making tools such as expert systems
(ESs) and artificial neural networks (ANNs) to the develop-
ment of optimal formulations for hard gelatin capsules.

Artificial intelligence systems in the form of ESs have begun
to be used only to provide support for the formulation process.

An ES is an intelligent computer program that
attempts to capture the expertise of those who
have knowledge and experience in a well-
defined domain (e.g., capsule formulation)
(10). It is designed to simulate the experts’
problem-solving process. A well-designed ES
can shorten development time, simplify for-
mulations, provide the rationale for decisions
made while arriving at a formulation, serve
as an excellent teaching tool for novices, and
accumulate and preserve the knowledge and
experience of experts. However, ESs are not
creative—they can deal only with situations
that have been anticipated. They must be de-
signed to handle every contingency.

Another form of artificial intelligence is the ANN. ANNs are
computer programs that attempt to simulate certain aspects of
human thinking such as learning, generalizing, predicting, or
abstracting from experience (11). They can discern relation-
ships of patterns in response to exposure to facts (i.e., learn-
ing). With ANNs, the data and information generated during
experimental work may be transformed relatively easily into
knowledge, enabling the formulator to at least construct a few
domain-specific rules for future cases or to predict the proper-
ties of a hypothetical formulation.

CAPEX, Capsugel’s ES for formulation support, is a central-
ized system that incorporates worldwide industrial experience
to support the formulation of powders in hard gelatin capsules
(12,13). With Capsugel’s sponsorship, this program was started
at the University of London and later was supported by efforts
of the University of Kyoto and the University of Maryland. From
its origins at the University of London, this ES has been under
continuous development and enhancement through additional
research and a series of panel meetings in Europe, Japan, and
the United States that involve industrial, regulatory, and acade-
mic experts. In addition, the system’s conversion to a Microsoft
Windows–based platform significantly enhanced its ease of use
by formulators. However, it cannot be said that the evolution-
ary development of the system is complete. Expert panel meet-
ings continue to identify areas that must be enhanced.

Ostensibly, a formulation recommended by CAPEX will run
successfully, but one cannot be certain unless it is tried. In fact,
“to run successfully” is never defined. For example, one might
ask whether the recommended formulation can run in any ma-
chine or whether the recommended formulation meets content
uniformity and weight variation specifications. Not only must
formulations be designed to successfully run in the production
environment, but they also must be able to meet their design
criteria in other areas, particularly in how they function as drug
delivery systems. The current CAPEX system provides no guid-
ance or assurance that the recommended formulation will meet
a particular drug release (i.e., dissolution) requirement as well
as exhibit content uniformity or weight variation within user-
specified limits.

A proposal has been made to use an intelligent hybrid sys-
tem to link the current ES to an ANN (see Figure 1). Potentially,
this system can address the above two limitations and provide

The components of an input package are
� name of the drug
� particle size (�m)
� solubility (mg/mL)
� specific surface area (m2/g)
� intrinsic dissolution rate (mg/min/cm2)
� desired tolerance and confidence limits for

content uniformity
� tolerance � (�z) (% CV)

� dose (mg) and permeability (cm/s)
� tapped density (g/mL).

Input package
The components of a simplified filler system are

Drug dose volume: �250 mL �1000 mL
Filler F-Sol: fine particle size

50% anhydrous lactose (fine grade)
50% Emcocel 50

Filler M-Sol: medium particle size
50% anhydrous lactose (medium grade)
50% Emcocel 90M

Drug dose volume: �1000 mL
Filler F-Insol: fine particle size

75% anhydrous lactose (fine grade)
25% Emcocel 50

Filler M-Insol: medium particle size
75% anhydrous lactose (medium grade)
25% Emcocel 90M.

Simplified filler system
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a facilitated way to generate new rules on the basis of “learn-
ing.” Moreover, the development of a hybrid system that inte-
grates an ANN with an ES can take advantage of the strengths
of both systems and avoid the weaknesses of either (10,14).

