
A Delegation Based Model for Distributed Trust

Lalana Kagal, Timothy Finin, Yun Peng
Computer Science and Electrical Engineering Department

University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

email : �lkagal1,finin,ypeng�@cs.umbc.edu
phone : 410-455-3971

fax : 410-455-3969

Abstract

In this paper we outline an infrastructure that facilitates se-
curity and trust management in a multi-agent system. Our
model eases the problem of authorization in a network of het-
erogeneous agents and also contains mechanisms for dele-
gation of authorization information. The framework allows
agents to exchange trust information using a series of Inter-
action Protocols based on FIPA (Foundation for Intelligent
Physical Agents) Interaction Protocols (FIPA 1998). It decen-
tralizes security decisions, enabling more than one agent to be
responsible for the validation of requests or for the delegation
of permissions. It is very flexible and encourages mobility be-
cause the process of requesting services and granting access
is divided into two independent steps. This allows an agent to
disconnect after the first step and reconnect elsewhere to con-
tinue the process of securing the service. The model also uses
a policy based approach, to specify rules for authorization
and delegation, and a distributed knowledge base, that con-
tains information about the interacting agents. We describe
an implemented system that incorporates our framework us-
ing X.509 certificates and a Prolog knowledge base.

Keywords
Authorization, security, distributed trust, agents, X.509

certificates, knowledge representation, role based, policy

Introduction
Authorization in a distributed system is quite different from
a centralized system. Traditionally, authorization is com-
posed of authentication and access control. The Access Con-
trol List (ACL) (J.K.Jan 1991; M.S.Hwang 1994), which
works by attaching access control information of the sub-
ject to the resource, is a popular approach. Role based
access control (Blaze, Feigenbaum, & Keromytis 1999;
Sandhu et al. 1996) is another scheme that has been widely
used. In this model, the the large number of users forces a
division into groups (or roles) and the access information is
attached to roles. However both these schemes are unable to

Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

To appear in Proceedings of The IJCAI-01 Workshop on Au-
tonomy, Delegation, and Control.

This research was supported in part by the IBM EECOMS pro-
gram and the DARPA DAML program under contract F30602-97-
1-0215

meet the requirements of a large distributed system because
the individuals that need to access the resource may not be
known ahead of time, so the ACL or role based information
cannot be formed. Also in a business environment, people
are frequently changing jobs or positions and roles.

We try to solve this problem through the application of a
chain of trust using rights and delegations. In this system,
we model permissions as the rights of an agent. We asso-
ciate rights with actions, so possession of a right permits the
corresponding agent to perform a certain action. We are cur-
rently exploring the use of obligations and the repercussions
of failing to fulfill obligations.

Rights or privileges can be given to trusted agents that are
then responsible for agents they may delegate this right to.
So the agents will only delegate to agents that they trust.
This forms a delegation chain. If any agent along this chain
fails to meet the requirements associated with a delegated
right, the chain is broken and all agents following the failure
are not permitted to perform the action associated with the
right.

This paper is organized as follows : Related Work dis-
cusses other similar approaches, and The Problem discusses
the problem and the two scenarios we target. We describe
our infrastructure briefly in Infrastructure, the knowledge
base is described in Knowledge Base and the policy being
used in Policy. Ontology explains our ontology and Interac-
tion Protocol discusses our protocols for agent communica-
tion. We explain the software used for each component in
Implementation Details. Future Work is a discussion of fu-
ture research directions, and Conclusion contains the sum-
mary of our work.

Related Work
Blaze, who coined the term Distributed Trust Manage-
ment, tries to solve the problem by the access checking
method, but without any authentication (M.Blaze 1996;
Blaze et al. 1998). The Simple Public Key Infrastruc-
ture (SPKI) was the first proposed standard for distributed
trust management (Ellison et al. 1998). This solution,
though simple and elegant, does not help in delegations.
W. Johnston’s Use-Condition Centered Approach (Johnston
& Larsen 1996) uses certificates for use-conditions that
are created by those responsible for the resources. This
can only be used when the resource is simple enough to



be described by use-conditions, but in large systems there
could be many types of access like read, write, execute
etc. Another trust management system is TE (Herzberg
et al. 2000) from IBM. This s not able to address all
the relevant issues because it considers only role authoriza-
tion. Delegation logics (Li, Feigenbaum, & Grosof 1999;
Grosof & Labrou 1999), from IBM, is very similar to our
approach, however is not able to capture adequately the con-
straints associated with rights and delegations.

