
A MULTI-AGENT SYSTEM FOR ENTERPRISE INTEGRATION

Y. Peng1 T. Finin1 Y. Labrou1 B. Chu2 J. Long2 W. J. Tolone2 A. Boughannam3

1Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

 Baltimore, MD 21250
2Department of Computer Science

University of North Carolina
Charlotte, NC 28223

3IBM Corporation
Boca Raton, FL 33431

ABSTRACT
The production management system used by most manufacturers today is comprised of disconnected
planning and execution processes, and lacks the support for interoperability for enterprise wide
integration. This situation often prevents the manufacturer from fully exploring market opportunities
in a timely fashion. To address this problem, we propose an agent-based framework for intelligent
enterprise integration. A set of agents with specialized expertise can be quickly assembled to help
with the gathering of relevant information and knowledge, to cooperate with each other and with
other management systems and human managers and analysts to arrive at timely decisions in dealing
with various enterprise scenarios. The proposed multi-agent system, including its theoretical
foundation, architecture, and implementation, are presented. The work of this system is
demonstrated through an integration scenario involving real management software systems.

1. INTRODUCTION
The production management system used by most of today’s manufacturers consists of a set of
separate software applications, each for a different part of planning, scheduling, and execution
processes [16]. For example, Capacity Analysis (CA) software determines a Master Production
Schedule that sets long-term production targets. Enterprise Resource Planning (ERP) software
generates material and resource plans. Scheduling software determines the sequence in which shop
floor resources (people, machines, material, etc.) are used in producing different products.
Manufacturing Execution System (MES) tracks real-time status of work in progress, enforces
routing integrity, and reports labor/material claims.

Most of these business applications are legacy systems developed over years. Although each of
these software systems performs well for its designated tasks, they are not equipped to handle
business scenarios across domains of several applications. For example, consider the scenario of
updating a purchase order when the shipment date on a purchased part is changed. This event may
cause one of the following possible actions: (a) the manufacturing plan is still feasible, no action is
required; (b) order substitute parts; (c) reschedule; or, (d) reallocate available material. To determine
which of these actions to take, different applications and possibly human decision-makers must be
involved. Examples of other similar scenarios include a favorite customer’s request to move one of
its orders ahead, a machine breakdown being reported by MES, a crucial operation having its rate
decreased from the normal rate, to mention just a few. Timely solutions to these scenarios are crucial
to agile manufacturing. Unfortunately, current production management systems cannot support
integrated solutions to such scenarios. This is because existing management systems provide little

 2

interoperability among isolated individual application softwares, and there is no software to
coordinate information and knowledge gathering and decision-making at the enterprise level [1,15].

With matching funds from the National Institute of Standards and Technology, the Consortium
for Intelligent Integrated Manufacturing Planning-Execution (CIIMPLEX), consisting of several
private companies and universities, was formed to address this problem. The aim of the consortium
is to develop technologies for intelligent enterprise-wide integration of planning and execution for
manufacturing [3]. One approach to this problem might be to rewrite all application softwares into a
monolithic integrated planning-execution system capable of handling all foreseeable scenarios. This
approach is unfeasible because (a) rewriting legacy application systems is formidably expensive; (b)
a monolithic system is too rigid to expand to cover unforeseen new scenarios once the system is put
into use; and (c) unlike distributed systems, a monolithic system is difficult to develop, to test, and to
maintain. Instead, CIIMPLEX adopts as one of its key technologies the approach of intelligent
software agents, a rapidly emerging technology of software systems in networked distributed
environment. Unlike traditional software programs, software agents are programs that help people
solve problems by collaborating with other software agents and other resources in the network
[2,4,13]. Working with a software agent is like working with a travel agent who is aware of
customer’s preferences and can collaborate with other agents and systems to obtain additional
information and services in fulfilling customer needs. A collection of software agents can be
designed to perform data collection and analysis of plans and schedules at different levels. They
keep constant vigil against mismatches among these plans and schedules at different levels of
abstraction and time horizons. Scenario coordination agents can be designed to resolve the conflicts
either by themselves or in coordination with human managers and analysts. Personal assistant agents
can be designed to assist human managers/analysts.

The rest of this paper is organized as follows. In the next section, we briefly describe the
theoretical foundations and core technologies of software agents that are relevant to the task of
manufacturing integration, with an emphasis on agent communication. Sections 3 and 4 are the core
of this paper, where we first present the proposed agent system’s architecture, and then its function
through an example scenario. We conclude the paper with discussions of ongoing work to expand
the agent system, along with the directions for future research in Section 5.

