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ABSTRACT 
 
In this paper, we describe a hybrid intelligent system for 
formulation of BCS Class II drugs in hard gelatin cap-
sules. Several significant challenges are involved in drug-
formulation: the active ingredients and the fillers in the 
capsule must be chemically compatible according to bio-
pharmaceutical principles; the formulation must be manu-
facturable; and it must meet the prescribed drug delivery 
requirement. Traditional trial and error approach to drug-
formulation design is too costly and time consuming to 
meet the increasing demand for new drugs. To answer 
these challenges, we have developed a prototype hybrid 
intelligent system for automatic drug formulation. This 
system consists of a rule-based Expert System (ES) that 
conducts formulation design according to biopharmaceu-
tical principles, and a neural network (NN) that predicts 
the quality of the formulation recommended by ES. 
Through interaction between the two modules, the hybrid 
system forms a (re) formulation-prediction cycle, and the 
quality of the formulation is improved with each iteration. 
The hybrid system is tested with sample drugs and is 
shown to be able to produce formulations with desirable 
performance measures. 
 

1. INTRODUCTION 
 
Most of the traditional expert systems have been based on 
symbolic logic-based knowledge representations such as 
rules. Such systems are good at capturing well-structured 
domain knowledge and experts’ decision process but often 
perform poorly when used to model complex processes or 
interrelations. Neural networks (NN), on the other hand, 
are strong in discerning complex relationships between 
patterns through learning even when such relationships 
are ill structured or poorly understood. It has been widely 
accepted that a hybrid system consisting of both ES and 
NN may work much better than using each alone [3,6]. 
Many such hybrid systems have been reported in the lit-
erature, in which ES and NN are collaborated in different 
ways to achieve a common goal. One example of such 
hybrid systems is an auto-insurance claim processing sys-
tem where the ES determines the responsibility and com-

pensation rates and the NN handles the uncertainty in-
volved and tunes the compensation rates [9]. Other ap-
proaches include using neural networks to learn the rules 
for expert systems [7], and using expert systems to predict 
the weights for neural networks [8]. 

The pharmaceutical industry has been using expert 
systems and neural networks as individual stand-alone 
systems for automating their basic operations. One of the 
basic manufacturing processes in pharmacy is the devel-
opment of drug formulation designs. Because of its varied 
physical and chemical properties, the actual therapeutic or 
medicinal substance (called active ingredients) may or 
may not be directly administrable to patients. Drug formu-
lation is the process of converting this drug substance into 
medicines that can be administered to the patients. The 
final form of the medicine, either capsules or tablets must 
meet the prescribed drug delivery requirements and 
should also conform to the physical limits of the manufac-
turing process.  

Despite the perception of capsules being simpler in 
terms of accommodating large doses of drug in capsule 
shell (direct filling of powders, granules and pump-able 
liquids into the shell), the design of drug formulations for 
hard gelatin capsules can present significant challenges 
[4]. Some of these challenges are: 
� Selecting fillers (wetting agents, lubricants, disinte-

grants, etc.) needed to fill the capsule and maintaining 
compatibility amongst these ingredients;  

� Measuring accurate quantities of ingredients; 
� Maintaining uniformity (so that each capsule contains 

the prescribed amount of the active ingredient) in dif-
ferent manufacturing environments with varying dos-
age principles and operating characteristics; 

� Meeting specific drug delivery performance design 
criteria (such as dissolution rate in human body). 
Pfizer’s Capsugel division, a leader in capsule manu-

facture and formulation has made pioneering efforts to-
wards developing intelligent systems for automatic drug 
formulation in hard gelatin capsules. One such system, 
CAPsugel EXpert, is a decision tree-based ES that is able 
to make good formulation recommendations for certain 
class of drugs based on formulation knowledge collected 

 



from experts in a network of over a dozen of international 
leading pharmaceutical companies [1,5].  

Ostensibly, the formulations recommended by 
CAPEX satisfy ingredient compatible constraints. How-
ever, due to the complex relationship between the formu-
lation parameters (i.e., types and quantities of excipients, 
the size of capsules, etc.) and the performance measures 
(e.g., content uniformity and dissolution rate), the quality 
and feasibility of this formulation is not certain unless 
capsules with this formulation are actually manufactured 
and physically tested. If the lab test results are not satis-
factory, the drug needs to be re-formulated. In other 
words, systems like CAPEX only automate half of the 
formulation process and leave the important half, the per-
formance validation, to lab experiments which are very 
expensive and time consuming.  

To answer these challenges, we have developed a 
prototype hybrid system that integrates a rule-based expert 
system and a backpropagation neural network for auto-
matic formulation of Biopharmaceutical Classification 
System (BCS) class II drugs. BCS class II drugs are the 
drugs with high solubility and low dose-volume [4]. By 
utilizing the strengths of both paradigms, this system not 
only can effectively generate drug formulations that meet 
the biopharmaceutical constraints, but also has the poten-
tial to provide a facilitated way of validating the perform-
ance of the recommended formulation through analysis of 
previously developed formulations. 