Early on, the panel of experts decided to focus on Class II
drugs as described in the Biopharmaceutics Classification Sys-
tem (BCS) (see Figure 2). The BCS organizes orally adminis-
tered drugs into four classes according to their solubility (high
or low) and permeability (high or low), thereby giving formu-
lation scientists the ability to judge the likely contribution of
dissolution rate, solubility, and intestinal permeability to oral
drug absorption (9). Solubility is expressed in both BCS and

MES as a dose volume (i.e., the minimum volume in mL of sol-
vent required to dissolve the dose). In the BCS, a drug is con-
sidered to have low solubility if the dose volume calculated from
its minimum solubility in the pH range of 1–8 at 37� is greater
than 250 mL for the largest strength manufactured. If that value
is �250 mL, the drug is considered to have high solubility. Class
I drugs (high solubility and high permeability) are likely to ex-
hibit few bioavailability problems, but Class II drugs (low solu-
bility and high permeability) are prone to dissolution rate–
limited absorption. Class III drugs (high solubility and low 
permeability) are likely to exhibit permeation rate–limited ab-
sorption. Class IV drugs (low solubility and low permeability)
may present serious obstacles to oral bioavailability, and some
may be best formulated in a solubilized form such as a liquid-
filled or semisolid-filled capsule. For Class II drugs, however,
the dissolution rate clearly is a critical parameter that must be
monitored because it may directly affect oral bioavailability.
Thus, during the development of the prototype hybrid system,
piroxicam (low solubility and high permeability) was chosen
as the model drug to represent BCS Class II, and the dissolu-
tion rate was chosen as the dependent factor to monitor any ef-
fects of changes in the formulation parameters.

To scale down the magnitude of this effort, the panel pro-
posed first to develop a model expert system (MES) modeled
on the CAPEX system (see Figure 3). The MES was to be simi-
lar to the CAPEX system but limited in scope. The panel ex-
pected that given certain input information (see “Input pack-
age” sidebar), the MES could make choices within a limited
space and recommend a formulation. Its known source code
would enable and facilitate the development of an appropriate
link to the ANN.

Because the objective of this research was to demonstrate the
feasibility of developing a hybrid system through the creation
of a working prototype, the following simplifying assumptions
were made in the development of the MES:
� Only directly fillable formulations were considered (i.e., granu-

lation was not an option).
� No incompatibilities existed between the excipients and the

active ingredient.
� A simplified blend-uniformity model could be applied.
� Fillers could be simplified to microcrystalline cellulose

(MCC)–anhydrous lactose blends. If low dose, more anhy-
drous lactose is required; if high dose, more MCC is required
to enhance the compactability of the formulation (e.g., if drug
has lower solubility, more anhydrous lactose is expected to aid
dissolution. If drug particle size is smaller, a finer particle-
size grade of filler is selected to help maintain blend unifor-
mity. If the dose is high, more MCC may be required to en-
hance the compactibility of the formulation) (see “Simplified
filler system” sidebar and Figure 2).

Materials and methods
Materials and encapsulation conditions. Piroxicam was supplied
by Pfizer (Groton, CT), and MCC (Emcocel 90M and Emcocel
50) was obtained from Penwest Pharmaceuticals Co. (Patter-
son, NY). Anhydrous lactose (direct-tableting grade) was 
purchased from Quest International (Norwich, NY). Fine-

Table I: Parameter adjuster. The following parameters
may be changed by the user during reformulation.

Minimum
Formulation Amount Allowed
Parameter Range to Change
MCC*/anhydrous 10–100 5%
lactose
SSF**/MS† 0–100 10%
Particle size 5–150 10%
Lubricant level 0.2–2.0 0.1%
Wetting agent 0.1–1.0 0.1%
Disintegrant 4.0–12.0 2.0%

*MCC � microcrystalline cellulose
**SSF � sodium stearyl fumarate
†MS � magnesium stearate.
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Figure 1: An overview of a hybrid system.
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Figure 2: Biopharmaceutics Classification System.
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particle-size anhydrous lactose was prepared by passing the lat-
ter product through a 100-mesh sieve.

