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Abstract 

 

This paper deals with the following problem: 
modify a Bayesian network to satisfy a given set 
of probability constraints by only change its 
conditional probability tables, and the probability 
distribution of the resulting network should be as 
close as possible to that of the original network. 
We propose to solve this problem by extending 
IPFP (iterative proportional fitting procedure) to 
probability distributions represented by Bayesian 
networks. The resulting algorithm E-IPFP is fur-
ther developed to D-IPFP, which reduces the 
computational cost by decomposing a global E-
IPFP into a set of smaller local E-IPFP problems. 
Limited analysis is  provided, including the con-
vergence proofs of the two algorithms . Computer 
experiments were conducted to validate the algo-
rithms. The results are consistent with the theo-
retical analysis.  

1 INTRODUCTION 

Consider a Bayesian network (BN) N  on a set of vari-
ables X that models a particular domain. N defines a dis-
tribution )(xP . Suppose you are given a probability dis-
tribution )(yR  on a subset of the variables XY ⊆  and R  
does not agree with P  (i.e., )()( yRyP ≠ ). Can you change 
N  to 'N so that its distribution )(' xP  satisfies R ? Can 
you do so with more  than one such probability constraints 
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1
1 LyRyR ?)( m

m yR  Moreover, can you do so 
without changing the structure of 'N  (i.e., only modify -
ing CPTs, the conditional probability tables of N )? 

Problems of this kind can be found in designing new BNs, 
merging small BNs into a large one, or refining an exis t-
ing one with new or more reliable probability information. 
For example, when designing a BN for heart disease di-
agnosis, it is relatively easy to obtain a consensus among 
domain experts on what factors affect heart diseases and 
how they are causally related to one another. This knowl-
edge of qualitative associations can then be used to define 
the networks structure, i.e., the directed acyclic graph 
(DAG) of the BN.  

However, it is not that easy to obtain the conditional 
probability tables for each of the variables. Experts’ opin-
ions are often coarse (the likelihood of a causes b is 
“high” but that of c causes b is “low”), not in a uniform 
scale (“high” given for one association may not mean 
exactly the same for another association), not in the form 
of CPT (not the likelihood of causing b by the combina-
tion of all possible states of a and c). Learning CPT from 
statistical data is also problematic. Most learning methods 
require samples of complete instantiations of all variables, 
but in many real word applications, especially those in-
volving a large number of variables, statistical data are 
fragmented, represented by, say, a number of low-
dimensional distributions over subsets of the variables. In 
the heart  disease example, one may obtain a distribution 
of drinking and heart diseases from a survey concerning 
effects of drinking on people’s health, and a distribution 
of smoking and heart diseases from a survey concerning 
effects of smoking on people’s health. But none of them 
include both drinking and smoking, two of the important 
causal factors to heart diseases. Moreover, a new survey 
on drinking with larger samples and improved survey 
methods may give a more accurate distribution of drink-
ing and heart diseases, the BN needs to adapt itself to the 
new data. 

Iterative proportional fitting procedure (IPFP) is a 
mathematical procedure that iteratively modifies a prob-
ability distribution to satisfy a set of probability con-
straints while maintaining minimum Kullback-Leibler 
distance to the original distribution. One would think this 
kind of BN modification tasks can be accomplished by 
applying IPFP on the distribution of the given BN. This 
approach will not work well for at least two reasons. First, 
theoretically the distribution resulted from the IPFP proc-
ess, although satisfying all the constraints , may not al-
ways be consistent with the interdependencies imposed by 
the network structure, and thus cannot be used to generate 
new CPTs properly. Secondly, since IPFP works on the 
joint distribution of all variables of the BN, it becomes 
computational intractable with large BNs.   



In this paper, we describe our approach to address both of 
these problems. The first problem is resolved by algo-
rithm E-IPFP, which extends IPFP by converting the 
structural invariance to a new probability constraint. The 
second problem is resolved by  algorithm D-IPFP. This 
algorithm decomposes a global E-IPFP into a set of 
smaller, local E-IPFP problems, each of which corre-
sponds to one constraint and only involves variables that 
are relevant to those in that constraint. 