The above mentioned models are very powerful, how-
ever they do not meet all the requirements of trust manage-
ment. Generally security systems should not only authenti-
cate users, but also allow users to delegate their rights and
beliefs to other users securely and provide a flexible mech-
anism for this delegation. The above systems either support
only authentication ignoring delegation altogether, or sup-
port delegation to some extent without providing the flex-
ibility needed, or do not provide sufficient restrictions on
delegation of rights.

We drew on the key points of most of the above-
mentioned schemes and designed an infrastructure that uses
X.509 certificates and policies to enforce security. A pol-
icy contains basic/axiomatic rights, rights associated with
roles, rules for delegation, and rules for checking the va-
lidity of requests. X.509 certificates are used not only for
identity purposes, but also for authorization and delegation.
Our system allows agents to delegate any right that they may
have. Whether these delegations are honored depends on the
policy. Constraints can be added to both the actual delega-
tion and to the delegatee, tightening control on the rights and
permissions. In our model, we use a ’redelegatable’ flag that
controls whether the right can be further delegated. We have
found that these features of our system address the main
issues of trust management, authentication and delegation,
successfully.

The Problem
We have tried to solve the problem of authorization and del-
egation in a system that consists of widely distributed re-
sources and agents. There are two scenarios that we have
tackled; a home/office automation model and an electronic
supply chain management system like EECOMS (Inger-
soll Rand 2000). We have been successful in implementing
the EECOMS scenario and are currently working on an of-
fice automation scenario with BlueTooth (Bluetoothwebsite
2001) enabled devices.

EECOMS : IBM project
This work is sponsored by the CIIMPLEX consortium (In-
gersoll Rand 2000) for the Extended Enterprise COali-
tion for Integrated Collaborative Manufacturing Systems
(EECOMS) project which is aimed at providing a set of tech-
nologies for integrated supply chain and business to business
electronic commerce.

The EECOMS project deals with trust establishment in
a supply chain management system. Generally, buyers and
suppliers need to share certain information with each other.
Our system sets up authorization and delegation rules, so

that this information may be accessed only by those au-
thorized to do so. Special intelligent agents called ’secu-
rity agents’ are required for authentication and authorization
within a particular domain, and are trusted within and out-
side the group/company. They also represent the company
in some sense. The security agent of the buyer can give the
security agent of the supplier the permission to access cer-
tain information, and the ability to delegate this right. The
supplier’s security agent can delegate this right to some of
its employees based on the policy. This security agent is
responsible for all accesses coming from its company. The
employees can further delegate this right forming a chain of
delegation from the buyer to the supplier to its employees.
If at any point the delegation fails or is revoked the access
cannot go through. The same holds if the situation is re-
versed and the supplier gives the buyer access to some of its
resources.

The system consists of a network of heterogeneous agents
that interact to perform certain actions that may or may
not need authorization. The main problem is guaranteeing
the authenticity of requests between these agents, whether
within a group/company or between one or more companies.
The security agents of a company follow the company pol-
icy. This policy describes certain rules for rights, delegation
and reasoning about them (refer to Policy). These security
agents enforce the security policy of the company. The pol-
icy is not changed frequently and usually involves human
intervention. To expedite the identification of each agent,
we assume that every agent has an Identity Certificate (ID)
issued by a trusted Certificate Authority (CA).

