
An Agent-based Infrastructure for Enterprise Integration �

R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboro�
Laboratory for Advanced Information Technology

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland 21250
cost@acm.org, f�nin, jklabrou, xluan1, ypeng, iang@cs.umbc.edu

James May�eld
Research and Technology Development Center

Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland 20723

james.may�eld@jhuapl.edu

Akram Boughannam
Advanced Manufacturing Solutions Development

IBM Corporation
Boca Raton, Florida 33431

akram@us.ibm.com

Contact: R. Scott Cost, cost@acm.org
Voice (410) 419-8538, FAX (202) 478-0300

Track: Emerging Application, Technology and Issue
Domain: Enterprise Integration Automation
Tools: Agent Technology, Java
Status: Operational Research Prototype

Abstract

Jackal is a Java-based tool for communicating with
the KQML agent communication language. Some fea-
tures that make it extremely valuable to agent develop-
ment are its conversation management facilities,
exi-
ble, blackboard style interface and ease of integration.
Jackal has been developed in support of an investiga-
tion of the use of agents in enterprise-wide integration
of planning and execution for manufacturing. This pa-
per describes Jackal at a surface and design level, and
demonstrates its use in a multi-agent system that sup-
ports intelligent of enterprise planning and execution.

Introduction

Jackal is a Java package that allows applications written
in Java to communicate via the KQML (Finin, Labrou,
& May�eld 1997) agent communication language. It is
designed to be used as a `tool' by other applications,
in that it does not require that applications be modi-
�ed or extend some standard shell. Additionally, Jackal

�This work is supported in part by the Advanced Tech-
nology Program, administered by the National Institute
of Standards and Technology, under agreement number:
70NANB6H2000.

is designed so that multiple instances of it, and there-
fore multiple agents, may be run within the same Java
Virtual Machine.
Jackal has been developed as part of a larger e�ort

to develop an agent infrastructure for manufacturing
information
ow. It has been used to facilitate commu-
nication among diverse agents responsible for collecting,
processing and distributing information on a manufac-
turing shop
oor.
In next section, we introduce Jackal within the con-

text of some other related agent systems, and follow
that with some motivation for higher-level conversation
speci�cation. Next, we present Jackal's design in some
detail. Finally, we discuss the domain within which
Jackal has been developed - enterprise integration au-
tomation - and illustrate this with an example.

Jackal and Agent Development

Agents that will interact with one another require
some method of communication in order to coordinate
their activities and distribute and collect information.
To this end, several agent communication languages
(e.g., KQML (Finin, Labrou, & May�eld 1997), FIPA
ACL (FIPA 1997), ARCOL (FIPA 1997), ICL (Mar-
tin, Cheyer, & Moran 1998), AgenTalk (Kuwabara
1995), KaOS (Bradshaw et al. 1998), and AOP
(Shoham 1993)), and various software tools for them
(e.g., TKQML (Cost et al. 1997), OAA (Martin,
Cheyer, & Moran 1998), JAT and JATLite (Frost 1998;
Petrie 1998)), have been developed. Jackal is a tool for
the use of KQML by agents written in the Java pro-
gramming language. Java is a useful language for writ-

ing agents because it is platform independent, as an
interpreted language, and has good language support
for multi-threading. Jackal bene�ts from these prop-
erties, and relies exclusively on the Sunsoft JDK 1.2
classes and virtual machine, unmodi�ed. This maxi-
mizes the likelihood that Jackal-based agents can run
without modi�cation on any platform that supports
Java. Not only can Jackal-based agents run on diverse
or remote environments; many may coexist within the
same Java Virtual Machine. This is exploited by trans-
parent protocol adapters for shared memory message
passing.
Adding communication abilities to any Java program

requires minimal modi�cation of existing code. This
is because Jackal's functionality is accessed through a
class instance, which can be shared among agent com-
ponents. Thus, after creating an instance of Jackal (the
J3.Intercom Class) the agent accesses Jackal's function-
ality through method calls on this instance, which can
be shared or passed as a parameter to other classes.
This is in contrast to systems that require a program to
subclass an agent shell, or otherwise restructure itself.
With this Jackal instance, the agent gains more than
just the ability to send and receive messages, however.
Jackal's design is based in large part on, and imple-
ments, the KQML Naming Scheme (KNS), an evolving
standard for resolving agent names in a hierarchically
structured, dynamic environment. This means that the
agent application need only deal with symbolic agent
names, and may leave issues such as physical address
resolution and alias identi�cation to the Jackal infras-
tructure.
Two components that work together to provide the

greatest bene�t to the agent are the conversation man-
agement routines and the Distributor, a blackboard for
message distribution. The conversation system sup-
ports the use of easily interchangeable protocols for in-
teraction, which guide the behavior of the system. The
Distributor presents a
exible, active interface for inter-
nal message retrieval by agent components. While the
Distributor optimizes access to the message
ow, it is
the conversation system that gives it its real value; the
next section will discuss in depth the rational behind
the conversation-based approach.