The rest of this paper is organized as follows. Section 2 
states precisely the BN modification problems  we intend 
to solve. Section 3 gives a brief introduction to IPFP. E-
IPFP and its convergence proof are given in Section 4. 
Section 5 describes D-IPFP and shows that a significant 
saving is achieved with reasonable relaxation of the 
minimum distance requirement. Convergence proof of the 
algorithm is also given. Computer experiments of limited 
scope were conducted to validate the algorithms and to 
give us a sense of how expensive this approach may be. 
Experiment results are given in Section 6. Section 7 con-
cludes this paper with comments on related works and 
suggestions for future research. 

2 THE PROBLEM 

We adopt the following notation in this paper. A BN is 
denoted as N, different BN’s are differentiated by sub-
scripts. G denoted the structure (i.e., the DAG) of BN, 
and C for the set of conditional probability tables (CPTs) 
of N. X , Y, Z, …, are for a sets of variables, and x an in-
stantiation of X . Individual variables are indicated by sub-
scripts, for example, Xi is a variable in X and xi its instan-
tiation. Capital letters P, Q, R, are for probability distribu-
tions. A probability constraint )(yRi  to distribution 

)(xP  is a distribution on XY ⊆ . )(xP  is said to satisfy 
)(yRi  if )()( yRyP i= . R  denotes a set of constraints 
)(yRi . 

We say a network N0 on },,,{ 21 nXXXX L=  has DAG 
G0 and CPT set C0 where each CPT in C0 is in the form of 

)|( iixP π  where iπ  is  the set of parents of Xi as specified 
in G0. Also, we call )|()( 010 ii

n
i xPxP πΠ= =  the (probabil-

ity) distribution of N0.  

We call )|( iixP π  a CPT extracted from )(xP  according 
to G if  iπ  is determined by G. Extraction of )|( iixP π  
can be done by computing )( iP π  and ),( iixP π  from )(xP  
through marginalization or any other methods. When 

)(xP  and G are given, CPT extraction is unique. When all 
CPTs of N  are replaced by those extracted from an arb i-
trary )(xP  according to G, its distribution 

)|()(' 1 ii
n
i xPxP πΠ= =  may not equal to )(xP  even though 

the conditional distribution of ix , given iπ  are the same 
in both P  and 'P . This is because certain conditional in-
dependences of 'P , dictated by the network structure,  
does not hold for P . 

A distribution )(xP  is said to be (structurally) consistent 
with G of N if there exists  a set of CPTs  )}|({ iixQC π=  
such that )|()( 1 ii

n
i xQxP πΠ= = . Since when G is given, 

)(xP  uniquely determines ixP ii ∀π )|( , so if )(xP  is con-
sistent with G then )|()( 1 ii

n
i xPxP πΠ= = . Consequently, if 

both P  and 'P  are consistent with G, then 'PP =  if and 
only if 'CC = . 

We use I-divergence (also known as Kullback -Leibler 
distance  or cross-entropy) to measure the distance be-
tween two distributions P and Q over X: 
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where QP <<  means Q dominates P (i.e., }0)(|{ >xPx  
}0)'(|'{ >⊆ xQx ). 0)||( ≥QPI  for all P and Q, the equal-

ity holds only if QP = . 

We say )(xP  is an I-projection of )(xQ  on a set of con-
straints R if )||( QPI  is smallest among all distributions 
that satisfy R.  

With the above notation, we can state precisely the prob-
lem we are trying to solve: for a given N over variables X 
with distribution Q and a set of consistent constraints R, 
find N* that meets the following three requirements: 

(a) G = G* (both networks have the same structure);   
(b) Q*, the distribution of N*, satisfies all constraints 

in R; and 
(c) )||( * QQI  is minimum among all distributions 

that meet requirements (a) and (b). 

3 BRIEF INTRODUCTION TO IPFP 

Iterative proportional fitting procedure (IPFP) was first 
published in (Kruithof 1937). Shortly after, it was pro-
posed as a procedure to estimate cell frequencies in con-
tingency tables under some marginal constraints (Deming 
and Stephan 1940). Csiszar (1975) provided an IPFP con-
vergence proof based on I-divergence geometry. Vomlel 
rewrote a discrete version of this proof in his PhD thesis 
(Vomlel 1999). IPFP was extended in (Bock 1989, 
Cramer 2000) as conditional iterative proportional fitting 
procedure (CIPFP) to also take conditional distributions 
as constraints, and the convergence was established for 
the finite discrete case.  