Home/Office Automation

Our architecture could apply to the wireless world in the fol-
lowing scenario. If a visiting lecturer at a University needs to
use a projector in a lecture hall, she/he needs to be delegated
the right by some authorized personnel. If the policy states
that all professors can use the projector and that professors
can delegate this right to the lecturer, the lecturer can obtain
the ’token’ from a professor. Using a hand-held device such
as a PDA, mobile phone etc. the visitor beams her/his identi-
fying token to the projector along with the delegation token.
The projector may or may not have the processing power
to reason about these certificates and rights. If it does not
have the capability, the agent in the projector sends the to-
ken (using wireless or wire line communication) to a ’smart’
agent that evaluates the request and returns the result. The
agent that does the reasoning needs to check the identity of
the requester and then make sure that the requester has the
right to access the projector. In this case, the requester has
been delegated the right by a professor, so the agent should
verify that the professor has the right to delegate. Once the
request is validated, the visitor can beam her/his slides to the
projector agent that starts up the presentation.

We have started experimenting with Bluetooth (Blue-
toothwebsite 2001) and believe that the above scenario is
not too far in the future (Lalana Kagal 2001; Chen &
Chakraborty 2001).



Infrastructure
Our architecture assumes that each group of agents, known
as policy domains, is protected by one or more security
agents. These agents are responsible for authorizing access
to services/resources within that group. These agents access
the policy and knowledge base associated with the domain.
The knowledge base, encoded in Prolog, contains informa-
tion about the agents in the domain, including their name,
role/position, age and other characteristics associated with
an employee . All delegations are stored with the security
agents, which have the ability to reason about them. An
agent (requester) can execute a right or access a resource by
providing it’s identity information to the security agent. The
security agent checks this information for validity and reads
its policies to verify that the requester has the right. If the re-
questing agent does not have the right, the security agent re-
turns an error message. Otherwise it forwards the request to
the agent in charge of the resource, the accessor agent, along
with a message indicating that the request is authorized by
the security agent. As the security agent is trusted by every
other agent in the system, the requesting agent is granted
access. If the accessor agent has the computing power to
reason about certificates, rights and delegations the request
can be sent directly to it, instead of via the security agent.

The requester can also obtain access to a certain resource
that it previously could not access, through a delegation from
an authorized agent (delegator). An authorized agent (an
agent with the ability to delegate a certain right) delegates
the right by sending a message to the security agent. The del-
egation has to be approved by the security agent and should
conform to its policies. The requester approaches the se-
curity agent with its identity information and a request for
permission. The security agent verifies the identity of the
requester and checks with its policies to make sure that the
requester can be given access to the resource. The new del-
egation makes the request valid. The security agent gener-
ates an authorization ticket/certificate which contains a Pro-
log (Swedish Institute 2001b) like statement giving the re-
quester permission to access the resource. This message is
sent to the requesting agent. These statements are dated and
are valid only for a certain period of time. While the state-
ments are valid, the requesting agent can use them as tickets
to access the resource. This allows the entire process of ver-
ification and reasoning to be skipped, and the requester gets
access to the resource as soon as the authorizing statement
is recognized and verified by the accessor agent.

All the reasoning about rights and delegations is han-
dled by a set of Prolog rules causing incorrect delegations
and statements to be trapped by Prolog’s backward chain-
ing mechanism and prevented from going through. We have
rules that cause constraints on rights to be propagated when
a delegation occurs.

A delegatee is an agent that delegates a certain right to
another agent or group of agents. It has the permission to
perform a certain action and also the ability to further del-
egate this right. A delegatee will only delegate to an agent
that it trusts since the delegatee is held responsible for the
actions of the agents it has delegated to.

We use X.509 certificates for identity certificates and for

encapsulating delegations. The ITU-T Recommendation,
X.509, has been implemented as a de facto standard. X.509
focuses on defining a mechanism by which information can
be made available in a secure way to a third-party. X.509v3
specifications define a certificate as: user certificate; public
key certificate; certificate: The public keys of a user, together
with some other information, rendered unforgeable by enci-
pherment with the private key of the certification authority
which issued it.

Knowledge Base
We use a number of predicates to represent the information
flowing in the system. We also describe the agents in the pol-
icy domain and store this information in a knowledge base.
A security agent uses this knowledge along with the policy
while granting permission to an agent. We encode in Prolog
details about the name, role, etc. of the agent. All informa-
tion the system learns is also added to the knowledge base;
delegations and requests.