Conversation-Based Protocols
The study of agent communication languages (ACLs)
is one of the pillars of current agent research. KQML
and the FIPA ACL are the leading candidates as stan-
dards for specifying the encoding and transfer of mes-
sages among agents. While KQML is good for message-
passing among agents, the message-passing level is not
actually a very good one to exploit directly in build-
ing a system of cooperating agents. After all, when an
agent sends a message, it has expectations about how
the recipient will respond to the message. Those expec-
tations are not encoded in the message itself; a higher-
level structure must be used to encode them. The need
for such conversation policies is increasingly recognized

by the KQML community, and has been formally rec-
ognized in the latest FIPA draft standard (FIPA 1997;
Dickenson 1997).
It is common in KQML-based systems to provide a

message handler that examines the message performa-
tive to determine what action to take in response to the
message. Such a method for handling incoming mes-
sages is adequate for very simple agents, but breaks
down as the range of interactions in which an agent
might participate increases. Missing from the tradi-
tional message-level processing is a notion of message
context.
We claim that the unit of communication between

agents should be the conversation. A conversation is a
pattern of message exchange that two (or more) agents
agree to follow in communicating with one another.
In e�ect, a conversation is a communications protocol,
albeit one that may be initiated through negotiation,
and may be short-lived relative to the way we are ac-
customed to thinking about protocols. A conversation
lends context to the sending and receipt of messages, fa-
cilitating interpretation that is more meaningful. The
adoption of conversation-based communication carries
with it numerous advantages to the developer, includ-
ing:

� There is a better �t with intuitive models of how agents
will interact than is found in message-based communica-
tion.

� There is also a closer match to the way that network re-
search approaches protocols, which allows both theoreti-
cal and practical results from that �eld to be applied to
agent systems.

� Conversation structure is separated from the actions to
be taken by an agent engaged in the conversation. This
allows the same conversation structure to be used by more
than one agent, in more than one context.

� The standard advantages of the underlying ACL accrue,
including language- and ontology-independence.

To date, little work has been devoted to the prob-
lem of conversation speci�cation and implementation
for mediated architectures. Strides must be taken in
the following directions:

� Potential conversations must be easy to specify.

� Conversation speci�cations must be easy to reuse.

� Libraries of standard conversations should be developed.

� An ontology of conversations must be developed.

To achieve these goals, we must solve three main
problems:

1. Conversation speci�cation: How can conversations best
be described so that they are accessible both to people
and to machines?

2. Conversation sharing: How can an agent use a conversa-
tion speci�cation standard to describe the conversations
in which it is willing to engage, and to learn what con-
versations are supported by other agents?

3. Conversation aggregation: How can sets of conversations
be used as agent `APIs' to describe classes of capabilities
that de�ne a particular service?

Conversation speci�cation

A speci�cation of a conversation that could be shared
among agents must contain several kinds of informa-
tion about the conversation and about the agents that
will use it. First, the sequence of messages must be
speci�ed. Traditionally, deterministic �nite-state au-
tomata (DFAs) have been used for this purpose; DFAs
can express a variety of behaviors while remaining con-
ceptually simple. For more sophisticated interactions,
however, it is desirable to use a formalism with more
support for concurrency and veri�cation. Currently, we
are investigating the use of colored petri nets as an al-
ternative mechanism for more sophisticated conversa-
tion speci�cation. Next, the set of roles that agents
engaging in a conversation may play must be enumer-
ated. Many conversations will be dialogues, and will
specify just two roles; however conversations with more
than two roles are equally important, representing the
coordination of communication among several agents in
pursuit of a single common goal.
DFAs and roles dictate the syntax of a conversation,

but say nothing about the conversation's semantics.
The ability of an agent to read a description of a con-
versation, then engage in such a conversation, demands
that the description specify the conversation's seman-
tics. To be useful though, such a speci�cation must not
rely on a full-blown, highly expressive knowledge repre-
sentation language. We believe that a simple ontology
of common goals and actions, together with a way to
relate entries in the ontology to the roles, states, and
transitions of the conversation speci�cation, will be ad-
equate for most purposes. This approach sacri�ces ex-
pressiveness for simplicity and ease of implementation.
It is nonetheless perfectly compatible with attempts to
relate conversation policy to the semantics of underly-
ing performatives, as proposed for example by (Brad-
shaw et al. 1998).
These capabilities will allow the easy speci�cation of

individual conversations. To develop systems of conver-
sations though, developers must have the ability to ex-
tend existing conversations through specialization and
composition. Specialization is the ability to create new
versions of a conversation that are more detailed than
the original version; it is akin to the idea of subclass-
ing in an object-oriented language. Composition is the
ability to combine two conversations into a new, com-
pound conversation. Development of these two capa-
bilities will entail the creation of syntax for expressing
a new conversation in terms of existing conversations,
and for linking the appropriate pieces of the component
conversations. It will also demand solution of a variety
of technical problems, such as naming con
icts, and the
merger of semantic descriptions of the conversations.