For a given distribution )(0 xQ  and a set of consistent con-
straints R, IPFP converges to )(* xQ  which is an I-
projection of 0Q  on R (assuming there exists at least one 
distribution that satisfies R). This is done by iteratively 
modifying the distributions according to the following 
formula, each time using one constraint in R: 
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where m is the number of constraints in R, and 
1)mod)1(( +−= mki  determines the constraint used at 

step k . For clarity, in the rest of this paper, we write the 
above formula as 

)(
)(

)()(
1

1 yQ
yR

xQxQ
k

i
kk

−
− ⋅=                                         (2) 

with the understanding that 0)( =xQk  if .0)(1 =− yQk  
What (2) does at step k is to change )(1 xQk−  to )(xQk  so 
that )()( yRyQ ik = . 

For a given N0 and its distribution )|()( 010 ii
n
i xQxQ πΠ= =  

and constraint set R, one can always obtain an I-projection 
)(* xQ  of )(0 xQ  on R  by IPFP. However, )(* xQ  is not 

guaranteed to be consistent with G0. This is especially 
true if some constraints involve more than one variables 
and they span over more than one CPT. This problem is 
illustrated in the following examples with a small network 
N of variables {A, B, C, D} depicted in Figure 1 below.  
Figures 2 and 3 give the results of applying IPFP on N 
with constraint sets {R1(b), R2(c)} and {R3(a, d)}, respec-
tively.   

 
 
 
 
 
 
 
 

 

 
 

Figure 1: Network N of X = {A, B, C, D} and its CPTs 
 

Figure 2 below gives Q*(a, b, c, d), the distribution re-
sulted from IPFP with two constraints R1(b) = (0.61, 0.39) 
and R2(c) = (0.83, 0.17). I-divergence of Q* to the original 
distribution is 0.5708. Also given are the CPTs of the four 
variables extracted from Q* according to the network 
structure. We can verify that 1) Q*(b) = (R1(b) and Q*(c) = 
R2(c) (i.e., Q* satisfies both constraints), and 2) Q*(a, b, c, 
d) = Q*(a) · Q*(b|a) · Q*(c|a) · Q*(d|b,c) (i.e., Q* is consis-
tent with the network structure). Note here that CPTs  of 
three nodes (A, B, C) have been changed. 

However, it is different when a single constraint R3(a, d) 
= (0.1868, 0.2132, 0.1314, 0.4686) is used. As can be 
seen in Figure 3, the resulting distribution, although satis-
fying R3, is not consistent with the structure of N. This is 
because A and D are not within a single CPT. Its I-
divergence to the original distribution is 0.2611. 

 
 

A 
1 0 

0.4083 0.5916 
 

B A 
1 0 

1 0.3677 0.6323 
0 0.7772 0.2227 

 

C A 
1 0 

1 0.9066 0.0933 
0 0.7771 0.2220 

 

D B C 
1 0 

1 1 0.10 0.90 
1 0 0.85 0.15 
0 1 0.45 0.55 
0 0 0.70 0.30  

 
 

Variables 
A B C D 

Prob. 

1 1 1 1 0.0136 
1 1 1 0 0.1225 
1 1 0 1 0.0119 
1 1 0 0 0.0021 
1 0 1 1 0.1054 
1 0 1 0 0.1288 
1 0 0 1 0.0169 
1 0 0 0 0.0072 
0 1 1 1 0.0357 
0 1 1 0 0.3216 
0 1 0 1 0.0871 
0 1 0 0 0.0154 
0 0 1 1 0.0461 
0 0 1 0 0.0563 
0 0 0 1 0.0206 
0 0 0 0 0.0088 

 

 

Figure 2: Distribution Modified with R1(b) and R2(c) 

 
Figure 3: Distribution Modified with R3(a, d) 

4 E-IPFP 

To solve the BN modification problem defined in Section 
2, we first extend IPFP to handle the requirement that the 
solution distribution should be consistent with G0, the 
structure of the given BN. Recall that whether a distribu-
tion )(xQ  is consistent with G0 can be determined by 
whether =)(xQ  )|(1 ii

n
i xQ πΠ = , where the parent-child 

relation in the right hand of the equation is determined by 
G0. We can thus treat this requirement as a probability 
constraint )|()( 11 iik

n
ir xQxR πΠ= −=  in IPFP. Here 

)|(1 iik xQ π−  are extracted from )(1 xQk−  according to G0. 
We call rR  a structural constraint. 