A fully instrumented Zanasi LZ/64 dosator machine (IMA
North America, Fairfield, CT) was used to manufacture the cap-
sules (4,15). Data were acquired by means of a laboratory com-
puter using LabView hardware and software (National Instru-
ments, Inc., Austin, TX). During encapsulation, the compression

force was maintained at 	120 N. All capsules were size 1 (Cap-
sugel, Greenville, SC). The typical batch size was 1 kg. All batches
were prepared according to uniform procedures. All excipients
and piroxicam were of USP–NF grade. The dose of piroxicam
was 20 mg/capsule. After the encapsulation process was stabi-
lized as indicated by monitoring the compression/ejection–time
profile on the instrumentation system, 50 capsules were col-
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lected. The sample capsules were stored
in a plastic bag for future use.

Dissolution testing. Dissolution was per-
formed on a VanKel VK7000 apparatus
(VanKel, Edison, NJ). A peristaltic pump
(Rainin Instrument Co. Inc., Woburn,
MA) was coupled to a Shimadzu UV-
160U UV–vis spectrophotometer (Shi-
madzu Corp., Kyoto, Japan) with continu-
ous flow to provide drug dissolution data.
Dissolution conditions were as prescribed
for piroxicam in USP–NF (16): Appara-
tus I at 50 rpm and a dissolution medium
of simulated gastric fluid TS without
pepsin. The percentages of piroxicam dis-
solved in 10, 30, and 45 min were reported
as the means of six determinations.

Measurements of specific surface area.
Specific surface areas of piroxicam were
measured by using FlowSorb II 2300
(Micromeritics, Norcross, GA), and the
reported values are the means of three
measurements.

Measurement of plug-breaking force.
Plug-breaking forces were measured using
the 3-point flexure tester previously con-
structed at the University of Maryland
and described by Shah et al. (17). Ten
readings were averaged for each run.

Measurement of Carr’s compressibility
index (CI). As will be discussed, the flowa-
bility of formulations was estimated on
the basis of CI (18). The CI was calcu-
lated from the tapped (t) and loose (b)
bulk densities as follows:

The tapped and loose bulk densities were estimated by the
method described in USP–NF (16) using a Scott, Schaeffer, and
White paint pigment volumeter (Fisher Scientific, Springfield,
NJ) and the Stampf volumeter (Shandon Southern Instru-
ments, Inc., Sewickley, PA), respectively.

System design and architecture
A rule-based ES was developed in the Prolog computer lan-
guage and integrated with an ANN. These two components,
which comprise the decision module and the prediction mod-
ule, respectively, are connected by two information-exchange
paths to form a loop. The hybrid ES has three major compo-
nents: the MES module, the ANN module, and the control mod-
ule. The function of the MES is to make a recommended for-
mulation on the basis of the input package provided by users.
The following sections in this article will discuss each major
component of the MES. The control module sends the recom-
mended formulation to the ANN module, and the ANN pre-
dicts the dissolution performance of the recommended for-

CI �
(t 
 b )

t
� 100

mulation. Once the control module receives the prediction from
the ANN, it compares the prediction with the desired target dis-
solution performance and decides whether it is acceptable. If
the predicted dissolution performance does not meet the de-
sired target, then the control module provides guidance to im-
prove dissolution and sends the information to the MES to 
require reformulation. The control module guides the opti-
mization process until either a satisfactory formulation is found
or the optimization is terminated by the user.

In addition to the three major components, another neces-
sary module is the parameter-adjustment module, which ad-
justs the formulation parameters when the control module re-
jects the recommended formulation (see Figure 1 and Table I).
For immediate-release capsule formulation, the most common
problem is to increase the dissolution rate; thus, the parame-
ters will be changed in the specified manner to cause the dis-
solution rate to increase. Moreover, only one parameter, cho-
sen by the user, is allowed to change at a time, and each time
the chosen parameter changes by a fixed amount or percentage
that is predetermined according to each parameter.