Conversation sharing

A standardized conversation language, as proposed
above, dictates how conversations will be represented;
however, it does not say how such representations are

shared among agents. While the details of how conver-
sation sharing is accomplished are more mundane than
those of conversation representation, they are never-
theless crucial to the viability of dynamic conversation-
based systems. Three questions present themselves:

� How can an agent map from the name of a conversation
to the speci�cation of that conversation?

� How can one agent communicate to another the identity
of the conversation it is using?

� How can an agent determine what conversations are han-
dled by a service provider that does not yet know of the
agent's interest?

Conversations Sets as APIs

The set of conversations in which an agent will partici-
pate de�nes an interface to that agent. Thus, standard-
ized sets of conversations can serve as abstract agent
interfaces (AAIs), in much the same way that standard-
ized sets of function calls or method invocations serve
as APIs in the traditional approach to system-building.
That is, an interface to a particular class of service can
be speci�ed by identifying a collection of one or more
conversations in which the provider of such a service
agrees to participate. Any agent that wishes to pro-
vide this class of service need only implement the ap-
propriate set of conversations. To be practical, a nam-
ing scheme will need to be developed for referring to
such sets of conversations, and one or more agents will
be needed to track the development and dissolution of
particular AAIs. In addition to a mechanism for es-
tablishing and maintaining AAIs, standard roles and
ontologies, applicable to a variety of applications, will
need to be created.
There has been little work on communication lan-

guages from a practitioner's point of view. If we set
aside work on network transport protocols or protocols
in distributed computing (e.g., CORBA) as being too
low-level for the purposes of intelligent agents, the re-
mainder of the relevant research may be divided into
two categories. The �rst deals with theoretical con-
structs and formalisms that address the issue of agency
in general and communication in particular, as a dimen-
sion of agent behavior (e.g., AOP (Shoham 1993)).
The second addresses agent languages and associated
communication languages that have evolved somewhat
to applications (e.g., TELESCRIPT (White 1995)). In
both cases, the bulk of the work on communication lan-
guages has been part of a broader project that commits
to speci�c architectures.
Agent communication languages like KQML pro-

vide a much richer set of interaction primitives (e.g.,
KQML's performatives), support a richer set of com-
munication protocols (e.g., point-to-point, brokering,
recommending, broadcasting, multicasting, etc.), work
with richer content languages (e.g., KIF), and are more
readily extensible than any of the systems described
above. However, as discussed above, KQML lacks orga-
nization at the conversation level that lends context to

the messages it expresses and transmits. Limited work
has been done on implementing conversations for soft-
ware agents, and almost none has been done on express-
ing those conversations. As early as 1986, Winograd
and Flores (Winograd & Flores 1986) used state tran-
sition diagrams to describe conversations. The COOL
system (Barbuceanu & Fox 1995) has perhaps the most
detailed current �nite state automata model to describe
agent conversations. Each arc in a COOL state transi-
tion diagram represents a message transmission, a mes-
sage receipt, or both. One consequence of this policy is
that two di�erent agents must use di�erent automata
to engage in the same conversation. COOL also uses
an :intent slot to allow the recipient to decide which
conversation structure to use in understanding the mes-
sage. This is a simple way to express the semantics of
the conversation, though it is not su�cient for sophis-
ticated reasoning about and sharing of conversations.
Other conversation models that have been developed

include those of Parunak (Parunak 1996), Chauhan
(Chauhan 1997), who uses COOL as the basis for
his multi-agent development system, Kuwabara et al.
(Kuwabara 1995), who add inheritance to conversa-
tions, Nodine and Unruh (Nodine & Unruh 1997), who
use conversation speci�cations to enforce correct con-
versational behavior by agents, Bradshaw (Bradshaw
et al. 1998), who introduces the notion of a conver-
sation suite as a collection of commonly-used conver-
sations known by many agents, and Labrou (Labrou
& Finin 1997a), who uses de�nite clause grammars to
specify conversations. While each of these makes contri-
butions to our general understanding of conversations,
none show how descriptions of conversations might be
shared by agents and used directly by them in imple-
menting conversations.

De�ning common agent services via
conversations

A signi�cant impediment to the development of agent
systems is the lack of basic standard agent services that
can be easily built on top of the conversation architec-
ture. Examples of such services are: name and address
resolution; authentication and security services; broker-
age services; registration and group formation; message
tracking and logging; communication and interaction;
visualization; proxy services; auction services; work
ow
services; coordination services; and performance mon-
itoring services. Services such as these have typically
been implemented as needed in individual agent devel-
opment environments. Two such examples are an agent
name server and an intelligent broker.

An Overview of Jackal's Design

Jackal was designed to provide comprehensive function-
ality, while presenting a simple interface to the user.
Thus, although Jackal consists of roughly seventy dis-
tinct classes, all user interactions are channeled through
one class, hiding most details of the implementation.

Java VM

Java Class Libraries

Jackal Svc Extensions Agent/User Services

Jackal Services

Intercom/Jackal API

Utility

Message Bus

Bu�ers

Synch

Figure 1: Jackal Architecture

Although there are signi�cant bene�ts in some cases
to sharing a Jackal instance among several agents, the
typical usage is as an accessory to an individual agent.
Thus, the Jackal architecture does not describe a multi-
agent system based around a shared tuple space, as it
is often perceived, but a private system of which each
agent in a system owns an instance.