Like any other constraint iR , this constraint, when ap-
plied at step k, changes )(1 xQk−  to )(xQk . By (2) 

)|()()( 11 iik
n
irk xQxRxQ πΠ== −= , thus meeting the struc-

tural consistency requirement.  

 

A 
1 0 

0.4 0.6 
 

B A 
1 0 

1 0.20 0.80 
0 0.60 0.40 

 

C A 
1 0 

1 0.60 0.40 
0 0.35 0.65 

 

D B C 
1 0 

1 1 0.10 0.90 
1 0 0.85 0.15 
0 1 0.45 0.55 
0 0 0.70 0.30  

 

A 
1 0 

0.4 0.6 
 

B A 
1 0 

1 0.2051 0.7949 
0 0.6094 0.3905 

 

C A 
1 0 

1 0.6178 0.3821 
0 0.5469 0.4530 

 

D B C 
1 0 

1 1 0.0322 0.9677 
1 0 0.5699 0.4300 
0 1 0.3065 0.6934 
0 0 0.4744 0.5255  

 
 

Variables 
A B C D 

Prob. 

1 1 1 1 0.0043 
1 1 1 0 0.0480 
1 1 0 1 0.0244 
1 1 0 0 0.0053 
1 0 1 1 0.0776 
1 0 1 0 0.1173 
1 0 0 1 0.0805 
1 0 0 0 0.0426 
0 1 1 1 0.0046 
0 1 1 0 0.2200 
0 1 0 1 0.0729 
0 1 0 0 0.0681 
0 0 1 1 0.0139 
0 0 1 0 0.0897 
0 0 0 1 0.0400 
0 0 0 0 0.0908 

 



4.1   E-IPFP ALGORITHM 

Let )|()( 010 ii
n
i xQxQ πΠ= =  be the distribution of a given 

network N0 , and R be the set of m given constraints. E-
IPFP is a simple extension of the standard IPFP by includ-
ing the structural constraint as the (m+1)th constraint 1+mR . 
The algorithm E-IPFP is stated as follows: 

========================================= 
E-IPFP( )(0 XN , },,{ 21 mRRRR L= ) { 

1. )|()( 010 ii
n
i xQxQ πΠ= =  where 00 )|( CxQ ii ∈π ; 

2. Starting with k = 1, repeat the following procedure 
until convergence { 
   2.1. i = ((k-1) mod (m+1)) + 1; 
   2.2. if  i < m+1 

             
)(

)(
)()(

1
1 yQ

yR
xQxQ

k

i
kk

−
− ⋅=  

    2.3. else   
            {  
              extract )|(1 iik xQ π−  from )(1 xQk−  according 
                    to G0; 
              )|()( 11 iik

n
ik xQxQ πΠ= −= ; 

} 
   2.4. k = k+1; 
} 

 3.  return )(* XN  with 0
* GG =  and )}|({*

iik xQC π= ; 
} 
========================================= 

As a practical matter, convergence of E-IPFP can be de-
termined by testing if the difference between )(xQk  and 

)(1 xQk−  (by any of a number of metrics) is below some 
given threshold.  

All constraints remain constant during the iteration proc-
ess except 1+mR , which changes its value every time it is 
applied. Nonetheless, as a distribution, when 1+mR  is ap-
plied to )(1 xQk− , the resulting  1)( += mk RxQ  is an I-
projection of )(1 xQk−  on 1+mR . This is because )(xQk  is 
the only distribution that satisfied 1+mR  since 1+mR  is a 
distribution of x, not of a subset of x. As can be seen in  
(Csiszar 1975, Vomlel 1999), convergence of the original 
IPFP is a consequence of the property that each iteration 
of IPFP produces an I-projection of the previous distribu-
tion on a constraint. Since this condition holds for our E-
IPFP, the process converges to a distribution )(* xQ , and 

)(* xQ  is an I-projection of )(0 xQ  on ,,,{ 21 LRR  
}, 1+mm RR . Since )(* xQ  satisfies 1+mR , we have =)(* xQ  

)|(*
1 ii

n
i xQ πΠ = , so it also satisfies the structural consis-

tency requirement. Therefore, among those distributions 
that satisfy given constraints in R and are consistent with 
G0, )(* xQ  has the minimum I-divergence to )(0 xQ .    