MES. MES, the formulation decision module, provides deci-
sion rules for formulation recommendation. After reading input
from users, the MES derives a recommended capsule formula-

Table II: Central composite design. 
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tion on the basis of the input package provided by the user. In
addition, it conducts the reformulation task when the control
module rejects the initial recommended formulation. At first,
when an MES receives the input package, it generates a random
number to be the unique identification (ID) to reference for
this drug during inference. The MES also converts the drug
specifications in the input package to Prolog predictions (with
the ID tag) and inserts them into the knowledge base as facts.
After this preparation, the drug’s BCS classification is deter-
mined. If it is a Class II drug, then the MES is used; otherwise
one implements the CAPEX system.

Inside the MES formulation system, the process of deriving
the recommended formulation uses various modules on the
basis of information from the input package and the user’s re-
sponses to questions. To improve the efficiency of the hybrid
system, the MES has been programmed into various routes ac-
cording to the dose range, i.e., low, moderate, and high dose.
For low-dose drugs (�50 mg), the MES proceeds first through

the content-uniformity module to determine whether it is nec-
essary to change the particle size of the active ingredient to meet
the required limit of content uniformity (19,20). Also for the
low-dose formulation, the ordered mixing module will ensure
that an appropriate procedure is chosen to achieve the requi-
site blend uniformity (21,22). Three blending methods are sug-
gested: interactive physical blending, liquid addition, and wet
granulation. The user selects one method and, after executing
that process, must enter the potency and the tapped and bulk
densities of the resulting ordered mix before the MES can con-
tinue on to the direct-fill (DF) module. Because ordered mix-
ing generally is not required for moderate- (50–100 mg) and
high-dose (100–1000 mg) drugs, such drugs go directly to the
DF module to be formulated. For very high dose drugs (�1000
mg), the MES suggests cutting the dose in half before moving
into the DF module. If the latter is not acceptable to the user,
then granulation will be required and the MES sends the user
out of the system. As discussed previously, granulation has not
been included in this prototype.

In the DF module all formulation parameters are to be de-
fined such as the levels of glidant, lubricant, disintegrant, dilu-
ent, the capsule size, and the filler. Moreover, the DF module
provides a feedback loop on the basis of attaining at least a speci-
fied minimum plug mechanical strength. If the user cannot at-
tain that value, then the MES sends the user out of the system
to consider granulation. As shown in Figure 3, all formulation
parameters are defined according to the drug’s flowability, wet-
tability, and dose volume in relation to solubility and particle
size. After completing these computing and reasoning steps, the
MES provides the capsule size and respective weight of each
component of the recommended formulation.

Unlike other ESs that are constructed with decision trees,
this MES is constructed as a rule-based system, encoded in Pro-
log. Such implementation gives an MES quite a few advantages
over other ESs. First, knowledge is separated from the infer-
ence engine, thus the designer must provide only the knowl-
edge base because the inference mechanism is provided by the
language package. Second, the modularity of knowledge cod-
ing is an advantage. The rules are local and relatively inde-
pendent of the inference engine, thus making it easy to main-
tain and update the knowledge base. Third, a Prolog rule-based
system is more expressive than a decision-tree system, i.e., it
can represent more-complicated decision logic and more-
abstract situations, thereby providing the system with broader
applicability to complex formulation problems. Finally, the
Prolog rule-based system has strong programming support.
Because Prolog is the primary language for knowledge-based
system development, it is easy to find tools to interface with
code in other computing languages (e.g., VB, C, Java), which
leaves more room for flexible interface design and further 
development.

ANN. The ANN module, using backpropagation learning (11),
is the property prediction module that maps the relationship
between formulation parameters and the desired response. In
this case, dissolution has been mapped. On the basis of that
mapping, the ANN provides a prediction of the dissolution per-
formance of the formulation recommended by the MES. The

Table III: Chakravarty design.
X1 X2 X3 X4 X5 X6 X7

1 
1 
1 
1 
1 
1 
1 
1
2 
1 
1 0 0 1 0 0
3 
1 
1 1 1 0 1 1
4 
1 1 
1 0 0 0 1
5 
1 1 0 1 
1 1 
1
6 
1 1 1 
1 1 
1 0
7 
1 1 
1 1 1 0 
1
8 
1 1 0 
1 0 1 0
9 
1 1 1 0 
1 
1 1