Architecture

As illustrated in Figure , Jackal has a layered archi-
tecture which facilitates dynamic recon�guration. Its
native execution environment is standard, o�-the-shelf
Java. Central to Jackal's operation is a set of enhanced
synchronization primitives and bu�ers, which are used
to tie together its very loosely coupled components.
The Message Bus is the essence of Jackal. Consist-
ing principally of the conversation interpreters and a
message redistribution system, it is the common path
for all message tra�c in a Jackal-based agent. This
Bus, wrapped along with some additional utilities, by
the Jackal API, is referred to as the Jackal Core. Both
Jackal and agent services interact with the Core and
each other through the API. Some examples of Jackal
services are the Agent Naming Services, and Message
Transport Services. The Jackal Package as it is typi-
cally distributed consists of the Core and a set of stan-
dard services.

Intercom and the Jackal Core

The Intercom class is the bridge between the agent ap-
plication and Jackal. The only visible component of
the Core, it controls startup and shutdown of Jackal,
provides the application with access to internal meth-
ods, houses some common data structures, and plays a
supervisory role to the communications infrastructure.

Message Bus

All messages, between agents or even intra-agent com-
ponents, traverse Jackal's Message Bus. Through use of
the Message Transport Service, the Bus can be viewed
as a distributed entity, and messages may be passed
to symbolically named entities, without regard to their
physical location.

Conversations Based largely on the work of Labrou
and Finin (Labrou & Finin 1997b) regarding a seman-

tics for KQML, we have created protocols which de-
scribe the correct interactions for various performatives
and subsequent messages. These protocols are `run' as
independent threads for all current conversations. This
allows for easy context management, while providing
constraints on language use and a framework for low-
level conversation management. This is in contrast with
earlier approaches (e.g., TKQML (Cost et al. 1997))
that require the agent to maintain context on their own.

The Conversation Space is a virtual entity, consist-
ing of the collection of currently active conversations,
run by distinct threads on individual protocol inter-
preters. Messages are associated with current (logi-
cal) threads based on their ID and assigned to ongoing
conversations. If no such assignment can be made, a
new conversation appropriate to the message is started.
Declarative conversation speci�cations are downloaded
as needed at runtime from an online repository. They
can specify something as simple as a query-response in-
teraction, or as complex as a sophisticated, multi-party
negotiation and beyond. In conjunction with an ontol-
ogy of well-known actions, these conversations can be
made to implement a wide range of agent behaviors.

The conversation management component o�ers a
number of signi�cant bene�ts to the agent:

� Running conversations in individual threads provides
maximum
exibility.

� Conversations, in conjunction with the Distributor, route
messages automatically to the threads that need them.

� Each conversation maintains a local store, which can be
accessed by the agent via a message ID, and which serves
as the conversation's context.

� Since conversations are declaratively speci�ed, they can
be loaded on demand. Our current agents download only
the conversations they will need.

� The conversation mechanisms and the speci�cation are
almost completely independent of the content or message
language used, and so could be easily be tuned work in a
`multi-lingual' environment.

� Actions can be associated with conversation structures,
enhancing their utility.

Distributor The Distributor is a Linda-like black-
board, which serves to match messages with requests
for messages. This is the sole interface between the
agent and the message tra�c. Its concise API allows for
comprehensive speci�cation of message requests. Re-
questers are returned message queues, and receive all
return tra�c through these queues. Requests for mes-
sages are based on some combination of message, con-
versation or thread ID, and syntactic form. They also
permit actions, such as removing an acquired message
from the blackboard or marking it as read only. A prior-
ity setting determines the order or speci�city of match-
ing. Finally, requests can be set to persist inde�nitely,
or terminate after a certain number of matches.

Services

A service here refers to either components of the con-
trolling agent, or subthreads of Jackal itself. Two ser-
vices packaged with Jackal are the Message Transport
Service and the Agent Naming Service.

Message Transport Service Jackal runs a Trans-
port Module for each protocol it uses for communi-
cation. Jackal 3.0 comes with a module for TCP/IP,
which supports SSL, and one for shared memory com-
munication within a Java Virtual Machine. Users can
create and add additional modules for other protocols.
A Transport Module is responsible for receiving mes-
sages at some known address, and transmitting mes-
sages out via a given protocol.
A mechanism known as the Switchboard acts as an

interface between the Transport Modules and the rest
of Jackal, facilitating the intake of new messages, and
carrying out transmission requests from the application.
Utilizing an intelligent address cache, the Switchboard
must formulate a plan for the delivery of a message and
implement it, without creating a bottleneck to message
tra�c. The address cache is a multilayered cache sup-
porting various levels of locking, allowing it to provide
high availability. Unsuccessful address queries trigger
underlying KNS lookup mechanisms, while blocking ac-
cess to only one individual listing.