Application of E-IPFP to the network N of Figure 1 with a 
single constraint R3(A,D) = (0.1868, 0.2132, 0.1314, 
0.4686) converges to a distribution. Comparing with the 
result in Figure 3 (using standard IPFP), this distribution 
not only satisfies R3, it is also structurally consistent with 

N. However, its I-divergence to the original distribution 
increases slightly in absolute value (from 0.2611 in Figure 
3 to 0.4419).  

5 D-IPFP  

As can be seen in (2), the computation of both IPFP and 
E-IPFP is on the entire joint distribution of X at every 
iteration. This distribution becomes prohibitively large 
with large n, making the process computationally intrac-
table for BN of large size. Roughly speaking, when 

)(1 xQk−  is modified by constraint )( yRi , (2) requires to 
check each entry in )(1 xQk−  against every entry of )( yRi  
and make the update if x  is consistent with y . The cost 
can be roughly estimated as )22( ||YnO ⋅ , which is huge 
when n is large.  

Since the joint distribution of a BN is a product of distri-
butions of much smaller size (i.e., its CPTs), the cost of 
E-IPFP may be reduced if we can utilize the interdepend-
encies imposed on the distribution by the network struc-
ture and only update some selected CPTs. This has moti-
vated the development of algorithm D-IPFP which de-
composes the global E-IPFP (the one involving all n vari-
ables) into a set of local E-IPFP, each for one constraints 

)( yRi , on a small subnet of N0  that contains Y .  

First we divide constraints into two types. )( yRi  is said to 
be local if Y  contains nothing else except one variable  

jX  and zero or more of its parents. In other words, 
)( ,

j
j zxy =  where j

jz π⊆ . Otherwise, )( yRi  is said to be 
non-local. How to deal with local and non-local con-
straints in D-IPFP is given in the next two subsections. 

5.1   LOCAL CONSTRAINTS 

We have proposed previously a method to reduce the 
IPFP computing cost for local constraints (Ding et al 
2004). Suppose )|()( 111 iik

n
ik xQxQ πΠ= −=− , i.e., )(1 xQk−  is 

consistent with G0. Consider a local constraint 
),()( j

j
jii zxRyR π⊆= . Since it is a constraint only on 

jx  and some of its parents, updating )(1 xQk−  by )(yRi  
can be done by only updating )|(1 jjk xQ π− , the CPT for 

jx , while leaving all other CPTs intact. One problem 
arises: since )|(1 jjk xQ π−  is an conditional distribution 
on jx , )(/)()|( 11 yQyRxQ kijjk −− π  is in general not a 
probability distribution, and thus cannot be used as the 
CPT for jX  in )(xQk . This problem can be resolved by 
normalization. The update rule for local constraint be-
comes     
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is the normalization factor. Since only the table for jX  is 
changed, this rule leads to 

)|()|()( 1 llk
jl

jjkk xQxQxQ π∏⋅π= −
≠

.                        (5) 

Therefore )(xQk  is consistent with 0G , i.e., it satisfies 
the structural constraint. (5) can also be written as  

k
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Therefore, according to (2), )(xQk  is  not an I-project of 
)(1 xQk−  on )(yRi  unless 1=α k . This makes the conver-

gence with rule (3) not obvious because the convergence 
proof of IPFP cannot apply. Instead of proving the con-
vergence of rule (3) here,  we delay it until we analyze 
non-local constraints in the next subsection. Analysis re-
sults are applicable to rule (2) because local constraints 
are special cases of non-local constraints.  

Recall the example in Figure 2 where the standard IPFP 
of (2) is  used to process two local constraints R1(b) and 
R2(c), three variables (B,  C, and A) have their CPTs 
changed in the final BN. When rule (3) is applied,  only 
tables for B and C have been changed in the final BN. Its 
I-divergence to the original distribution is slightly larger 
than the one  obtained by IPFP of (2) (increased to 0.5711 
from 0.5708). 