10 1 
1 
1 1 0 
1 0
11 1 
1 0 
1 
1 0 1
12 1 
1 1 0 1 1 
1
13 1 1 
1 
1 1 1 1
14 1 1 0 0 0 
1 
1
15 1 1 1 1 
1 0 0
16 1 1 
1 0 
1 1 0
17 1 1 0 1 1 
1 1
18 1 1 1 
1 0 0 
1

Table IV: Box-Behnken design.
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only way the ANN can map out the causal association between
the formulation and the outcome in the capsule formulation
system is through a training process using experimental data.
For the ANN to have sufficient predictive power, it is extremely
important that sufficient data from well-designed experiments
are provided to train the ANN. In the present research, that
training was conducted with three experimental data sets using
piroxicam as the model drug. The data sets represent response
surface designs developed to reflect the mapping from variables
such as filler type–ratio, lubrication systems, drug particle
size–specific surface area, disintegrants and surfactants, to the
dissolution of the model compound.

The neural network architecture used in the ANN module is
a backpropagation learning network. This network learns ac-
curate mapping between input and output patterns in the train-
ing samples by error backpropagation and computes the out-
put from a given input pattern by forward computing. The
training of a network by backpropagation involves three stages:
the feedforward of the input training pattern, the calculation
and backpropagation of the associated error, and the adjust-
ment of the weights. After training, application of the ANN in-
volves only the computations of the feedforward phase.

Control module. Driven by the discrepancy between the de-
sired and predicted outcomes, the control module controls the
entire optimization process in the hybrid ES. The control mod-
ule converts the formulation from the MES to input to the ANN
and then calls the ANN module to compute the predicted dis-
solution rate. It also asks for the user’s acceptance of the cur-
rently recommended formulation on the basis of the predicted
dissolution rate. If the user authorizes acceptance of the for-
mulation, then the control module will terminate the formu-
lation process and send the recommended formulation out, al-
though this is not the usual case. In most instances, the control
module compares the predicted performance of the recom-
mended formulation with the desirable properties of the tar-
get formulation and decides whether the recommended for-
mulation is acceptable, and if not, what should be done to
improve it. Then it will present a set of choices of parameter
adjustments to users for improving the dissolution rate and

later reenters the MES for reformulation with the parameter
adjustment(s) selected by the user. The control module then
repeats this procedure until either a satisfactory formulation is
found that meets the desired dissolution requirement or the
optimization is terminated by the user.

Training data set and training
As mentioned previously, the quality of the training data and
the number of batches will affect the prediction power of the
ANN dramatically. Considering the high cost of experimental
batches, the best way to deliver as much information as possi-
ble in a given series of experimental batches is to use statistical
experimental design to develop and generate the training data.
In the present study, three experimental designs were applied:
central composite (face centered) as described in Table II, L18c-
Chakravarty as described in Table III, and Box-Behnken as de-
scribed in Table IV. The first set of batches was previously re-
ported data generated from the same laboratory and used the
same procedures and the same capsule-filling machine (23).
The surface area of the piroxicam samples was measured to nor-
malize all training batches, and it also was used in the training
data set as an independent variable.

Nine independent variables were investigated, and the disso-
lution rate, expressed as percentage of piroxicam dissolved in 10,
30, and 45 min, was monitored as the dependent variable. The
capsules were filled using a dosator-type automatic filling ma-
chine. A total of 63 experimental batches was used to train the
ANN. The sidebar “Summary of the variables and levels of the
training-data set” lists the independent variables and their levels.

The training parameters (number of hidden layer, hidden
nodes, type of training function, training time, training rate,
and training slope) can greatly affect the prediction power of
the trained ANN. By exploring various combinations of these
parameters while monitoring the system error, the optimum
values for these training parameters were chosen on the basis
of maintaining the lowest system error. The values are
� input layer: 9 neurons
� output layer: 3 neurons
� hidden layer: 9 neurons
� activation function: sigmoid
� training time: 2 K
� training slope: 0.2
� training method: sequential training.