Naming and Addressing Service In any multi-
agent system, the problem of agent naming arises: how
do agents refer to each other in a simple,
exible, and
extensible way? If the system in question employs a
standard communication language such as KQML, an-
other requirement is that agents must be able to refer
to KQML-speaking agents in the outside world. Within
the development of Jackal, we propose KNS, a hier-
archical naming scheme designed to support dynamic
communities of collaborating, mobile KQML-speaking
agents using a variety of transport protocols. Jackal
supports KNS transparently through an intelligent ad-
dress cache.
Standard Jackal services exist to implement KNS,

and allow any agent to register with any other agent,
facilitating the formation of relationships or teams.
Agents can hold multiple identities, and choose which
to use in di�erent situations. Protocols implemented
by the naming services allow agents to easily discover
other agents, regardless of the their current location or
chosen identity.

Enterprise Integration

The production management system used by most of
today's manufacturers consists of a set of separate ap-
plication softwares, each for a di�erent part of the plan-
ning, scheduling, and execution (P/E) process (Voll-
mann, Berry, & Whybark 1992). Most P/E applica-
tions are legacy systems developed independently over
many years, and are not equipped to handle com-
plex business scenarios (Bermudez 1996; Jennings et al.

1996). Typically, such scenarios involve the coordina-
tion of responses by several P/E applications to exter-
nal environment changes (price
uctuations, changes of
requests from customers and suppliers, etc.) and inter-
nal execution dynamics within an enterprise (resource
changes, mismatches between plan and execution, etc.).
Timely solutions to these scenarios are crucial to ag-
ile manufacturing, especially in the era of globaliza-
tion, automation, and telecommunication (Dourish &
Bellotti 1992). Currently, these scenarios are primar-
ily handled by human managers, and the responses are
often slow and less than optimal.
The Consortium for Intelligent Integrated Manufac-

turing Planning-Execution (CIIMPLEX), consisting of
several private companies and universities, was formed
in 1995 with the primary goal of developing technolo-
gies for intelligent enterprise-wide integration of plan-
ning and execution for manufacturing (Chu et al. 1996).
CIIMPLEX has adopted as one of its key technologies
the approach of intelligent software agents, and has ex-
perimented with several multi-agent systems (MAS) for
various di�cult tasks involved in enterprise integration.
Our e�ort on MAS development has been concentrated
on those P/E scenarios that represent exceptions to the
normal or expected business processes and whose res-
olution involves several P/E applications (Peng et al.
1999). Routine, normal communication between P/E
applications is handled by another, non-agent based in-
frastructure that provides persistent data transfer with
static, pre-de�ned communication patterns.
The scenarios for which we developed MASs include:

1. Process rate change. Signi�cant changes in the process
rate of an essential operation may a�ect the production
plan and schedule. Moreover, depending on the sever-
ity of the change, di�erent corrective actions may be re-
quired, ranging from doing nothing to to increasing shift
or machinery, or even rescheduling production (and pos-
sibly delaying delivery of some orders).

2. Exception in data transfer. Even in routine exchange
transaction data between applications, exceptions such as
missing messages, messages out of sync, or messages with
incorrect format or parameters may occur. The source of
theses errors needs to be identi�ed and corrected, and, if
necessary, data needs to be re-sent.

3. Application initialization. It is, at times, necessary to
introduce into the integrated environment a new appli-
cation in order to replace an outmoded application or to
provide function that is not available in the existing envi-
ronment. The new application needs to be brought into
sync with the rest of the system (e.g., it needs to popu-
late its own database with appropriate data from existing
applications so that it can start work from a state that is
consistent with the rest of the system.)

To provide integrated solutions to the above outlined
scenarios, as simple as they are, is by no means a triv-
ial undertaking. First, specialized agents need to be
developed to provide functions which are not covered
by any of the existing P/E applications, such as ex-
ception detection, data collection and mining, and im-
pact analysis. As integration tasks, these functions fall

into the `white space' between the P/E applications.
Next, a reliable and
exible inter-agent communication
infrastructure needs to be developed to allow agents to
e�ectively share information, knowledge, and services.
Finally, a mechanism for the runtime collaboration of
all these pieces also needs to be developed.
In the next section, we will describe in detail an MAS

we developed for the process rate change scenario. In
general, all MASs for the above scenarios include an
Agent Name Server (ANS) and a Broker Agent (BA)
in order to facilitate the coordination of other, special-
ized agents. All agents use the KQML as the agent
communication language, and use a subset of KIF that
supports Horn clause deductive inference as the content
language. A special service agent, called the Gateway
Agent (GA), is created to provide interface between the
agent world and the application world. GA's functions,
among other things, include making connections be-
tween the transport mechanisms (e.g., between TCP/IP
and MQ Series) and converting messages between the
two di�erent formats (KQML/KIF and Business Object
Document (BOD)). These agent systems are all sup-
ported by Jackal, the agent communication infrastruc-
ture developed by the consortium (Cost et al. 1998).
From a pragmatic point of view, we have found these
experiences to demonstrate the value of the following
features of Jackal in supporting the development of an
MAS.

� It is light-weight with minimum operational overhead.

� It is easy to use by the agent developer.

� It provides mechanisms to ensure the syntactical and se-
mantic correctness of messages.