The rest of the paper explains various aspects of the 
hybrid expert. Section 2 describes the design and imple-
mentation of the system. Section 3 presents the test results 
and observations. Section 4 concludes with directions of 
future research. 
 

2. SYSTEM DESIGN AND IMPLEMENTATION 
 
Our hybrid expert system is designed to generate and 
validate drug-formulation designs for BCS class II. Pi-
roxicam, a class II drug is used as a sample drug in this 
paper. For a recommended formulation, the current proto-
type only validates the dissolution rate, which is one of 
the most crucial drug delivery requirements for class II 
drugs. As depicted in Figure 1, the system consists of four 
modules:  
� Formulation module (FM): a rule-base expert system 

which makes formulation recommendations based on 
logical rules that encodes formulation experts’ 
knowledge and experience; 

� Prediction module (PM): a backpropagation neural 
network which predicts dissolution rate of the rec-
ommended formulation using the mapping between 
formulation parameters and the dissolution rates 
learned from samples of lab test data; 

� Parameter adjustment module (PAM): it allows hu-
man formulators to adjust formulation parameters 
when the predicted performance is not acceptable; 

� Control module (CM): it integrates the other three 
modules via several information exchange channels 
and GUI windows. 
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In this system, the formulation process is a cycle of 
(re) formulation-prediction. It starts with input from the 
user of the basic information concerning the properties of 
the active ingredient (i.e., its dosage, particle size, desired 
dissolution rate) and excipients (e.g. wetting agents, lubri-
cants, disintegrants). The formulation module then makes 
a formulation recommendation based on the rules that 
capture the biopharmaceutical principles and the physical 
and chemical properties of these substances from the ex-
pert formulators. The recommended formulation is sent to 
the prediction module for computing the predicted disso-
lution rate. The predicted dissolution rate is subjected to 
the user’s inspection. If the user is not satisfied, he will be 
allowed to change the values of some parameters in the 
recommended formulation. The changed values are fed to 
the formulation module for re-formulation, and the cycle 
repeats. Re-formulation is necessary before going to NN 
again because the constraints between all substances (in-
gredient and excipients) that were previously satisfied 
may be invalidated by the selected new parameters.  

The details of each module are given in the subse-
quent subsections. 
 
2.1 Formulation Module 
 

The formulation knowledge encoded in this module is 
given in the form of a decision tree from domain experts. 
As depicted in Figure 2 below, the ES consists of several 
decision modules: 
� Content Uniformity (CU) 
� Ordered Mixing (OM) 
� Direct Fill (DF) 
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Figure 1. The Hybrid system architecture 

 



The ES also consists of conditions that are required for 
entering these modules. Based on the user input of basic 
information concerning the drug, the module first verifies 
the drug being formulated to be a class II drug. If the drug 
does not belong to class II, the system suggests the granu-
lation process, which is beyond the scope of the prototype 
system, and the system exits.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The decision tree may be a natural way to capture 
domain experts’ formulation decision process. However, 
as a knowledge representation paradigm to support intelli-
gent systems, this approach has its shortcomings. Among 
other things, a decision tree tightly couples the knowledge 
and the use of knowledge in individual decision paths; as 
a result all possible decision paths have to be explicitly 
enumerated in the tree. For this and other reasons, we 
have chosen the rule-based paradigm for the formulation 
module and implemented it in Prolog language.  

It is straightforward to translate the decision tree into 
Prolog rules as each rule roughly corresponds to a deci-
sion (together with its conditions). The advantage of using 
logic rules over decision trees can be best seen in re-
formulation process where user selects new parameter 
values to alter the dissolution rates of the current formula-
tion. To handle this new information in a decision tree, the 
decision process may need to be started all over gain 
along with the previously drawn conclusions discarded 
and user been repeatedly asked redundant questions. Al-
ternatively, the tree may be extended to include additional 
decision nodes and links, resulting in a much larger tree. 
Whereas in rule-based systems the new information can 
be incorporated by asserting new facts in the Prolog 
knowledge base and retracting or removing the facts as-
serted for the old parameter values. The new assertions 

will trigger the executions of only those rules that affect or 
utilize these parameters.  