2. MULTI-AGENT SYSTEM AND AGENT COLLABORATION
The computing paradigm of multi-agent systems (MAS) has its origin in both distributed artificial
intelligence (DAI) and object-oriented distributed systems. There is no consensus on the definition
of software agents or of agency, and some people go so far as to suggest that any piece of software
or object that can perform a specific given task is an agent. However, the prevailing opinion is that
an agent may exhibit three important general characteristics: autonomy, adaptation, and cooperation
[9,12]. By “autonomy” we mean that agents have their own agenda of goals and exhibit goal-
directed behavior. They are not simply reactive, but can be pro-active and take initiatives as they
deem appropriate. In this sense, agent systems can be viewed as a generalization of the client-server
model in that each agent can be both a client and a server and can provide and request services to
and from others. Adaptation implies that agents are capable of adapting to the environment, which
includes other agents and human users, and can learn from the experience in order to improve
themselves in a changing environment. Cooperation and coordination between agents is probably the
most important feature of multi-agent systems [12]. Unlike those stand-alone agents, agents in a
multi-agent system collaborate with each other to achieve common goals. In other words, these
agents share information, knowledge, and tasks among themselves. The intelligence of MAS is not
only reflected by the expertise of individual agents but also exhibited by the emerged collective
behavior beyond individual agents. From a software engineering point of view, the approach of

 3

MAS is also proven to be an effective way to develop large distributed systems. Since agents are
relatively independent pieces of software interacting with each other only through message-based
inter-agent communication, system development, integration, and maintenance become easier and
less costly [10]. For instance, it is easy to add new agents into the agent system when needed. Also,
the modification of legacy applications can be kept minimum when they are to be brought into the
system. Aside from adding communication capabilities to a legacy application, nothing else is
required to change.

Cooperation and coordination of agents in a MAS requires agents to be able to understand each
other and to communicate effectively with each other. The infrastructure that supports agent
cooperation in a multi-agent system is thus seen to include at least the following key components:

• A common agent communication language (ACL) and protocol,
• A common format for the content of communication, and
• A shared ontology.

In CIIMPLEX we take the Knowledge-Sharing-Effort (KSE) approach toward achieving the
infrastructure needed for agent cooperation. KSE, sponsored by the Advanced Research Project
Agency (ARPA), the Air Force Office of Scientific Research (AFOFR), the Corporation for National
Research Initiative (NRI), and the National Science Foundation (NSF), is an initiative to develop
technical infrastructure to support knowledge sharing among systems [14]. Three technologies
developed from KSE are adopted. They are (a) Knowledge Query Manipulation Language (KQML)
as a communication language and protocol, (b) Knowledge Interchange Format (KIF) as the format
of the communication content, and (c) the concept of a shared ontology. In what follows we briefly
describe the three components and justify their selections in the context of manufacturing integration
environment.

2.1. KQML
KQML is based on speech act theory in which inter agent communication is thought of as similar to
“conversations” between humans [6,7,14]. KQML considers that each message not only contains the
content but also the intention the sender has for that content. To see the different intentions a sender
may associate with different messages, consider the example that Agent A sends the following
statement as the content of a message to Agent B:

“the processing rate of operation 1 at machine X is greater than 5.”
Agent A, in different circumstances, may have different intentions about this statement. Agent A may
simply

• tell B that this statement is true in its own database; or
• ask if this statement is true in B’s database; or
• ask to obtain all records in B’s database in which this statement is true; or
• ask B to monitor the change of the processing rate and report back whenever this statement

becomes true; or
• request that B make this statement true in B’s database by, for example, adjusting the existing

schedule or putting more machines or labor into the given operation.

KQML provides a formal specification for representing the intentions of messages through a set
of pre-defined performatives used in the messages. There are about three dozen performatives
defined in the current specification of KQML [6]. A particular agent system generally implements
only a subset of these defined performatives and may introduce additional performatives of its own,
as long as the new ones are defined in the same format and spirit of the KQML specification. The
few most commonly used performatives that are particularly relevant to our agent system are briefly
listed below, where S and R stand for the Sender and the Receiver of a message, respectively.

 4

• ask-one: S wants one of R’s answers to a question.
• ask-if: S wants to know if a sentence is true in R’s knowledge base.
• advertise: S is particularly suited to processing a performative.
• subscribe: S wants to receive updates to R’s response to a performative.
• recommend-one: S wants the name of an agent who can respond to a performative.
• deny: the embedded performative does not apply to S (any more).
• tell: the sentence in the message is true in S’s knowledge base.
• reply: S communicates an expected reply to R.
• sorry: S cannot provide a more informed reply (i.e., S cannot answer the question asked in an

earlier message from R).
• error: S considers R’s earlier message to be malformed.

KQML does not impose any particular common format and interpretation on the content of all
messages. In other words, the content of a message is opaque to KQML. The content language for
the message body is left for the individual agents to decide. KQML allows an agent to specify in a
message the language and ontology it uses for the content of a given message. Not only different
agents in a system can have different content language, but different messages from the same agent
can also use different content languages. Commonly used content languages include English, Lisp,
Prolog, KIF (Knowledge Interface Format), SQL, etc.