Validation of the hybrid system
The best available method to check the predictability of an
ANN and test the functionality of the hybrid system is cross-
validation. Typically, 8–10% of all available samples are ran-
domly selected and set aside to serve as the cross-validation
set. The cross-validation set thus does not participate in train-
ing; instead, these data serve as test samples with which to chal-
lenge the predictability of the trained ANN. In the present
study, data from five batches (	8% of the total number of avail-
able batches) were set aside for cross-validation. The data from
the remaining 58 batches were used to train the ANN in opti-
mal training conditions. The trained ANN then was used to
predict the dissolution performance of the five batches that

Experimental batches: 66
Responses (output fields): 3

Percent dissolved in 10, 30, and 45 min
Independent variables (input fields): 9

� Filler particle size (�m) (60, 100)
� Disintegrant type (Explotab, Ac-Di-Sol)
� Lubricant level, percentage (0, 0.3, 0.5, 0.6, 0.7, 1.0)
� Lubricant (binary mixture of SSF and MS) (% SSF) (0, 50, 100)
� Percentage of anhydrous lactose in anhydrous lactose–MCC blend (0, 50,

100)
� Percentage of disintegrant level (3, 4, 5, 6, 8, 9, 12)
� Wetting agent, percentage of sodium lauryl sulfate (0, 0.2, 0.3, 0.5, 0.6,

0.7, 1.0)
� Specific surface area (piroxicam) (m2/g) (1.61, 2.46, 2.77, 3.31)
� Lubricant blending time (min) (2, 3, 10, 18).

Summary of the variables and levels 
of the training data set
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were set aside and not used in the training of the ANN. The
predicted performance then was compared with the experi-
mentally determined dissolution data for these batches.

First the model statistics were checked during the training.
Model statistics data as listed in Table V show that the training
parameters chosen led to very low system error. In other words,
the value of the training set R2 is very close to 100. The com-

parison data as listed in Table VI reveal that the percent dis-
solved at 10 min for four of the five validation sets all were
within 5.8%. For all validation batches, the percent dissolved at
30 min was within 6.8%, and the percent dissolved at 45 min
was within 4.7%. Considering the normal variability of real dis-
solution data, an ANN may be reasonably capable of both map-
ping out the relationship among the formulation parameters

Table V: Model statistics of the training in the validation.
Validation result

Validation sample 8 independent parameters, 8% test samples

Training condition hidden layer 1
hidden nodes 9
slope 0.2
max system error 0.00002
max iteration 2000

Model statistics

Train set D10 Source of Variation Sum of Squares Degrees of Freedom Mean Squares Computed f Ratio
Model 5180.478419 91 56.928334 
20.054639
Error 82.321186 
29 
2.838662
Total 5263.05686 62

Train set R2 � 98.435867

Train set D30 Source of Variation Sum of Squares Degrees of Freedom Mean Squares Computed f Ratio
Model 4890.023722 91 53.736524 
113.335896
Error 13.749917 
29 
0.474135
Total 4892.435171 62

Train set R2 � 99.718956

Train set D45 Source of Variation Sum of Squares Degrees of Freedom Mean Squares Computed f Ratio
Model 4378.119973 91 48.111208 
25.734494
Error 54.216145 
29 
1.869522
Total 4673.725971 62

Train set R2 � 98.83998

D10 � Percentage of piroxicam dissolved in 10 min.
D30 � Percentage of piroxicam dissolved in 30 min.
D45 � Percentage of piroxicam dissolved in 45 min.

Table VI: The validation result.
D10 D10 (predicted) Error D30 D30 (predicted) Error D45 D45 (predicted) Error
64.98 65.35 
0.37 82.66 80.69 1.97 85.50 85.72 
0.22
63.76 57.93 5.83 77.02 70.96 6.06 79.49 75.71 3.78
67.07 61.64 5.43 80.65 75.70 4.95 85.19 80.47 4.72
59.06 63.45 
4.39 86.88 87.54 
0.74 92.62 92.96 
0.34
72.05 65.38 6.67 90.84 89.92 0.92 95.31 94.74 0.57

D10 � Percentage of piroxicam dissolved in 10 min.
D30 � Percentage of piroxicam dissolved in 30 min.
D45 � Percentage of piroxicam dissolved in 45 min.