5.2   NON-LOCAL CONSTRAINTS 

Now we generalize the idea of (3) to non-local constraints. 
Without loss of generality, consider one such constraint 

)( yRi  where Y spans more than one CPT. Let 
YS jYX j

\)( π= ∈U , i.e., S  contains parent nodes of all 
variables in Y except those that are also in Y. Multiply ing 
all CPTs for variables in Y, one can construct a condi-
tional distribution 

)|()|( 11 jjk
YX

k xQsyQ
j

πΠ=′ −
∈

− .                                (6) 

With (6), we define )(1 xQk−′  as follows,  
)()( 11 xQxQ kk −− =′                  

)|()|( 11 llk
YX

k xQsyQ
l

π∏⋅′= −
∉

−                   (7) 

Now )( yRi  becomes local to the table )|(1 syQk−′ , and we 
can obtain )|()|()( llkYXkk xQsyQxQ

l
π∏⋅′=′ ∉  by obtain-

ing )|( syQk′  using the rule for local constraint (3) while 
keeping CPTs for variables outside Y will remain un-
changed: 
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Next, we extract )|( jjk xQ π  for all YX j ∈  from )|( syQk′  
by 

)|()|( jjkjjk xQxQ π′=π                                    

The process ends with  

)|()|()( 1 llk
YX

jjk
YX

k xQxQxQ
lj

π∏π′∏= −
∉∈

            (9) 

Update of )(1 xQk−  to )(xQk  by )( yRi  can be seen to con-
sist of three steps. 1) form )|(1 syQk−′  from CPTs for 

YX j ∈  by (6); 2) update )|(1 syQk−′  to )|( syQk′  by )( yRi  
using (8); and 3) extract  )|( jjk xQ π′  from )|( syQk′  by 
(9). Comparing (6), (8) and (9) with Step 1,  Step 2.2 and 
Step 2.3 in algorithm E-IPFP, this procedure of D-IPFP 
amounts to one iteration of a local E-IPFP on distribution 

)|(1 syQk−′ . 

Consider again the network N of Figure 1 with a single 
non-local constraint R3(a, d), we have },{ DAY =  and 

},{ CBS = . The new table ),|,( cbdaQ′  can be computed 
from the product of )(aQ  and ),|( cbdQ  of the original 
BN. For example, one entry of this table 

)1,1|0,1( ====′ CBDAQ  is to be 36.09.04.0 =⋅ .  

Again we applied  D-IPFP to the BN in Figure 1 with the 
non-local constraint R3(a, d). The process converged. The 
resulting BN satisfies the constraint R3, and only CPTs for 
A and B  have been changed. As expected, the I-
divergence with D-IPFP was worse than that with E-IPFP 
(increased from 0.4419 to 0.7827).  

The moderate sacrifice in I-divergence with D-IPFP is 
rewarded by a significant saving in computation. Since  

)(yRi  is now used to modify )|(1 syQk−′ , not )(1 xQk− , the 
cost for each step is reduced from )22( ||ynO ⋅  to 

)22( |||||| yysO ⋅+  where )2( |||| ysO +  is the size of CPT 
)|(1 syQk−′ . The saving is thus in the order of )2( |||| ysnO +− .  

Equation (3) for local constraints can easily be seen as a 
special case of the D-IPFP procedure described here, with 

jxy =  and js π= . 

Next  we analyze the convergence of D-IPFP with rules (6) 
– (9) in the following theorem. 

Theorem. Let )|()( 111 iik
n
ik xQxQ πΠ= −=−  be  a probability 

distribution over variables X  where each )|(1 iik xQ π−  is 
the CPT for variable iX  in a Bayesian network N  of n 
variables. Let )( yRi  be a probability distribution over 
variables XY ⊆  that is consistent with the structure of N. 
Then 

1. The iterations of rules (6) – (9), starting with )(1 xQk− , 
will converge to a distribution )(* xQ ; 

2. )(* xQ  satisfies )( yRi , i.e., )()(* yRyQ i= ; 

3. )(* xQ  is  consistent with the structure of N; 

4. )(* xQ  is not always the I-projection of )(1 xQk−  on 
)( yRi . 

Proof.  