Request
An agent requests a security agent to perform some action
on his behalf. The security agent will perform this action
only if the agent has the ability to do so.
request(<fromAgent>,<action>)

An agent can also request for permission to perform a cer-
tain action. If the requested agent is satisfied with the agent’s
credentials, this request will result in a delegation from the
requestee to the requestor.
requestPermission(<fromAgent>,<action>)

Delegation
An agent can execute any action that it has the right to ex-
ecute, or has been has been delegated the right to execute.
It can also delegate this right to other agents, if it has been
authorized to subsequently delegate. The agent can also del-
egate all the axiomatic rights that it possesses. A delegation
itself is a right which can be delegated. In other words, an
agent could be given the ability to perform some action but
not to further delegate it, given the right to some action and
the permission to delegate it, or the ability to delegate some
action but not the ability to execute it.

So, an agent can delegate any ’delegatable’ right. This
leads to a chain of delegation, and if any one link is no longer
valid the access is denied. We also allow for constraints on
rights, delegations and ability to re-delegate.

One of the main features in our system is that false dele-
gations are not rejected as soon as they enter the system, but
are stored for later evaluation of a possible security breach.
An agent has the ability to make any delegation, but whether
it is honored depends on various factors, including the secu-
rity policy, the agent’s rights, and the rights of the agents in
the delegation chain.

The statement that is used to describe delegations and
constraints on delegations is :

delegate(IssueTime, StartTime, EndTime,
From, To, canDo(X, Action, CDC),

IDC, Redelegatable)



� IssueTime : when the statement was issued

� StartTime : when the delegation becomes valid

� EndTime : when the delegation becomes invalid

� From : delegator agent

� To : delegatee agent

� canDo(X,Action,CDC) : delegated action, X has the right
to the action, only if X satisfies the condition CDC

� IDC : condition on the delegation

� Redelegatable : true if the delegator, To, has the permis-
sion to redelegate the action

Types of delegations Our work in the EECOMS scenario
involved several different types of delegations which we de-
scribe here and give simple examples.
� Time Bound Delegation : It is a delegation that is valid

only for a certain time period

delegate(1105001120,1105001121, 1110001120,
From, X, canDo(Y, Action, CDC),
employee(X,abc), Flag)

This delegation is only valid between 1105001121 and
1110001120.

� Group Delegation : It can be used to delegate rights to a
group of agents who satisfy certain conditions

delegate(IssueTime, StartTime, EndTime,
From, X, canDo(Y, Action, CDC),
(employee(X,abc),age(X,24)), Flag)

This delegates the right to perform Action to a group of
employees of abc who are 24 years old.

� Action Restricted Delegation : This forces the delegatee
to satisfy certain conditions before the action can be car-
ried out

delegate(IssueTime, StartTime, EndTime,
From, X,
canDo(Y, Action, name(Y,john) ),
(employee(X,abc),age(X,24)), Flag)

Only employees of abc who are 24 and named john can
execute this action, though all employees aged 24 have
been delegated the right.

� Redelegatable Delegation : In this delegation, a right can
be delegated along with the right to re-delegate the right.

delegate(IssueTime, StartTime, EndTime,
From, To, canDo(X, Action, CDC),
IDC, true)

This statement allows the recipient to further delegate the
right.

� Strictly Redelegatable Delegation : This statement allows
a right to be re-delegated without giving the delegatee the
right to actually do the action.

delegate(IssueTime, StartTime, EndTime,
From, john,
canDo(Y, Action, notname(Y,john)),
IDC, true)

john is given the right to further delegate the action, Ac-
tion, but not the permission to execute the action himself.

Policy
Each domain has a policy associated with it (Lupu & Slo-
man 1997; Lupu et al. 1995). This policy consists of au-
thorization policies and delegation policies. Authorization
policies deal with the rules for checking the validity of re-
quests for actions. An example of a rule for authorization
would be checking the identity certificate of an agent and
verifying that the agent has an axiomatic right. Delegation
policies describe rules for delegation of rights. A rule for
delegation would be checking that an agent has the ability
to delegate before allowing the delegation to be approved.
A policy also contains basic or axiomatic rights, and rights
associated with roles. We introduce the concept of primitive
or axiomatic rights, which are rights that all individuals pos-
sess and that are stored in the global policy. For example,
every citizen of India has the right to vote, and anyone who
owns a database has the right to delegate the right to read
from/write to that database. These are basic rights that are
not often expressed, but used implicitly. All policies are de-
scribed in Prolog. A policy can be viewed as a set of rules
for a particular domain that defines what permissions a user
has and what permissions she/he can obtain.