Table VII: Validation of a hybrid system.
D10 Experiment Error D30 Experiment Error D45 Experiment Error
67.55 71.01 3.46 86.54 94.43 7.89 97.11 99.07 1.96
67.88 66.55 1.33 87.00 92.23 5.23 96.60 96.69 0.09
72.27 72.41 0.14 90.64 94.94 4.30 95.99 98.73 2.74

D10 � Percentage of piroxicam dissolved in 10 min.
D30 � Percentage of piroxicam dissolved in 30 min.
D45 � Percentage of piroxicam dissolved in 45 min.
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and dissolution rate and making an acceptable prediction of
dissolution performance for the drug in question.

As stated earlier in this article, the ultimate goal of the hybrid
system is to help product-development scientists design a for-
mulation to meet certain design criteria. The development of
an ANN with suitable predictability achieves only part of that
goal. The hybrid system should be able to design a formulation
on the basis of the design criteria, and experimental testing of
the recommended formulation should match the design crite-
ria and confirm the prediction of the ANN. To validate this ca-
pability, the hybrid system was tested by manufacturing and lab-
oratory testing of the predicted formulations. Three target
dissolution rates were fed into the system, and three batches of
capsules were made on the basis of the formulations recom-
mended by the hybrid system. These formulations were manu-
factured and tested using the previously described methods and
procedures. The experimental results were compared with the
design criteria; Table VII lists the data. This comparison reveals
that for the percentage of drug dissolved in 10 min, the differ-
ences between the design criteria and the experimental result
are �3.46%; for the percentage dissolved at 30 min, the differ-
ences are �7.89%; and for the percentage dissolved at 45 min,
the differences are �2.74%. These results demonstrate that the
hybrid system can map out the relationship between the for-
mulation variables and piroxicam dissolution from direct-filled
hard gelatin capsules. It also can predict the dissolution rate of
the capsule formulation with good accuracy and derive the rec-
ommended formulation to match the design criteria.

Conclusion
A prototype intelligent hybrid system was created for develop-
ing direct-fill formulations for hard gelatin capsules by linking
a decision module (i.e., an ES) with a prediction module (i.e.,
an ANN). Through validation, the hybrid system was proved
capable of yielding formulations of a model BCS Class II drug,
piroxicam, that meet specific drug dissolution performance cri-
teria. Although this research was limited to a single drug, it is
believed that the system can be generalized to be predictive of
other BCS Class II drugs, perhaps on the basis of the wettabil-
ity, intrinsic dissolution rate, and other properties of drugs
within certain subclasses. Research aimed at generalization to
other BCS II drugs is currently ongoing in our laboratory.

Clearly, the integration of a decision module with a predic-
tion module potentially can support functions beyond the cur-
rent ES (CAPEX) that would significantly enhance formulation
development. The most important among these is the imple-
mentation of a formulate-and-evaluate cycle that simulates the
product-development process of the human formulator. Thus,
formulation development no longer would be a one-step process
as it is with CAPEX, but rather an iterative process in which a
formulation can be incrementally improved. The quality of the
output can be improved further by taking advantage of the
learning capability of the system, which would allow the deci-
sion process to be modified on the basis of its past performance.
The framework of such a hybrid system also could be extended
to incorporate other intelligent modules such as optimization
or the development of other dosage forms.

Acknowledgments
The authors gratefully acknowledge Capsugel, a Division of
Pfizer Inc., for financial support and Pfizer Central Research
for the gift of piroxicam.

References
1. A.B.A. Overguard, J. Moller-Sonnergaard, and L.L. Christrup, “Pa-

tients’ Evaluation of Shape, Size, and Color of Solid Dosage Forms,”
Pharm. World Sci. 23 (5), 185–188 (2001).