Part 1. Note that (6) and (7) do not change the distribu-
tion, they only change its representation. (9) imposes 
structural constraint on )|( syQk′ , as argued in Section 4 
for E-IPFP, )(xQk  is thus an I-projection of )(xQk′ . Now 



we show that with (8), )(xQk′  is an I-projection of 
)(1 xQk−′ . Combining (6), (7), and (8), we have  
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Therefore, )(xQk′  is an I-projection of )(1 xQk−′  on con-
straint )|( syQk′ . Since each update generates a distribu-
tion that is an I-projection of the previous distribution, 
again, according to (Csiszar 1975, Vomlel 1999), the 
process converges with 

)()(lim * xQxQk
k

=
→∞

. 

Part 2 . We prove this part by showing that when ∞→k , 
1)(/)( 1 →′− yQyR ki .  Note,  
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By Part 1, when ∞→k , 0)()( 1 →′−′ − xQxQ kk . Then we 
have 1)(/)( 1 →′′ − sQsQ kk  and 1)|(/)|( 1 →′′ − syQsyQ kk . Substi-
tuting thes e limits into (10), we have 1)(/)( 1 →′− yQyR ki . 

Part 3 . Similarly, when ∞→k , 0)()( →′− xQxQ kk . Since 
)|(1 llkYX xQ

l
π′∏ −∉  has never changed, it can be factored 

out. Then according to (8) and (9), we have  

0)|()|( →′−π′∏
∈

syQxQ kjjk
YX j

,  

)|( syQk′  becomes consistent with the network structure 
with variables in Y. Since other CPT’s have not been 
changed, )(* xQ  is consistent with the structure of N. 

Part 4 . We prove it by a  counter example. In the example 
in Figure 3 at the end of Section 3, an I-projection on R3(a, 
d) is not consistent with the network structure. On the 
other hand, )(* xQ  from D-IPFP must be consistent with 
the network. Since I-projection is unique, )(* xQ  therefore 
cannot be an I-projection of )(1 xQk−  on )( yRi .              ?  

5.3   ALGORITHM D-IPFP 

Now we present the algorithm of D-IPFP. 

D-IPFP( )(0 XN , },,{ 21 mRRRR L= ) { 

1. )|()( 010 ii
n
i xQxQ πΠ= =  where 00 )|( CxQ ii ∈π ; 

2. Starting with k = 1, repeat the following procedure 
until convergence { 
   2.1. i = ((k-1) mod m) + 1; 

   2.2. if ))(( , j
j

ji zxyR π⊆=  /* a local constraint */ 

    { k
k

i
jjkjjk yQ

yR
xQxQ α⋅⋅π=π

−
− )(

)(
)|()|(

)1(
1 ; 

       ;)|()|( 1 jlxQxQ llkllk ≠∀π=π − }        

    2.3.  else  /* )( yRi  is a non-local constraint */ 

             while not converge 
              { )|()|( 11 jjk
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k xQsyQ
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∈

−   
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i
kk yQ
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− yxxQxQ
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)|()|(
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1

; 

        ;)|()|(1 jjjkjjk xxQxQ ∀π=π−  
                  }   

   2.3. k = k+1; 
} 

3.  return )(* XN  with 0
* GG =  and )}|({*

iik xQC π= ; 

} 

For efficiency consideration, when implementing D-IPFP, 
the “while” loop of Step 2.3 can be replaced by a single 
iteration. 

6 EXPERIMENTS  

To empirically validate the algorithms and to get a sense 
of how expensive this approach may be, we have con-
ducted experiments of limited scope with a artificially 
made network of 15 discrete variables. The network struc-
ture is given in Figure 4 below.  
 

 

Figure 4: The Network for the Experiments 
 

Three sets of 4, 8, and 16 constraints, respectively, are 
selected for the experiments. Each set contains a mix of 
local and non-local constraints. Number of variables in a 
constraint ranges from 1 to 3, the size of the subnet asso-
ciated with a constraint ( |||| sy + )  ranges from 2 to 8. 
Therefore a saving in computational time would be in the 
order of ).2()2( 7815 OO =−  Both E-IPFP and D-IPFP were  
run for each of the three sets. The program is a brute force 



implementation of the two algorithms without any opti-
mization. The experiments were run on a Celeron note-
book CPU of 2.3G Hz and 784M maximum memory for 
the JVM (Java Virtual Machine). The results are given in 
Table 1 below. 