To get the system started the user specifies physical 
and chemical properties of the drug in an input package. 
The input package consists of the name of the drug, drug-
dose, particle size of the drug, desired dissolution rate, 
specific surface area, content uniformity tolerance limits, 
permeability of the drug, bulk and tapped densities of the 
drug. The rule for CU module utilizes the java function 
responsible for computing a new particle size that con-
forms to the Content Uniformity limits. The user is 
prompted for the acceptance of this particle size. For 
drugs with small particle sizes, the control is passed on to 
the OM module. In order to increase the particle size, the 
OM module helps the user in selecting a blend-style to 
blend a proper excipient with the drug. The DF module 
prompts the user to enter various chemical and physical 
properties of the excipients and uses them to compute the 
exact percentages of the excipients to be added to the drug 
mixture. In the final stages of the formulation an appropri-
ate capsule size is recommended to the user. User can 
choose to select a bigger capsule size as per the needs. 
Depending upon the total capsule volume and densities 
and percent volume of excipients, quantities (in milli-
gram) of the excipient are computed. Final formulation is 
a tabulation of types and amounts of the excipient along 
with the intermediate results like Carr Index, capsule size 
etc. The formulation results are also written to the formu-
lation file for later references. 
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Figure 2. Decision tree for formulation 

 
2.2 Prediction Module  
 

The prediction module is a backpropagation (BP) neural 
network with hidden nodes. There are a number of neural 
network models that can learn mappings between input 
and output patterns from the training data, including the 
competitive learning networks, adaptive resonance theory 
networks, probabilistic networks, and counter-propagation 
networks, etc. We choose the backpropagation network 
for the following reasons: 
� It is the most powerful learning model in terms of the 

learning accuracy (it is known to be able to represent 
any L2 function to any given precision) while many 
others can only learn mappings that are linearly sepa-
rable.  

� It does not require prior knowledge of the relation-
ships between input and output variables as long as 
the training data contains all of the important factors 
that influence the value of the output variables. 

� It is flexible in terms of accommodating mixed data 
types (numeric, ordinal, range, etc.)  

� The learning algorithm has been well developed and 
it easy to use [2]. 
The neural network has two modes of operation, 

training and computation. The training component that 

 



exhibits the BP learning is implemented in C whereas 
computation component that computes the dissolution 
rates for a given input pattern is implemented in Java so 
that it can be invoked by the system via an interactive 
GUI. Each input pattern consists of nine independent vari-
ables charactering a drug formulation. These are the sur-
face area of the active ingredient, the filler particle size, 
and the types and percentages of various excipients. The 
output pattern includes the dissolution rate of the given 
formulation at three different time points (10, 30, and 45 
minutes). 

Table 1. Cross-Validation Results 

D10 D10 Error D30 D30 Error D45 D45 Error 

target (pre-
dicted)  target (pre-

dicted)  target (pre-
dicted)  

57.39 60.87 3.5 76.66 78.38 1.7 82.84 84.49 1.6 

71.70 67.64 4.1 94.29 89.00 5.3 98.51 93.78 4.7 

68.60 62.84 5.8 90.04 83.23 6.8 94.08 89.43 4.6 

67.18 66.89 0.3 89.58 88.89 0.7 93.89 93.88 0.0 

63.89 77.32 13.4 88.61 92.19 3.6 93.96 95.10 1.1 

2.3 Parameter Adjustment Module The quantity and quality of the training data affects 
the prediction accuracy of the neural network dramati-
cally. Considering the high cost of experimental batches, 
the best way to deliver as much information as possible in 
a given series of experimental batches is to use statistical 
experimental design to develop and generate the training 
data. Three statistical experimental designs are applied, 
which are Central Composite Design (face-centered), 
L18c-Chakravarty and Box-Behnken design. A total of 63 
samples were generated and used in NN training. 

 

This module is a Java GUI interface that enables the user 
to change the formulation parameters in order to increase 
or decrease dissolution rates. The six parameters that can 
affect the dissolution rate have been identified; they are 
the lubricant amount, lactose percent in MCC/Lactose 
ratio, filler particle size, disintegrant amount, wetting-
agent amount and SSF/MS ratio. The current implementa-
tion only allows the user to change one of the six parame-
ters at a time. This can be easily extended to allow the 
user to change multiple parameters simultaneously. The 
new value for the selected parameter is then fed to the 
formulation module to trigger a re-formulation. 

Various training parameters affect the training, in-
cluding the learning rate, slope of the sigmoid function of 
the hidden and output nodes, number of epochs/iterations, 
learning mode (batch/sequential) and number of hidden 
layers and hidden nodes at each layer. Several experi-
ments were conducted by varying the above parameters to 
select a best. The final combination chosen for training 
were: the network contains one hidden layer of 9 nodes, 
the training is done in sequential mode with learning rate 
of 0.2 and slope of 0.2; it stops at 2000 epochs. 