� It is
exible in switching between di�erent transport
mechanisms and in specifying conversation policies.

An Application Example

In this section, we demonstrate how the CIIMPLEX
agent system supports intelligent enterprise integration
through a simple business scenario involving some real
manufacturing management application software sys-
tems.

The Scenario

The scenario selected, called process rate change and
depicted in Figure 2, occurs when the process time of
a given operation on a given machine is reduced signif-
icantly from its normal value. When this type of event
occurs, di�erent actions need to be taken based on the
type of operation and the severity of the rate reduction.
Some of the actions may be taken automatically accord-
ing to the given business rules, and others may involve
human decisions. Some actions may be as simple as
recording the event in the logging �le, while others may
be complicated and expensive, such as requesting such
as a rescheduling based on the changed operation rate.
Two real P/E application programs, namely the Facto-
ryOp (a MES by IBM) and MOOPI (a Finite Scheduler
by Berclain), are used in this scenario.

Figure 2: The \process rate change" scenario

The Agents

Besides the three service agents, Agent Name Server
(ANS), Broker Agent (BA), and GA, the multi-agent
system also employs the following special agents to sup-
port managing this scenario.

1. The Process Rate Agent (PRA), featured below, is both a
mining agent and a monitoring agent for shop-
oor activ-
ities. As a mining agent, PRA requests and receives the
messages containing transaction data of operation com-
pletion from GA. The data originates from FactoryOp
in the BOD Format, and is converted into KIF format
by GA. PRA aggregates the continuing stream of oper-
ation completion data and computes the current mean
and standard deviation of the processing time for each
operation. It also makes the aggregated data available
for other agents to access. As a monitoring agent, PRA
receives from other agents the monitoring criteria for dis-
turbance events concerning processing rates and noti�es
the appropriate agents when such events occur.

2. The Scenario Coordination Agent (SCA) sets the rate
monitoring criterion, receives the noti�cation for rate
changes that meet the criterion, and decides, in consulta-
tion with human decision-makers, appropriate action(s)
to take for the changed rate.

3. The Directory Assistance Agent (DA) is an auxiliary
agent responsible for �nding appropriate persons for SCA
when the latter needs to consult human decision-makers.
It also �nds the proper mode of communication to that
person.

4. The Authentication Assistance Agent (AA) is another
auxiliary agent used by SCA. It is responsible for con-
ducting authentication checks to see if a person in inter-
action with SCA has proper authority to make certain
decisions concerning the scenario.

The Predicates

Three KIF predicates of multiple arguments are de-
�ned. These predicates, OP-COMPLETE, RATE, and
RATE-CHANGE, are used to compose the contents of
messages between agents in processing the process rate
change scenario. The OP-COMPLETE predicate con-
tains all relevant information concerning a completed
operation, including P/E-Application-id, machine-id,

operation-id, starting and �nishing time-stamps, and
quantity. The RATE predicate contains all relevant in-
formation concerning the current average rate of a par-
ticular operation at a particular machine with a partic-
ular product. The RATE-CHANGE predicate contains
all the information needed to construct a BOD that tells
MOOPI a signi�cant rate change has occurred and a re-
schedule based on the new rate is called for. It is the
responsibility of the SCA to compose an instance of the
RATE-CHANGE predicate and send it to GA when it
deems necessary to request MOOPI for a re-schedule,
based on the process rate change noti�cation from PRA
and consultation with human decision makers.

Agent Collaboration and the Message Flow
in the Agent System

Figure 3 depicts how agents cooperate with one an-
other to resolve the rate change scenario, and sketches
the message
ow in the agent system. For clarity, ANS
and its connections to other agents are not shown in the
�gure. The message
ow employed to establish connec-
tions between SCA and DA and AA (brokered by BA)
is not shown.

Figure 3: The agent system for \process rate change"
scenario

Each of these agents needs information from others
to perform its designated tasks. Since there is no pre-
determined connection among the agents, the broker
agent (BA) plays a crucial role in dynamically establish-
ing communication channels for inter-agent information
exchange.
GA advertises that it can provide the OP-

COMPLETE predicate. It also advertises its ability
to handle the RATE-CHANGE predicate. PRA adver-
tises that it has current process rates available for some
operations in the form of the RATE predicate. The fol-
lowing is an example an of advertise message from GA
to BA.

(advertise

:sender GA
:receiver BA
:reply-with <a unique id>
:content (subscribe :content (ask-one

:content (OP-COMPLETE ?x1 ?xn))))

PRA asks BA to recommend an agent that can pro-
vide the OP-COMPLETE predicate, and receives the
recommendation of GA in response. Similarly, SCA
asks BA to recommend an agent that can answer queries
about the RATE predicate and receives PRA in re-
sponse. It also asks BA to recommend an agent that can
provide RATE-CHANGE predicates and receives GA in
response. The following is an example of recommend-
one message from PRA.

(recommend-one
:sender PRA
:receiver BA
:reply-with <a unique id>
:content (subscribe :content (ask-one

:content (OP-COMPLETE ?x1 ?xn))))

In response, BA sends the following tell message to
PRA.