A KQML message is thus divided into three layers: the content layer, the message layer, and the
communication layer. The content layer bears the actual content of the message in a language chosen
by the sending agent. The communication layer encodes a set of features to the message to describe
the lower level communication parameters, such as the identity of the sender and recipient, and a
unique identifier associated with the communication. The message layer encodes the message,
including its intention (by a chosen performative), the content language used, and the ontology. The
syntax of KQML messages is based on a balanced parenthesis list. The first element of this list is the
performative; the remaining elements are the arguments of the performative, as key word/value
pairs. The following is an example of an actual KQML message sent by agent “joe” to agent “stock-
server”, inquiring about the price of a share of IBM stock:

(ask-one
 :language KIF
 :content (Price IBM ?x)
 :sender joe
 :receiver stock-server
 :reply-with zxcasd
)

In the message, the performative ask-one indicates that this is a query type of message. KIF is
specified as the content language. The actual content is a KIF predicate, named Price, of two
arguments: the name of the stock (instantiated to IBM) and the price of the stock (a variable, as
indicated by the quotation marker preceding x). The string zxcasd is a unique machine generated
reply id. In essence, by this message agent joe asks one answer from agent stock-server of the share
price of IBM stock. Any reply from stock-server to joe concerning this query should carry the reply
id of zxcasd. In due time, agent stock-server might send joe the following KQML message if or
when it has an answer to the query.

(tell
:sender stock-server

 :language KIF
 :content (Price IBM 89)
 :receiver joe

 5

 :in-reply-to zxcasd
)

The second argument of the predicate Price in the reply message is instantiated to 89, indicating that
agent stock-server believes (or it is true in stock-server’s knowledge base) that the price of IBM
stock is 89. More complicated queries can be conveyed by other KQML performatives. For instance,
joe might want stock-server to send the price of IBM stock whenever the price is updated. This can
be done by a nested message, starting with the performative subscribe1.

(subscribe
 :language KQML
 :content (ask-one :language KIF :content (Price IBM ?x))
 :sender joe
 :receiver stock-server
 :reply-with zxcasd
)

2.2. KIF
Although KQML allows agents to choose their own content language, it is beneficial for all agents
within one MAS to exchange most if not all of their messages in a single neutral format. One
obvious advantage of adopting a common message format is efficiency. Instead of many-to-many
format conversion, each agent only needs to convert messages between its own internal
representation and the common format. KIF (Knowledge Interchange Format), due to its rich
expressive power and simple syntax, is probably the most widely used neutral message format for
agent communication.

KIF is a prefix version of First Order Predicates Calculus (FOPC) with extensions to support
non-monotonic reasoning and definitions [8,14]. The language description includes both
specifications for its syntax and for its semantics. First and foremost, KIF provides for the
expression of simple data, in the form of predicates (or relations, as KIF calls them). For example,
the sentence shown below encodes a tuple in a personnel database in which the first field gives the
predicate or relation name, and the other fields represent employee ID number, department
assignment and salary, respectively.

(salary 015-46-3946 widgets 60000)
More complicated information can be expressed in composite sentences through the use of relational
and logical connectives. For example,

(> (* (width chip1) (length chip1)) (* (width chip2) (length chip2)))
states that one chip is larger than another, and

(=> (and (real-number ?x) (even-number ?n)) (> (expt ?x ?n) 0))
encodes a rule that the number obtained by raising any real number ?x to an even power ?n is
positive. In KIF syntax, any symbol preceded by the question mark, as ?x and ?n in the last sentence,
is taken to be a variable.

Besides FOPC expressions of facts and knowledge, KIF also supports extra-logical expressions
such as those for the encoding of knowledge about knowledge and of procedures.

2.3. Shared Ontology
Sharing the content of formally represented knowledge requires more than a formalism (such as
KIF) and a communication language (such as KQML). Individual agents, as autonomous entities

1 Since this message has a KQML message as its content, its content language is specified as KQML.

 6

specialized for some particular aspects of problem-solving in a MAS, may have different models of
the world in which objects, classes and properties of objects of the world may be conceptualized
differently. For example, the same object may be named differently (“machine-id” and “machine-
name” for machine identification in databases of two agents). The same term may have different
definitions (“salary-rate,” referring to hourly rate in one agent and annual rate in another). Also,
different taxonomies may be conceptualized from different perspectives by individual agents.

Therefore, to ensure correct mutual understanding of the exchanged messages, agents must also
agree on the model of the world, at least the part of the world about which they are exchanging
information with each other. In the terminology of the agent community, agents must share a
common ontology [14]. An ontology for a domain is a conceptualization of the world (objects,
qualities, distinctions and relationships, etc. in that domain). A shared or common ontology refers to
an explicit specification of the ontological commitments of a group of agents. Such a specification
should be an objective (i.e., interpretable outside of the agents) description of the concepts and
relationships that the agents use to interact with each other, with other programs such as legacy
business applications, and with humans. A shared ontology can be in the form of a document or a set
of machine interpretable specifications.