 
2.4 Control Module 
 

The control module, a Java GUI application, controls the 
cycle of the formulation-prediction process. Control mod-
ule provides an interface for the user to specify the input 
package to the system; it also renders various GUI that 
allows the user to interact with the system in terms of 
specifying the various physical and chemical properties of 
the drug and the excepients. Amongst the GUI classes, 
Prologfunctions class is the main file that starts the system 
and calls the ipPackage class that provides the user with 
the input package form. Gendialog class implements the 
functions that interface with the prolog predicates. Formu-
lation and drate classes render the GUI for formulation 
and dissolution rates results respectively. Ann class calls 
the neural network to the compute the predicted dissolu-
tion rate for the recommended formulation. Control mod-
ule also provides the information flow between the formu-
lation and prediction module. This is done by a java-
prolog interface with the help of a prolog file that contains 
definitions of the Java functions and the corresponding 
prolog predicates. In Windows environment, this file is 
compiled into a dynamically linked library file. 

To ensure that the trained mapping can be generalized 
to patterns unseen before, over-fitting should be avoided. 
To this end, we employed the commonly used cross-
validation in the training. 8-10% of available samples are 
randomly selected and set aside as the cross validation 
(CV) set. The CV set thus does not participate in training; 
instead it serves as a set of test samples with which to 
verify the neural network’s predictive power. Table 1 be-
low gives a set of cross-validation results with five (~8%) 
CV samples. The predicted dissolution rates were very 
close to the target values in the cross-validation set. 
In the table the data under the D** and predicted columns 
are the dissolution rates in 10, 30 and 45 minutes as pre-
dicted by the neural network and those under the columns 
D** and target are of dissolution rates of manufactured 
capsules generated by lab experiments. The results show 
that the predicted rates are very close to those from the 
actual lab tests (with the largest error of 6.8%). Consider-
ing the normal variance in real dissolution data and the 
size of the potential search space (~200,000), we can say 
that the trained NN with only 58 training samples demon-
strated a remarkable performance in predicting the disso-
lution rate for a given drug formulation.  

 
3. TEST RESULTS AND OBSERVATIONS 

 
The ultimate goal of the hybrid intelligent system is to 
help drug development scientists in designing formula-
tions that meet certain design criteria. The cross-validation 
test only tests the predictive power of the NN module. 
Additional tests were conducted that went through the  

 



entire hybrid system to see if it can generate drug formula-
tions conforming to the design criteria and to have the 
desired dissolution rates. In these tests, three different 
formulations of piroxicam were generated by the system 
with different user inputs, and their predicted dissolution 
rates computed by the NN module. Three batches of cap-
sules were manufactured and their dissolution rates meas-
ured at the lab. The comparison is given in Table 2.  

 

In the table, each formulation row consists of two sets 
of dissolution rates, one predicted by the neural network 
and the other obtained from the laboratory experiments. 
The table also recorded different amounts of some the 
excipients that produced the three different formulations. 
The comparison reveals that, except one entry for formu-
lation 3 at 30 minutes, the dissolution rates from the for-
mulations produced by the hybrid system were very close 
to the lab test. The encouraging results demonstrate that 
the hybrid system, through its formulation-prediction cy-
cles, is able to derive the recommended formulation to 
match the design criteria with good accuracy.  

 
4. CONCLUSION 

 
A prototype intelligent hybrid system is developed for 
automatic drug formulations in hard gelatin capsules. This 
system has the potential of supporting functions beyond 
the scope systems such as CAPEX that rely solely on a 
symbolic logic based paradigm. The formulation devel-
opment is an iterative process in which a formulation can 
be incrementally modified to improve its manufacturabil-
ity and its performance as drug delivery system. This may 
lead to a significant reduction of the number of lab tests 
needed to evaluate recommended formulation, and thus 
further cut the development cost and time.  

The quality of the output can be further improved by 
taking advantage of the learning capability of the system 
which would allow the decision process be modified 
based on its past performance. Such a hybrid system 
framework also has the potential to be extended to incor-
porate other intelligent modules, such as optimization or 
the development of other dosage forms. Although the sys-

tem is tested only with a single drug, its and underlying 
principle can be generalized to formulations of other BCS 
class II drugs by exploring some other biopharmaceutical 
principles involved in drug classification and formulation.  
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Table 2: Predicted v/s Lab dissolution rates 
filler size: 100 
%lactose: 30 
%lubricant: 4 

 Pre-
dicted 

lab-
result 

% 
Error 

%wetting 
agent 

% 
diluent 

d10 72.27 75.41 4.16 
d30 90.64 94.97 4.56 Formulation 

1 
d45 95.99 98.73 2.78 

0.1 0.9 

d10 67.88 66.55 2.00 
d30 87.00 92.23 5.67 Formulation 

2 
d45 96.60 96.69 0.09 

0.3 0.1 

d10 67.55 71.01 4.87 
d30 86.54 94.43 8.36 Formulation 

3 
d45 97.11 99.07 1.98 

0.5 0.1 


