Exam 2 Review

Knowledge Representation

• Production (Rule-Based) Systems

- System components: WM, rule base, inference engine (rule interpreter)
- Inference procedure
 - Cycle of three phases: match, conflict-resolution, act/fire
 - Forward and backward inference
- Conflict resolution
 - conflict set
 - conflict resolution policies (refraction, specificity, recency, priority/rule-ordering)
- Advantages
 - **Simplicity** (for both language and inference)
 - Efficiency
 - Modularity (easy for KB maintenance)
 - Natural for many application domains
- Disadvantages
 - No clearly defined semantics (based on informal understanding)
 - Incomplete inference procedure
 - Unpredictable side effects of ordering of rule applications
 - Less expressive (may not be suitable for some applications)

• Structured representation

- Semantic (associative) networks
 - Labeled nodes: objects, classes, concepts
 - Labeled directed links: relations (associations) between nodes
 - reification
 - Reasoning about associations (marker passing and spreading activation)
- ISA hierarchy and property inheritance
 - Super/subclass and instance/class relation
 - Inference by inheritance
 - Multiple inheritance (from different parents, from ancestors of different distances)
 - Exceptions in inheritance/default reasoning
- Frame Systems
 - Definition (stereotypical views of the world; record like structure)
 - Slots, their values and facets

• Default reasoning

- **Definition** (inference is drawn in the absence of info to the contrary) and examples
- Default reasoning is **non-monotonic**, and it totally undecidable
- How rule-based systems and semantic networks (and frame systems) deal with simple default reasoning
- Abduction
 - Definition
 - Difference between abduction, deduction, and induction

- Characteristics of abductive inference
 - Inference results are hypotheses, not theorems (may be false)
 - There may be multiple plausible hypotheses
 - Reasoning is often a hypothesize-and-test cycle
 - Reasoning is non-monotonic
 - Inherently uncertain

Planning

- Situation calculus planning
 - Reasoning about change in the world
 - Representing states and state changes by actions
 - Planning by theorem proving (expensive)

• STRIPS planning

- State, goal: using ground literals
- Actions/operators: add-list and delete-list
- Simple STRIP planning (assuming goals are independent)
- Limitations (Sussman's anomaly) because subgoals are satisfied independently

• **Partial order planner** (POP)

- Difference between total order (linear) and partial order (non-linear) planning
- Least commitment principle
- Causal links and ordering constraints
- A complete POP
- Linearizing a partial plan

Uncertainty and Probabilistic Reasoning

- Simple Bayesian approach to evidential/diagnostic reasoning
 - Bayes' theorem
 - Conditional independence and single fault assumptions
 - Computing posterior probability and relative likelihood of a hypothesis, given some evidence
 - Limitation
 - Assumptions unreasonable for many problems
 - Not suitable for multi-fault problems
 - Can not represent causal chaining

• Bayesian networks (BN)

- Definition of BN (DAG and CPT).
 - $P(x_i | \pi_i)$ where π_i is the set of all parent nodes of x_i
- Conditional independence assumption
 - $P(x_i \mid \pi_i, q) = P(x_i \mid \pi_i)$
 - d-separation
 - Markov blanket

- Computing joint probability distribution from CPT: chain rule
- Inference
 - NP-hard
 - Exact methods (enumeration, ideas of variable elimination, junction tree and belief propagation)
 - Approximate methods (stochastic sampling, MCMC, loopy propagation)
- BN of noise-or gate (advantages and limitations)
- Learning BN from case data (difficulty in learning the DAG)

• Fuzzy set theory (for representing vague linguistic terms)

- Difference between fuzzy sets and ordinary sets
- Fuzzy membership functions
- Rules for fuzzy logic connectives
- Problems with fuzzy logic (comparing with probability theory)

• Decision making under uncertainty

- Actions, uncertain outcomes, and utility
- Expected utility
- Maximum expected utility (MEU) principle
 - $EU(\alpha | E) = \max_{A} \sum_{i} U(Result_{i}(A)) p(Result_{i}(A) | E, Do(A))$
- Decision network (influence diagram)
 - Chance nodes, decision nodes, and utility nodes
 - Value of perfect information (VPI): definition, meaning, how to compute VPI(X) = (∑_k p(x_k | E) (EU(α_{xk} | x_k, E)) – EU (α | x_k, E))

Learning

- Supervised, unsupervised, and reinforcement learning
- Decision tree learning
 - Decision tree (nodes and arcs)
 - **Information gain** (definition and how to use it to construct a decision tree) Info(T) = I(P) = $\sum_{i} pi*log(pi)$; Info(X,T) = $\sum |T_i|/|T| * Info(T_i)$
 - Overfitting problem and cross-validation
 - Generating rules from decision tree
 - Limitations of decision tree learning
- Neural Networks
 - Comparisons between Von Neumann machine and human brain and artificial neural networks
 - Perceptron: the network, the learning rule, and the limitation (linear separable problems)
 - Feed forward networks: hidden nodes of non-linear functions, learning rule (gradient descent), what does error back propagation mean?
 - Advantages and limitations
- Support vector machine (SVM)
 - Basic ideas
 - Maximum margin classifier to increase its robustness and generalization power

- What are support vectors
- Maximum margin can be computed by quadratic programming (QP)
- Overcome linear separability problem by converting the problem into a higher dimension space
 - converting the problem into a higher dimension feature space
 - kernel functions help the dimensionality explosion in QP

Note: materials covered in the class but not listed in this document will not be tested in Exam 2.