2.4. Agent Collaboration
With a common communication language, content language, and a shared ontology, agents can
communicate with each other in the same manner, in the same syntax, and with the same
understanding of the world. In addition, to make agent collaboration more efficient and effective,
some service agents are often created in multi-agent systems. One type of a service agent is the
Agent Name Server (ANS). The ANS serves as the central repository of physical addresses (in the
form of the chosen transport mechanism) for all involved agents. It maintains an address table of all
registered agents, accessible through the agents’ symbolic names. Newly created agents must
register themselves with the ANS with their names, physical addresses and possibly other
information by sending to the ANS a message with the performative register. (As a presumption,
every agent in the system must know the physical address of the ANS.) The ANS maps the symbolic
name of a registered agent to its physical address when requested by other agents.

Another type of a service agent is the Facilitator Agent (FA), who provides additional services to
other agents. A simple FA is a Broker Agent (BA). The BA serves, to some extent, as a dynamic
information hub or switchboard. It registers services offered and requested by individual agents and
connects dynamically available services to requests whenever possible. Agents register their
available services by sending messages with the performative advertise, and request services by
sending to the BA messages with brokering performatives such as recommend-one. In both cases,
the description of the specific service is in the content of the message. In a reply to a recommend-one
message the BA will send the symbolic name of an agent who has advertised as being able to
provide the requested service to the BA, or sorry if such request cannot be met by existing
advertisers.

One of the key objectives of CIIMPLEX is to establish a monitoring/notification architecture for
the enterprise integration. In this architecture, an application will define events it is interested in (e.g.
changes in process rates, yield, material due dates) and have programs (agents) to monitor such
events. When those events occur, the agents will notify the concerned applications. The
monitoring/notification architecture is in sharp contrast to the polling architecture used by many
existing systems where reports are periodically generated from production databases. These reports
are interpreted either by humans or by other computer programs. The polling model has several
major weaknesses:

• Reports cannot be generated in real time.

 7

• Pre-scheduled reports may not catch critical events early enough to make corrective actions.
• Not all information is logged for reports.

A natural way to implement the monitoring/notification architecture is to use Broker agents (BA) to
track the agents which can provide monitoring service for a type of event another agent is interest in.
The ability of the BA to dynamically link services with requests in real time would greatly increase
the flexibility toward manufacturing integration and interoperation.

3. CIIMPLEX AGENT SYSTEM ARCHITECTURE
In this section, we describe the agent system architecture that supports inter agent cooperation in the
CIIMPLEX project, with the emphasis on the agent communication infrastructure. Figure 1 below
gives the Architecture of the CIIMPLEX enterprise integration with MAS as an integral part.

The CIIMPLEX Integration Infrastructure supports communication between legacy application
systems. The CIIMPLEX Agent Communication Infrastructure supports communication between
agents. The main reason to separate the two infrastructures is to reduce the necessary modifications
to the applications to the minimum.

Besides the service agents ANS and BA, several other types of agents are useful for enterprise
integration. For example, data-mining/parameter-estimation agents are needed to collect, aggregate,
interpolate and extrapolate the raw transaction data of the low level (shop floor) activities, and to
make this aggregated information available for higher level analyses by other agents. Event
monitoring agents monitor, detect, and notify about abnormal events that need to be attended. The
CIIMPLEX Analysis Agents (CAA) evaluate disturbances to the current planned schedule and
recommend appropriate actions to address each disturbance. And the Scenario Coordination Agents
(SCA) assist human decision making for specific business scenarios by providing the relevant
context, including filtered information and actions, as well as workflow charts. All these agents
speak KQML, and use SKIF, a subset of KIF that supports Horn clause deductive inference, as the
content language. TCP/IP is chosen as the low-level transport mechanism for agent-to-agent
communication. The shared ontology is an agreement document established by the application
vendors and users and other partners in the consortium. The agreement adopts the format of the

 MES ERP Scheduler
 Customer
 Response CA

 Gateway
 Agent

 CIIMPLEX Integration Infrastructure

CIIMPLEX Agent Communication Infrastructure

 ANS BA Parameter
Estimation
Agent

Monitoring
 Agent

Ciimplex
Analysis
Agent

Scenario
Coordination
Agent

Figure 1. CIIMPLEX Integration Architecture

 8

Business Object Document (BOD) defined by the Open Application Group (OAG). BOD is also
used as the message format for communication between applications such as MES and ERP, and
between agents and applications. Different transport mechanisms (e.g., MQ Series of IBM and
VisualFlow of Envisionit) are under experimentation for communication to and from applications. A
special service agent, called the Gateway Agent (GA), is created to provide interface between the
two infrastructures. GA’s functions, among other things, include making connections between the
two transport mechanisms (TCP/IP and MQ Series) and transforming messages between the two
different formats (KQML and BOD).

The agent system architecture outlined above is supported by the agent communication
infrastructure called Jackal. As indicated by the name, JACKAL is written in Java to support Agent
Communication using the KQML Agent communication Language. The decision to select Java as the
implementation language was based mainly on its inter-platform portability, its networking facilities,
and its support for multi-thread programming. Except for the ability to understand and process
KQML messages, Jackal does not impose any restrictions on the internal architecture and
representation of individual agents.