(tell
:sender BA
:receiver PRA
:in-reply-to <id of last>
:content (GA))

Upon the recommendation from BA, an agent then
obtains the needed information by sending ask or sub-
scribe messages to the recommended agent.
When SCA knows from BA that PRA has advertised

that it can provide the current rate for certain opera-
tions, it may send PRA the following subscribe message.

(subscribe
:sender SCA
:receiver PRA
:reply-with <a unique id>
:language KQML
:content (ask-one :language KIF :content

(and (RATE ?mean) (< ?mean 50))))

With this message, SCA tells PRA that it is inter-
ested in receiving new instances of the RATE predicate
whenever the mean value of the new rate is less than
50. This e�ectively turns PRA to a process rate monitor
with the mean < 50 as the monitor criterion. When-
ever the newly updated rate satis�es this criterion, PRA
immediately noti�es SCA by sending it a tell message
with the new rate's mean and standard deviation.
Figure 4 shows the abbreviated Java source code for

the PRA agent. The PRA �rst initializes its databases,
and prepares for communication by creating an instance
of Jackal; Intercom performs startup functions (includ-
ing registration with the ANS) and provides access to
the Jackal API. Next, PRA advertises itself to the bro-
ker (BA) as a source of statistical data, and requests
a recommendation for a raw data source. Note that
Intercom's one-parameter attend method causes a mes-
sage to be sent, and blocks waiting for that messages

reply. This is the simplest use of Jackal's messaging
facilities. One it receives the name of an agent, PRA
sends that agent a subscription request for a raw data
stream; it does this by spawning a subthread which will
manage the incoming data, passing the thread an ref-
erence to the agent's Jackal instance. Then the PRA
enters a cycle of waiting for data to accumulate, and
compiling statistics. The subscription thread will also
manage incoming requests for data.

class PRA {
public static RateDatabase Rate = new RateDatabase();
public static Database msgDB = new Database(); // messages
public static int Rate_updated = 0; // # samples observed

public static void main(String[] args) throws Exception
{

ShowOpWin win = new ShowOpWin(); // PRA interface

Intercom intercom = new
Intercom("PRA","file:///C:/agents/pra.kqmlrc");

try { // next, send a ADVERTISE to BA(Broker)
KQMLMessage advertise =
new KQMLMessage("(advertise :receiver BA.ANS :content " +

"(subscribe :content (ask-one :content " +
" (RATE 1 1 ? ? ? ? ?))))");

KQMLMessage response = intercom.attend(advertise);

while(true) { // send RECOMMEND to BA
KQMLMessage recommend =

new KQMLMessage("(recommend-one :content " +
"(subscribe :content " +
"(ask-one :content (RO 1 1 ? ? ? ?))))");

recommend.put("receiver","BA.ANS");
response = intercom.attend(recommend);
if (response!=null) break;

}

KQMLMessage subscribe = // PRA now sends a SUBSCRIBE
new KQMLMessage("(subscribe :content " +

"(ask-one :content (RO 1 1 ? ? ? ?)))");
subscribe.put("receiver", response.get("content"));
Sub__Client subClient(this, subscribe);

}
catch (MessageX exception) {intercom.stderr(e) ;}

catch (InterruptedException e) { intercom.stderr(e); }

// set up computational elements
ROmessageFromPRAForRATE Ref = new ROmessageFromPRAForRATE(1);
ROmessageFromPRAForRATE RefA = new ROmessageFromPRAForRATE();
ROmessageFromPRAForRATE RefB = new ROmessageFromPRAForRATE();

while (true) { // poll intermittently for data

while ((msgDB.size())<5) {
Thread.currentThread().sleep(20); }

for (int i = 0; i<msgDB.size(); i++) { // comp statistics
Ref.set((String)msgDB.elementAt(i));

if (Ref.machn == 65) { /* 65 = 'A' */
if (RefA.set(Ref)) // PERFORM CALCULATIONS/UPDATE

else {
if (RefB.set(Ref)) // PERFORM CALCULATIONS/UPDATE

}
msgDB.removeAllElements();

}
}

}

Figure 4: CIIMPLEX's Process Rate Agent (PRA)

Summary

Jackal provides developers with an easy to use facility
for KQML, supporting the use of conversation based
protocols. In addition, it provides basic services such
as hidden address resolution. These features make it a
valuable asset in developing agents for manufacturing
information
ow.

References

Barbuceanu, M., and Fox, M. S. 1995. COOL: A
language for describing coordination in multiagent sys-
tems. In Lesser, V., ed., Proceedings of the First Inter-
national Conference on Multi{Agent Systems, 17{25.
San Francisco, CA: MIT Press.

Bermudez, J. 1996. Advanced planning and schedul-
ing systems: Just a fad or a breakthrough in in man-
ufacturing and supply chain management? Technical
report, Advanced Manufacturing Research, Boston,
Massachussetts.

Bradshaw, J. M.; Dut�eld, S.; Benoit, P.; and Woolley,
J. D. 1998. KAoS: Toward an industrial-strength open
agent architecture. In Bradshaw, J. M., ed., Software
Agents. AAAI/MIT Press.