Users of the system are generally assigned roles. A role
is defined as a collection of rights and duties (Sandhu et al.
1996; Lupu & Sloman 1997; Lupu et al. 1995). Roles are
arranged in a hierarchy, so that rights can be inherited. An
entity has a right if it is mentioned in the policy or if the
right has been delegated to it by another entity that has the
ability to delegate. Delegations generally flow downwards
in the role hierarchy, and are from a higher role to a lower
role. However our framework does not strictly adhere to
role based access, and allows rights and delegations to be as-
signed to individuals and groups. This overcomes the draw-
backs of Access Control Lists and Role Based Access.

Rights As rights are used throughout the system, we de-
scribe the syntax in more detail. In our system, we model
permissions as rights that an agent possesses. We associate
rights with actions, so a right implies that the corresponding
agent is permitted to perform a certain action.

Our system encodes rights into a logical form in Prolog as
the following :

rightToDo(agentName, Action, Constraint)

� agentName : URI for the agent

� Action : representation of the ability eg. ac-
cessDB(db5,read)

� Constraint : restriction on the right, eg. em-
ployee(agentName,XYZ)

Using this statement, all kinds of permissions on actions
can be specified. An agent is given the right to do a certain
action based on a constraint. An agent can execute the action
only if it satisfies all the constraints.

Ontology
Our approach uses a simple ontology of agents, propositions
and actions which are briefly described below.



� Agents : An agent is an entity in the system, which could
be a program or a human.

� Propositions : We use two propositions, ability and dele-
gate :

– Ability is a property that an agent has. An ability is true
if an agent has the right to perform the action.

canDo(<agent>,<action>,<constraintsOnAction>)

– Delegate is a proposition asserted into a database say-
ing that one agent delegates to another agent the right
to perform some action.

delegate(<issueTime>,<startTime>,<endTime>,
<fromAgent>,<toAgent>,<ability>,
<constraintOnDelegation>,
<redelegateFlag>)

� Action is what an agent can perform and is closely linked
to abilities.

accessDB(db5,read)

Interaction Protocols
We have developed a set of Interaction Protocols based on
FIPA (FIPA 1998) for communication between the agents in
the domain. Each agent communication is an object known
as Signed Message Object (SMO). An SMO consists of a
list of certificates, the request or the authorization statement
signed with the senders private key, and other required fields.
The relevant certificates are included as part of the commu-
nication data structure to expedite the authorization process.
The SMO contains two text fields, msg and signedMsg. For
example, if an agent after acquiring a delegation for a par-
ticular right, wished to perform the action, it would send
a request SMO to the agent controlling the resource. The
SMO would contain the requesting agent’s identity certifi-
cate and the delegation certificate. The clear text request
for access would be in the msg field of the SMO and the
signedMsg field would consist of the signed request for ac-
cess. The receiving agent would verify the certificates and
check the signed request against the clear text request. If all
the checks went through, the request would be permitted.

Prolog Predicates
The Interaction Protocols use certain prolog predicates, em-
bedded into SMOs, that are described below :

� An agent requests another agent to perform some action
on his behalf. The latter agent will perform this action
only if the former agent has the ability.

request(<fromAgent>,<action>)

� An agent requests permission from another agent who has
the ability to delegate. This results in an error or a dele-
gation depending on the credentials of both the requestor
and the requestee.

requestPermission(<fromAgent>,<action>)

� An agent can ask a security agent if it has the right to per-
form the action. This results in a tell with the proposition
being a canDo (refer to Ontology).

ask(<fromAgent>,<toAgent>,<action>)

� Idelegate is the action of delegating the ability to perform
the action from one agent to another.

idelegate(<startTime>,<endTime>,<fromAgent>,
<toAgent>,<ability>,
<constraintOnDelegation>,
<redelegateFlag>)