3.1. Conversation Policies in Jackal
KQML itself only defines the syntax of the language. There is no generally accepted semantics of
KQML in the agent community. However, a good, workable semantics is imperative for a coherent
conversation which is not merely a collection of messages but rather a proper sequence of messages.
The infrastructure must support both syntactic and semantic aspects of the language. Jackal takes a
semantic interpretation of KQML from [11] and realizes part of it as a set of conversation policies.
In the next two subsections, we first discuss the conversation policies and then the architecture of
Jackal.

The conversation policies are procedures which, based on the performatives involved, specify
how a conversation is to start, to proceed, and to terminate. For example, a conversation started with
an ask-one message will terminate as soon as the sender receives a proper response. (Possible replies
include an error message, indicating that the format of the message is incorrect, a sorry message,
indicating that the receiver cannot provide an answer to the question, or a tell message whose
content contains an answer to the given question). A conversation started by a message with
performative subscribe would have a different policy. When Agent A starts such a conversation with
Agent B, the conversation remains open with A keeping listening for new messages from B that
satisfy the subscription criterion.

Conversation policies chosen for Jackal can be described using a Deterministic Finite Automata
(DFA) model. A DFA consists of a set of states (nodes) and a set of arcs representing transitions
from one state to another. In this model, each conversation starts with a state called START, and
ends with a state called STOP. A conversation moves from one state to another according to the
given state transition diagram. The following are the state transition diagrams for some example
conversations selected for the CIIMPLEX agent system. In these diagrams, bold upper case
character strings are for the states, arcs are for the state transitions, and the lower case strings
attached to arcs are for the conditions (inputs) that cause the transitions to occur. For example, in the
diagram for subscribe conversation, the conversation goes from the initial state, START, to a state
called SUBSCRIBE when an agent issues a message with the subscribe performative. The
conversation remains at this state until an input (a reply message to the subscribe message) is
received. If the input is a message with the performative tell, the conversation does not change its
state (i.e., it loops back to the current state and waits for new messages). If the input is one of the
performatives deny(subscribe), sorry, or error, then the conversation goes to the state STOP, and
terminates there.

 9

START STOP

tell
untell
deny
sorry
error

ask-one
ask-all
ask-all

RESPONSE

 DFA state transition diagram for ask- conversations.

 DFA state transition diagram for query/acknowledge conversations.

 DFA state transition diagram for recommend- conversations.

 DFA state transition diagram for subscribe conversations.

3.2. Jackal architecture
To have a better understanding of Jackal, we shall follow the incoming message, from the incoming
transport channel, until it is consumed by the application, and follow the outgoing message, from the
application, until it is sent out. The two paths of messages are shown in Figure 2 below. When an
incoming message arrives at an agent, it will be picked up by the message-receiving module (a
listener) and passed to the KQML message parser. The parser converts the message into a
standardized internal format (Java object representation). Next, the message (in internal format) will
be passed to the conversation module for conversation resolution. The conversation module will first
determine whether the incoming message belongs to an ongoing conversation (e.g., a tell message in
reply to an ask-one previously sent out from this agent). This is done by matching the unique
conversation id of the message (the in-reply-to field of the incoming message) with id’s of the
ongoing conversations (the reply-with field in the message that initiates the conversation). If a match
is established, the message is then attached to that conversation. Otherwise, a new instance of an
appropriate conversation and its DFA are created, and the message is attached to that new
conversation. In either case, when a message is attached to a conversation, the corresponding DFA
changes its state; the message, together with the required action (default or user specified function),
is passed to the application program.

When an agent wants to send a message (either in response to a previous message or a new message
to start a new conversation), the message is passed to the conversation module by calling the

START ACK STOP
advertise reply

sorry
error

START ACK STOP
recommend tell

sorry
error

START SUBSCRIBE STOP
subscribe Deny(subscribe)

tell

sorry
error

 10

appropriate API. Similarly, in the case of an incoming message, the conversation resolution is
conducted to either attach the message to an ongoing conversation or to create a new instance of an
appropriate conversation and attach the message to it. The message is then passed to the lower layer
where the destination address is resolved, and the message is converted into whatever format
appropriate for the underlying transport protocol and sent out.

Figure 2. Life of a KQML message in Jackal

The diagram in Figure 3 below outlines the Jackal implementation. Several features distinguish
our implementation from others. Jackal supports single, multiple and hierarchical ANS. It is
designed in such as way that it can be easily extended to support multiple transport mechanisms in a
single MAS. Also, to ensure that every message complies with the conversation policies across the
board, the main components (Message handler, Conversation arena, and Distributor) treat incoming
and outgoing message in the same way.