Table 1: Experiment Results 

# of 
Cons. 

# Iterations 
(E-IPFP|D-IPFP)  

Exec. Time  
(E-IPFP|D-IPFP)  

I-divergence  
 (E-IPFP|D-IPFP) 

4 8   27 1264s 1.93s 0.08113 0.27492 
8 13 54 1752s 11.53s 0.56442 0.72217 

16 120 32 13821s 10.20s 2.53847 3.33719 

In each iteration the program goes through all the con-
straints in R once. Each of the  6 experimental runs con-
verged to a distribution that satisfies all given constraints 
and is consistent with the network structure. As expected, 
D-IPFP is significantly faster than E-IPFP but with mod-
erately larger I-divergences. The rate of speed up of D-
IPFP is roughly in the theoretically estimated range 
( )2( 7O ). The variation in speed up among the three sets 
of constraints is primarily due to the number of iterations 
each run takes. 

7 CONCLUSIONS 

In this paper, we developed algorithm E-IPFP that ex-
tends IPFP to modify probability distributions represented 
as Bayesian networks. The modification is done by only 
changing the conditional probability tables of the network 
while leaving the network structure intact. We also show 
a significant saving in computational cost can be achieved 
by decomposing the global E-IPFP into local ones with 
much smaller scale, as described in algorithm D-IPFP. 
Computer experiments of limited scope seem to validate 
the analysis results. These algorithms can be valuable 
tools in Bayesian network construction, merging and re-
finement when low-dimensional distributions need to be 
incorporated into the network. 

Several pieces of existing work are particularly relevant to 
this work, besides those related to the development of the 
original IPFP and proofs of its convergence. Diaconis and 
Zabell (1982), in studying the role of Jeffrey’s rule in 
updating subjective probability, consider IPFP as one of 
methods for mechanical updating of probability distribu-
tion. In contrast to other methods that are based on diffe r-
ent assumptions on the subjectivity of the probabilities, 
the mechanical updating methods are based on some dis-
tance metrics, rather than “attempt to quantify one’s new 
degree of belief via introspection”.  

Vomlel (1999) studied in detail how IPFP can be used for 
probabilistic knowledge integration in which a joint prob-
ability distribution (the knowledge base) is built from a 
set of low dimensional distributions, each of which mo d-
els a sub-domain of the problem. Besides providing a 
cleaner, more readable convergence proof for IPFP, he 
also studied the behavior of IPFP with input set generated 

by decomposable generating class. If such input distribu-
tions can be properly ordered, IPFP may converge in one 
or two cycles. This kind of input set roughly corresponds 
to ordering constraints for a Bayesian network in such a 
way that the constraint involving ancestors are applied 
before those involving descendants, if such order can be 
determined. For example, if all three constraints {R1(b), 
R2(c), R3(a, d)} must be met, we may be better off if we 
apply R3(a, d) before the other two.  

In all of these works, IPFP is applied to update joint dis-
tributions, none has discussed its application in modify ing 
distribution represented by a BN. 

To the best of our knowledge, the only work that applies 
IPFP to BN is the one by Valtorta et al (2000). In this 
work, IPFP is used to support belief update in BN by a set 
of soft evidences  that are observed simultaneously. How-
ever, this work does not concern itself with updating the 
BN itself.  

Algorithms developed in this paper only work with con-
sistent constraints. It has been reported by others (Vomlel 
1999, 2004) and observed by us that when constraints are 
inconsistent, IPFP will not converge but oscillate. How to 
handle inconsistent constraint is one of the important di-
rections for future research. Another direction is to inves-
tigate in what situations modification of only conditional 
probability tables are no longer sufficient or desirable, the 
network structure need also be changed in order to better 
satisfy given constraints.  

Efficiency of this approach also needs serious investiga-
tion. As our experiments show, IPFP in general is very 
expensive. The convergence time in our experiments with 
a small BN (15 nodes) and moderate number of con-
straints is in the order of hours. The performance of even 
D-IPFP can be bad if some input distributions involve 
larger number of variables. Co mplexity can be reduced if 
we can divide a large constraint into smaller ones by ex-
ploring independence between the variables (possibly 
based on the network structure). Properly ordering the 
constraints may also help. Ult imately, this problem can 
only be solved by parallelizing the algorithms or by 
approximation when the network is really large. 
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