� An agent can tell another agent a proposition that it be-
lieves is true.

tell(<fromAgent>,<toAgent>,<proposition>)

Example
Let us assume that there are two organizations, ABC and
XYZ, that are collaborating on a certain project. If a Soft-
ware Consultant (SC) working with ABC needs to access
a database of her/his client, XYZ, she/he first needs to get
the correct authorization from her/his supervisor. Let us as-
sume that the supervisor has the right to access the database
(a rightToDo refer to Rights) and that the right can be dele-
gated. So the supervisor sends a certificate with the follow-
ing content containing a delegate to SC . SC then uses this
certificate to create a SMO and sends this SMO to the secu-
rity agent of ABC. Before the authorization is given at ABC
the security agent will check all SC’s credentials by look-
ing at its policy and the SMO. It checks if SC is working
for ABC, whether XYZ is indeed her/his client etc. This is
required because otherwise it could lead to a breach in secu-
rity. The security agent returns an authorization certificate.
SC needs to show this authorization certificate, along with
her/his other certificates, to the security agent at XYZ. The
security agent at XYZ will double check all the credentials,
making sure that the security agent of ABC is trusted and
SC indeed has the right to access the database. It will create
a certificate and send it back to the SC. SC can now use this
as a ’ticket’ to access the database.

Protocols
Request for Action An agent requesting a certain action
of another agent outside the company, creates a SMO with
its ID certificate and sends it to the security officer along
with other certificates that strengthen his case. The secu-
rity officer checks the credentials supplied by the requester
permitting the request to go through only if all SMOs are
valid. If it is an inter-company information request, the re-
quest is sent to the security officer of the recipient’s com-
pany. There the request and the attached credentials are ver-
ified once again and then forwarded to the agent controlling
access to the information with an additional attachment re-
confirming the authenticity of the request. For actions on
an agent within the company such a high degree of secu-
rity may not be necessary. The recipient, if intelligent, can
validate the SMO and reason whether the action should be
allowed. Otherwise the recipient could ask the security offi-
cer to process the message for it.

We illustrate the working of Request for Action by an ex-
ample. ABC and XYZ are two companies represented by
their security agents, SA-ABC and SA-XYZ. XYZ is the



client of ABC. Marty is a design engineer in ABC, where
design engineers can access their client’s database, db5.
The following steps illustrate how the authorization actually
takes place.

1. SA-XYZ accesses the company policy for XYZ and the
global shared policy

2. SA-ABC accesses the company policy for ABC and the
global shared policy

3. SA-XYZ sends a message to SA-ABC saying that SA-
ABC has the right to delegate access to db5, which is a
database in XYZ, to all employees.

tell(sa-xyz, sa-abc,
idelegate(StartTime, EndTime, sa-xyz,

sa-abc, canDo(X,accessDB(db5),
employee(X,abc)), true,true))

SA-ABC asserts the proposition

delegate(IssueTime, StartTime, EndTime, sa-xyz,
sa-abc, canDo(X,accessDB(db5),
employee(X,abc)),true,true)

SA-ABC gives all Design Engineers the right to access
db5, but not the ability to delegate.

tell(sa-abc,sa-abc,
idelegate(StartTime, EndTime, sa-abc,

X, canDo(X, accessDB(db5),true),
role(X,designEngineer),false))

This causes a delegate statement to be inserted into the
knowledge base.

delegate(IssueTime, StartTime, EndTime, sa-abc,
X, canDo(Z, accessDB(db5),true),

role(X,designEngineer),false)

4. Marty requires some information from database, db5, at
XYZ. He sends a request to SA-ABC along with his cer-
tificate.

request(marty,accessDB(db5))

5. SA-ABC knows that the request is from Marty because
of his certificate. It then checks the rules to see if Marty
as a Design Engineer has access to db5. As this is true,
SA-ABC sends a request to SA-XYZ with its certificate.
This message says that Marty requires some information
from db5 and includes Marty’s certificate.