2. Burke Marketing Research,“Consumer Attitudes Toward Solid Forms
of Medication,” BMR reports #48–203, March 1983.

3. G.C. Cole and G. May, “The Instrumentation of a Zanasi LZ/64 
Capsule-Filling Machine,” J. Pharm. Pharmacol. 27, 353–358 (1975).

4. L.E. Small and L.L. Augsburger, “Instrumentation of An Automatic
Capsule-Filling Machine,” J. Pharm. Sci. 66, 504–509 (1977).

5. A. Mehta and L.L. Augsburger, “Simultaneous Measurement of Force
and Displacement in an Automatic Capsule-Filling Machine,” Int. J.
Pharm. 4, 347–351 (l980).

6. J.W. Cropp, L.L. Augsburger, and K. Marshall, “Simultaneous Moni-
toring of Tamping Force and Piston Displacement (F-D) on an
Hofliger-Karg Capsule-Filling Machine,” Int. J. Pharm. 71, 127–136
(1991).

7. J.R. Britten and M.I. Barnet, “Development and Validation of a 
Capsule-Filling Machine Simulator,” Int. J. Pharm. 71, R5–R8 (1991).

8. P.K. Heda, F.X. Muller, and L.L. Augsburger,“Capsule-Filling Machine
Simulation I: Low-Force Compression Physics Relevant to Plug For-
mation,” Pharm. Devel. Tech. 4 (2), 209–219 (1999).

9. G.L. Amidon et al., “A Theoretical Basis for a Biopharmaceutic Drug
Classification: The Correlation of In Vitro Drug Product Dissolution
and In Vivo Bioavailability,” Pharm. Res. 12, 413–420 (1995).

10. Turban, Expert Systems and Applied Artificial Intelligence (Macmillan
Publishing Co., New York, NY, 1992).

11. J.L. McClelland and D.E. Rumelhart, Explorations in Parallel Distribu-
ted Processing (MIT Press, Cambridge, MA, 1988).

12. S. Lai et al., “An Expert System to Aid the Development of Capsule
Formulations,” Pharm. Tech. Eur. 8 (Oct.), 60–68 (1996).

13. Capsugel Inc., Expert System for Formulation Support (Capsugel Li-
brary, Greenwood, SC, 1996).

14. M. Caudill, “Expert Networks,” in Neural Network PC Tools: A Practi-
cal Guide, R.C. Eberhart and R.W. Dobbins, Eds. (Academic Press,
New York, NY, 1990), pp. 189–214.

15. J.E. Botzolakis, “Studies on the Mechanism of Disintegrant and Sur-
factant Action in Encapsulated Dosage Forms,” PhD dissertation, Uni-
versity of Maryland, Baltimore, MD, 1985.

16. USP 24–NF 19 (United States Pharmacopeial Convention, Inc.,
Rockville, MD), (2000).

17. K.B. Shah, L.L. Augsburger, and K. Marshall,“An Investigation of Some
Factors Influencing Plug Formation and Fill Weight in a Dosing Disk-
Type Automatic Capsule-Filling Machine,” J. Pharm. Sci. 75, 291–296
(1986).

18. R.L. Carr, “Evaluating Flow Properties of Solids,” Chem. Eng. 72,
163–168 (1965).

19. M.C.R. Johnson, “Particle-Size Distribution of the Active Ingredient
for Solid Dosage Forms of Low Dosage,” Pharm. Acta. Helv. 47, 546–559
(1972).

20. J.N. Staniforth,“Order out of Chaos,” J. Pharm. Pharmaco. 39, 329–334
(1987).

21. M.J. Crooks and R. Ho, “Ordered Mixing in Direct Compression of
Tablets,” Powder Tech. 1, 161–167 (1976).

22. J. Verraes and R. Kinget, “Ordered Powder Mixing: Theory and Prac-
tice,” Int. J. Pharm. Tech. Prod. Mfr. 1 (3), 36–41 (1980).

23. D.A. Piscitelli et al.,“The Impact of Formulation and Process Changes
on In Vitro Dissolution and Bioequivalence of Piroxicam Capsules,”
Pharm. Devel. Tech. 3 (4), 443–452 (1998). PT