Figure 3. Jackal Architecture

The Message handler handles conversation resolution for both incoming and outgoing messages
based on matching of the reply-key parameter. DFA state transitions for conversations are performed
in the Conversation arena. If a conversation policy is violated (i.e., the message does not match any
of the state transition conditions of the current state), an error message will be generated. The

CACHE

 SWITCH
 BOARD

CONVERSATION
ARENA

MESSAGE HANDLER

 SPLITTER

DISTRIBUTOR

AGENT

 Receiving Msg
 (from transport)

 Msg parsing

 Conversation
 - attach to existing
 conversation; or
 - create a new
 conversation

 System functions
 (e.g., msg log, and
 exception handling)

Conversation
 - attach to existing
 conversation; or
 - create a new
 conversation

 Destination
 resolution

 Sending Msg
 (to transport)

Agent
Application
Program

Transport
Mechanism

Converting
Msg format

 11

Message splitter duplicates messages for multiple destinations (e.g., broadcast or cc messages). The
Distributor is the communication focal point for agent processes. It maintains two queues: a message
queue, where all unconsumed messages are stored, and a request queue where all unmet requests for
messages are stored. Message requests are generated in accordance to the policies for ongoing
conversations. When a new (incoming or outgoing) message arrives, the distributor will first check
the request queue to see if there is a request for this message. If there is such as request, then the
request is removed from the queue, and this message is consumed (either sent to the agent
application program if the message is incoming, or sent to the switchboard if the message is
outgoing). New requests are processed similarly. The Switchboard deals with the physical level of
the communication, and performs the following functions. It translates the KQML messages between
the internal format (Java objects) and the format required by the transport mechanism. It finds the
physical addresses for outgoing messages with the help of the ANS and the agent’s own address
Cache module. It supports multiple transport mechanisms, and can switch from one to another
according to the mechanism used by the message destination agent. To reduce the network traffic
and increase the speed, each agent may maintain an address cache to store the name/address
mappings of other agents it has recently contacted. It may also store the transport mechanisms used
by these other agents if multiple mechanisms are used in the agent system. Therefore, an agent
contacts the ANS only when it cannot find a needed address in its local cache.

To facilitate the construction of agents, the interface between the agent application program and
Jackal is kept very simple. The application program interacts with the infrastructure only by sending
outgoing messages to the Message handler and receiving incoming messages from the Distributor.
A set of API is provided by Jackal for this purpose. To ease the memory requirement, Jackal allows
multiple agents on the same computer to share a single Java interpreter. Each agent maintains its
own set of threads (e.g., listening thread, conversation thread, distributing thread) within the single
interpreter.

4. AN EXAMPLE
In this section, we demonstrate how the agent system supports intelligent enterprise integration
through a simple business scenario involving some real manufacturing management application
software systems.

4.1. The Scenario
In general, scenarios represent exceptions to the normal or expected activities or events that need
special attention. The user scenario selected, called “process rate change”, occurs when the process
time of a given operation is reduced significantly from its normal value. When this type of event
occurs, different actions need to be taken based on the type of operation and the severity of the rate
reduction, Some of the actions may be taken automatically according to the given business rules, and
others may involve human decisions. Some actions may be as simple as recording the event in the
logging file, and others may be as complicated and expensive as requesting a re-scheduling based on
the changed operation rate. The process rate change scenario is depicted in Figure 4 below. Note that
two real application programs, namely the FactoryOp (a MES by IBM) and MOOPI (a Finate
Scheduler by Berclain), are used in this scenario.

4.2. The agents
To support managing this scenario, we need mechanisms for the following activities.

• Collect information concerning operation completion originated from MES.
• Compute and constantly update the process rate from the collected information.

 12

• Detect and notify the appropriate parties if the current rate change constitutes a significant
reduction.

• Carry out appropriate actions to handle the rate change.

FactoryOp
1.Msg for operation

 Completion (BOD)
Rate monitoring
agent

Rate coordination
agent

People

2. Inform rate change:
KQML/KIF

MOOPI

4. Request re-schedule
 Msg (BOD to Moopi)

3. Informing people (email,
pager, cell phone) and
human decision.

Specify monitoring
criteria

Figure 4. The “process rate change” scenario

These activities must be coordinated in a coherent manner. A collection of agents is assembled to
support the chosen scenario. All of these agents speak KQML, and are supported by Jackal. Besides
the three service agents ANS, BA, and GA, the multi-agent system also includes the following
special agents.

• The Process Rate Agent (PRA) is both a mining agent and a monitoring agent for shop-floor
activities. As a mining agent, PRA requests and receives the messages containing transaction
data of operation completion from GA. The data is originated from FactoryOp in the BOD
Format, and is converted into KIF format by GA. PRA summarizes and aggregates the
continuing stream of operation completion data (computes the current mean and standard
deviation of the processing time for each operation). It also makes the aggregated data
available for other agents to access. As a monitoring agent, PRA receives from other agents
the monitoring criteria for disturbance events concerning processing rates and notifies the
appropriate agents when such events occur.