6. SA-XYZ verifies both the certificates and checks it pol-
icy to see if SA-ABC has the right to delegate the right
to access. As SA-ABC does have the right to delegate,
SA-XYZ approves the access and sends the request to the
agent controlling access to the database.

7. If Harry, a programmer at ABC, tries to access the
database, db5, his request will fail because the SA-ABC
has only given design engineers the right.

Request for Authorization This request is very similar to
the Request for Action differing in the request for permis-
sion used. Also the security agent sends the requester a cer-
tificate containing the authorization. As long as the certifi-
cate is valid, the agent can access the right without the secu-
rity agent having to go through the whole reasoning process

again. After a request for authorization, the agent can dis-
connect and then perform a request for action.

The example below describes the authorization process in
detail. In this case, Harry, a programmer at ABC, requires
some information from database, db5, at XYZ his client.

1. SA-XYZ accesses the company policy for XYZ and the
global shared policy.

2. SA-ABC accesses the company policy for ABC and the
global shared policy.

3. SA-XYZ sends message to SA-ABC saying that SA-ABC
has the right to delegate access to db5, which is a database
in XYZ, to all employees.

tell(sa-xyz,sa-abc,
idelegate(StartTime, EndTime, sa-xyz,
sa-abc, canDo(X,accessDB(db5),
employee(X,abc)), true,true))

SA-ABC asserts the proposition into its own knowledge
base.

delegate(IssueTime, StartTime, EndTime, sa-xyz,
sa-abc, canDo(X,accessDB(db5),
employee(X,abc)),true,true)

Then, SA-ABC decides to give all Design Engineers the
right to access the database and the right to delegate this
right further.

tell(sa-abc,sa-abc,
idelegate(StartTime, EndTime, sa-abc, X,

canDo(Z, accessDB(db5),true),
role(X,designEngineer),true))

This causes a delegate statement to be inserted

delegate(IssueTime, StartTime, EndTime, sa-abc,
X, canDo(Z, accessDB(db5),true),
role(X,designEngineer),true)

4. Harry, a programmer, needs to use a database, db5, from
XYZ. He requests his supervisor, Marty, for permission
to access db5.

requestPermission(harry,marty,accessDB(db5))

5. Marty is a design engineer and he gives all programmers
the right to access db5.

tell(marty,sa-abc,
idelegate(StartTime, EndTime, marty,X,

canDo(X,accessDB(db5),true),
role(X,programmer),false))

SA-ABC asserts the following clause :

delegate(IssueTime,StartTime,EndTime, marty,X,
canDo(X,accessDB(db5),true),
role(X,programmer),false)

6. Now Harry sends a request to SA-ABC along with his
certificate

request(harry,accessDB(db5))

7. SA-ABC knows that the request is from Harry because of
his certificate. It then checks the rules to see if Harry, as a
programmer, is allowed to access db5. Marty has given all



programmers access to db5, so Harry has the right. SA-
ABC sends a request to SA-XYZ with its certificate. This
message says that Harry requires some information from
db5 and includes its own and Harry’s certificate.

8. SA-XYZ verifies that the message is coming from SA-
ABC and if requires double checks Harry’s id. It can also
log the request. But it trusts SA-ABC and the request
is approved and sent to the access agent controlling the
database.

Implementation Details

All the agents are Java Servlets that communicate using
HTTP. The knowledge base is Prolog (Swedish Institute
2001b) and the reasoning is carried by rules written in Pro-
log. The policy is also encoded in Prolog. The security
agents have a Jasper (Swedish Institute 2001a) interface to
Prolog.

Future Work

We are trying to model obligations and actions to be carried
out if an agent fails to fulfill its obligations. We are planning
to associate a level of trust with each agent, and modify that
based on the fulfillment of obligations.

For our implementation, we had concentrated on Prolog.
Now we are upgrading to XML (XML 2000) for describ-
ing rights, delegations and authorizations, and XML signa-
tures (XML-Signature 2000) instead of X.509 certificates.
We are also working on other issues related to Distributed
Trust Management. If an agent is able to access certain pub-
lic policies of the agent that is in charge of authorization,
then it will be in a better position to fulfill those require-
ments. This leads to the problem of dividing the policy into
private and public sections and to the problem of making the
public policy available. We are still deciding whether the
policy should be made downloadable through HTTP or sent
to any agents that request it. Another possible improvement
would be for a security agent to return a list of rules that it
used to come to the decision, in case the authorization pro-
cess fails. This allows the requester to figure out where its
credentials failed and correct the faults.