Chauhan, D. 1997. JAFMAS: A java-based agent
framework for multiagent systems development and
implementation. Master's thesis, ECECS Department,
University of Cincinnati.

Chu, B.; Tolone, W. J.; Wilhelm, R.; Hegedus, M.;
Fesko, J.; Finin, T.; Peng, Y.; Jones, C.; Long, J.;
Matthes, M.; May�eld, J.; Shimp, J.; and Su, S.
1996. Integrating manufacturing softwares for intel-
ligent planning-execution: A CIIMPLEX perspective.
In Plug and Play Software for Agile Manufacturing,
SPIE International Symposium of Intelligent Systems
and Advanced Manufacturing.

Cost, R. S.; Soboro�, I.; Lakhani, J.; Finin, T.; and
Miller, E. 1997. TKQML: A scripting tool for building
agents. In Wooldridge, M.; Singh, M.; and Rao, A.,
eds., Intelligent Agents Volume IV { Proceedings of the
1997 Workshop on Agent Theories, Architectures and
Languages, volume 1365 of LNAI. Berlin: SV. 336{
340.

Cost, R. S.; Finin, T.; Labrou, Y.; Luan, X.; Peng,
Y.; Soboro�, I.; May�eld, J.; and Boughannam, A.
1998. Jackal: A java-based tool for agent develop-
ment. In Baxter, J., and Brian Logan, C., eds., Work-
ing Notes of the Workshop on Tools for Developing
Agents, AAAI '98, number WS-98-10 in AAAI Techni-
cal Reports, 73{82. Minneapolis, Minnesotta: AAAI.

Dickenson, I. 1997. Agent standards. Technical report,
Foundation for Intelligent Physical Agents.

Dourish, P., and Bellotti, V. 1992. Awareness and co-
ordination in shared workspaces. In Proceedings of the
ACM 1992 Conference on Computer-Supported Coop-
erative Work: Sharing Perspectives (CSCW '92), 107{
114.

Finin, T.; Labrou, Y.; and May�eld, J. 1997. Soft-
ware Agents. MIT Press. chapter KQML as an agent
communication language.

FIPA. 1997. FIPA 97 speci�cation part 2: Agent
communication language. Technical report, FIPA -
Foundation for Intelligent Physical Agents.

Frost, H. R. 1998. Java Agent Template. Online

Documentation:
http://cdr.stanford.edu/ABE/JavaAgent.html.

Jennings, N. R.; Faratin, P.; Norman, T. J.; O'Brien,
P.; Wiegand, M. E.; Voudouris, C.; Alty, J. L.; Miah,
T.; and Mamdani, E. H. 1996. Adept: Managing busi-
ness processes using intelligent agents. In Proceedings
of BCS Expert Systems Conference (ISP Track).

Kuwabara, K. 1995. AgenTalk: Coordination protocol
description for multi-agent systems. In Proceedings
of the First International Conference on Multi-Agent
Systems (ICMAS '95). AAAI/MIT Press.

Labrou, Y., and Finin, T. 1997a. Comments on the
speci�cation for FIPA '97 AGENT COMMUNICA-
TION LANGUAGE. Internet document.

Labrou, Y., and Finin, T. 1997b. Semantics and con-
versations for an agent communication language. In
Proceedings of the Fifteenth International Joint Con-
ference on Arti�cial Intelligence (IJCAI-97). Morgan
Kaufman.

Martin, D. L.; Cheyer, A. J.; and Moran, D. B. 1998.
Building distributed software systems with open agent
architecture. In Proceedings of the Third Interna-
tions Conference on Practical Applications of Intelli-
gent Agents.

Nodine, M. H., and Unruh, A. 1997. Facilitating open
communication in agent systems: the InfoSleuth in-
frastructure. In Singh, M.; Rao, A.; and Woolridge,
M., eds., Proceedings of the 14th Annual Workshop on
Agent Theories, Architectures and Languages (ATAL
'97).

Parunak, H. V. D. 1996. Visualizing agent conver-
sations: Using enhanced dooley graphs for agent de-
sign and analysis. In Proceedings of the Second Inter-
national Conference on Multi-Agent Systems (ICMAS
'96).

Peng, Y.; Finin, T.; Labrou, Y.; Cost, R. S.; Chu, B.;
Long, J.; Tolone, W. J.; and Boughannam, A. 1999.
An agent-based approach for manufacturing integra-
tion - the CIIMPLEX experience. International Jour-
nal of Applied Arti�cial Intelligence.

Petrie, C. 1998. JATLite. Online Documentation:
http://java.stanford.edu/.

Shoham, Y. 1993. Agent{oriented programming. Ar-
ti�cial Intelligence 60:51{92.

Vollmann, T.; Berry, W.; and Whybark, D. 1992.
Manufacturing Planning and Control Systems. New
York: Irwin.

White, J. 1995. Mobile agents. In Bradshaw, J. M.,
ed., Software Agents. MIT Press.

Winograd, T., and Flores, F. 1986. Understanding
Computers and Cognition. Addison-Wesley.