• The Scenario Coordination Agent (SCA) sets the monitoring criterion, receives the
notification for the rate change, and decides, in consultation with human decision-makers,
appropriate action(s) to take for the changed rate. One of the actions would be to request
MOOPI to reschedule if it is determined that the rate change makes the existing schedule
impossible to meet. This request is sent from SCA as a KQML message to GA, where it is
converted into the BOD format. Details of the internal logic and the algorithms of the SCA
that handle the “rate change” scenario are reported elsewhere.

• The Directory Assistance Agent (DA) is an auxiliary agent responsible for finding
appropriate persons for SCA when the latter needs to consult human decision-makers. It also
finds the proper mode of communication to that person.

• The Authentication Assistance Agent (AA) is another auxiliary agent used by SCA. It is
responsible for conducting authentication checks to see if a person in interaction with SCA
has proper authority to make certain decisions concerning the scenario.

 13

4.3. The Predicates
Three SKIF predicates of multiple arguments are defined for processing the process rate change
scenario. Their names are OP-COMPLETE, RATE, and RATE-CHANGE.

Predicate OP-COMPLETE contains all relevant information concerning a completed operation
such as the machine-id, product-id, operation-id, starting and finishing time of the operation. Each
instance of this predicate corresponds to a BOD originating from FactoryOp, and GA is responsible
for converting the BOD to this predicate. Predicate RATE contains all relevant information
concerning the current operation rate of a particular operation at a particular machine with a
particular product. The operation rate is represented by its mean and standard deviation. Instances of
Rate predicate are computed and constantly updated by PRA, based on a stream of instances of
predicate OP-COMPLETE obtained from GA. Predicate RATE-CHANGE contains all the
information needed to construct a BOD that tells MOOPI a significant rate change has occurred and
a re-schedule based on the new rate is called for. In particular, it contains the operation rate used to
compute the current schedule and the new rate. It is the responsibility of the rate SCA to compose an
instance of the RATE-PREDICATE and send it to GA when it deems necessary to request MOOPI
for a re-schedule, based on the process rate change notification from PRA and consultation with
human decision makers. Additional predicates and more complicated KIF expressions are needed
when dealing with more complicated scenarios.

4.4. Agent Collaboration And The Message Flow in The Agent System
Figure 5 below outlines how agents are cooperating with one another to resolve the rate change
scenario, and sketches the message flow in the agent system. For clarity, ANS and its connections to
other agents are not shown in the figure. The message flow employed to establish connections
between SCA and DA and AA (brokered by BA) is also not shown.

Each of these agents needs information from others to perform its designated tasks. Each of them
may also have information others need. There is no permanent stationery connection between agents.
The broker agent (BA) can be seen to play a crucial role in collaborating agents’ information
exchange activities. This is done by sending advertise and recommend messages to BA.

Advertising to BA.
GA advertises that it can provide OP-COMPLETE predicate. It also advertises to be able to

accept RATE-CHANGE predicate and forward it to MOOPI as BOD messages. PRA advertises that
it has current process rates available for some operations in the form of RATE predicate. The
following is an example of advertise message from GA.

(advertise
:sender GA

 :receiver BA
 :reply-with null8599132710561
 :content (subscribe :content (ask-one :content (OP-COMPLETE ?x1 … ?xn))))

Requesting recommendation from BA.
PRA asks BA to recommend an agent that can provide OP-COMPLETE predicate, and will

receive the recommendation of GA in a responding tell message. Similarly, SCA asks BA to
recommend an agent which can provide RATE predicate and receives PRA in response. It also asks
BA to recommend an agent which can accept RATE-CHANGE predicate and receives GA in
response. The following is an example of recommend-one message from PRA.

(recommend-one
:sender pra

 14

 :receiver ba
 :reply-with null222222222
 :content (subscribe :content (ask-one :content (OP-COMPLETE ? ? … ? ?))))

 FactoryOp

 GA

BA PRA

SCA

MOOPI

 DA AA

GA-IN
Queue

GA-OUT
Queue

BODs from applications BODs to applications

tell
advertise recommend-one

tell
recommend-one

tell

advertise

subscribe

tell

subscribe
tell

Figure 5. The agent system for “process rate change” scenario

In response, BA sends the following tell message to PRA.

(tell
:sender ba

 :receiver pra
 :in-reply-to null222222222
 :reply-with null333333333
 :content (ga))

Upon the recommendation from BA, an agent can then obtain the needed information by sending
ask or subscribe messages to the recommended agent.

Monitoring/notification

When SCA knows from BA that PRA has advertised to be able to provide the current rate for
certain operation, it may send PRA the following subscribe message.

 (subscribe
 :sender sca
 :receiver pra
 :reply-to null444444444
 :language KQML
 :content (ask-one

 15

 :language SKIF
:content (and (RATE … ?mean …) (< ?mean 50))))

With this message, SCA tells PRA that it is interested in receiving new instances of RATE predicate
whenever the mean value of the new rate is 50. This effectively turns PRA to a process rate monitor
with the mean < 50 as the monitor criterion. Whenever the newly updated rate satisfies this criterion,
PRA immediately notifies SCA by sending it a tell message with the new rate’s mean and standard
deviation.