Conclusion

The central idea of the paper is to use a system of rights and
delegations along with certificates to facilitate trust manage-
ment. The requester can access a foreign resource by pro-
viding its identity information to the agent controlling the
resource along with any delegations it may have. The agent
controlling the resource uses its policies to verify the identity
and delegations of the requester, granting it permission only
if everything is valid. We were able to evaluate our infras-
tructure and interaction protocols by implementing a multi-
agent scenario, EECOMS. We also believe that this infras-
tructure will be very helpful in the home/office automation
scenario where the mobile user has to be authorized before
she/he can use any service.

References
Blaze, M.; Feigenbaum, J.; Keromytis, A.; and Ioannidis,
J. 1998. The keynote trust-management system.

Blaze, M.; Feigenbaum, J.; and Keromytis, A. D. 1999.
The role of trust management in distributed systems secu-
rity. In Secure Internet Programming, 185–210.

Bluetoothwebsite. 2001. The official bluetooth website.

Chen, H., J. A. F. T., and Chakraborty, D. 2001. Dynamic
service discovery for mobile computing: Intelligent agents
meet jini in the aether.

Ellison, C. M.; Frantz, B.; Lampson, B.; Rivest, R.;
Thomas, B. M.; and Ylonen, T. 1998. SPKI certificate
theory. Internet Draft.

FIPA. 1998. Fipa 98 specification.

Grosof, B., and Labrou, Y. 1999. An approach to using
xml and a rule-based content language with an agent com-
munication language.

Herzberg; Mass; Mihaeli; Naor; and Ravid. 2000. Ac-
cess control meets public key infrastructure, or: Assigning
roles to strangers. In RSP: 21th IEEE Computer Society
Symposium on Research in Security and Privacy.

Ingersoll Rand, Q. 2000. Ciimplex consortium, consor-
tium for integrated intelligent manufacturing planning and
execution.

J.K.Jan, C.C.Chang, S. 1991. A dynamic key-lock-pair
access control scheme. Computer and Security 10.

Johnston, W., and Larsen, C. 1996. A use-condition
centered approach to authenticated global capa-
bilities: Security architectures for large-scale dis-
tributed collaboratory environments. http://www-
itg.1bl.gov/Security/Arch/publications.html.

Lalana Kagal, Vlad Korolev, H. C. A. J. T. F. 2001. Cen-
taurus : A framework for indoor mobile services. Inter-
national Conference on Distributed Computing Systems,
April 2001.

Li; Feigenbaum; and Grosof. 1999. A logic-based
knowledge representation for authorization with delega-
tion. In PCSFW: Proceedings of The 12th Computer Secu-
rity Foundations Workshop. IEEE Computer Society Press.

Lupu, E., and Sloman, M. 1997. A policy based role object
model.

Lupu, E. C.; Marriott, D. A.; Sloman, M. S.; and Yialelis,
N. 1995. A policy based role framework for access control.

M.Blaze, J.Feigenbaum, J. 1996. Decentralized trust man-
agement. IEEE Proceedings of the 17th Symposium.

M.S.Hwang, W.G.Tzeng, W. 1994. A two-key-lock-pair
access control method using prime factorization and times-
tamp. IEICE Transactions Inf. and Syst E77-D No.9.

Sandhu, R. S.; Coyne, E. J.; Feinstein, H. L.; and harles
E. Youman, C. 1996. Role-based access control models.
IEEE Computer 20(2):38–47.

Swedish Institute, S. I. o. C. S. 2001a. Jasper.

Swedish Institute, S. I. o. C. S. 2001b. Sicstus prolog.



XML-Signature. 2000. Xml-signature syntax and process-
ing, w3c candidate recommendation 31 october 2000.
XML. 2000. Extensible markup language (xml) 1.0 (sec-
ond edition) w3c recommendation 6 october 2000.