5. CONCLUSION
In this paper we presented a multi-agent system that is capable of supporting intelligent integration
of manufacturing planning and execution. With this approach, a set of software agents with
specialized expertise can be quickly assembled to help gather relevant information and knowledge
and to cooperate with each other, and with other management systems and human managers and
analysts, to arrive at timely decisions in dealing with various enterprise scenarios. This system has
been tested successfully with a real manufacturing scenario involving real legacy MES and
scheduler.

The work presented here represents only the first step of our effort toward agent-based
manufacturing integration. Further research and experiment are needed to extend the current work
and to address its shortcoming. Although KQML does not impose much constraint and requirements
on the internal structure of agents, it might be beneficial to have a common framework for the
agent’s internal structure within a single agent system. We are currently considering a lightweight
blackboard architecture for such a framework which, among other advantages, may provide
flexibility for agent construction, agent component re-usability and plug-and-play. Another research
direction under active consideration is to increase the functionality of the broker agent and make it
more intelligent. The BA in our current implementation can only conduct brokering activities at the
level of predicates. With the help of a machine interpretable common ontology and an inference
engine, more intelligent brokering can be developed to work with object hierarchies and to make
intelligent choices. Work is also under way to identify more complex enterprise scenarios which
require non-trivial interactions with more legacy systems, and their solutions represent significant
added values to the manufacturing production management.

ACKNOWLEDGMENT
This work is supported in part by the Advanced Technology Program administered by the National
Institute of Standards and Technology under the agreement number: 70NANB6H2000.

REFERENCES
1. Bermudez, J. “Advanced Planning and Scheduling Systems: Just a Fad or a Breakthrough in

Manufacturing and Supply Chain Management?” Report on Manufacturing, Advanced
Manufacturing Research, Boston, MA. Dec. 1996.

2. Bradshaw, J., Dutfield, S., Benoit, P. & Woolley, J. “KAoS: Toward An Industrial-Strength
Open Agent Architecture.” To appear in Software Agents Bradshaw, J.M. (Ed), MIT Press.

3. Chu, B., Tolone, W. J., Wilhelm, R., Hegedus, M., Fesko, J., Finin, T., Peng, Y., Jones, C. Long,
J., Matthews, M. Mayfied, J., Shimp, J., & Su, S. "Integrating Manufacturing Softwares for
Intelligent Planning-Execution: A CIIMPLEX Perspective." In Plug and Play Software for Agile
Manufacturing, Proceedings of SPIE Vol. 2913. pp. 96-108, Boston, MA, 1996.

4. Compositional Research Group “Caltech Infosheres Project.” Available at http://www.
infospheres.caltech.edu.

 16

5. Dourish, P. Bellotti, V. “Awareness and Coordination in Shared Workspaces.” In Proceedings
ACM 1992 Conference on Computer-Supported Cooperative Work: Sharing Perspectives
(CSCW '92), pp107-114, Toronto, November 1992.

6. Finin, T., Weber J. et al. “Draft Specification of the KQML Agent Communication Language.”
June, 1993. Available at http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

7. Finin, T., Labrou, Y., & Mayfield, J. “KQML as an agent communication language.” In Software
Agents. Bradshaw, J.M. (Ed.) MIT Press, to appear

8. Genesereth, M. & Fikes, R. et al. “Knowledge Interchange Format, Version 3.0 Reference
Manual.” Technical Report, Computer Science Department, Stanford University, 1992.

9. Genesereth, M. & Katchpel, S. “Software Agents.” Communication of the ACM. 37(7): 48-53,
1994

10. Hammer, M. Beyond Reengineering: How the Process-Centered Organization Is Changing Our
Work and Our Lives. Harpercollins, 1996.

11. Labrou, Y. Semantics for an Agent Communication Language. Ph.D. Dissertation, Department of
Computer Science and Electrical Engineering, University of Maryland Baltimore County,
August, 1996.

12. Nwana, H. “Software Agents: An Overview.” The Knowledge Engineering Review Vol 11 (3),
1996

13. Parunak, V., Baker, A., & Clark, S. “AARIA Agent Architecture: An Example of Requirements-
Driven Agent-Based System Design.” Available at http://www.aaria.uc.edu

14. Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., Gruber, T., & Neches, R. “The
DAPA Knowledge Sharing Effort: Progree Report.” In B. Neches, C. Rich, and W. Swartout
(eds.) Principles of Knowledge Representation and Reasoning: Proc. Of the Third International
Conference on Knowledge Representation (KR’92), Dan Mateo, CA, November 1992. Morgan
Kaufmann.

15. Tennenbaum, M., Weber, J., & Gruber, T. “Enterprise Integration: Lessons from Shade and
Pact.” In C. Peter (ed.) Enterprise Integration Modeling. MIT Press, 1993.

16. Vollmann, T., Berry, W. & Whybark, D. Manufacturing Planning and Control Systems. Irwin:
New York, NY. 1992.

