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A Bayesian Approach

to Uncertainty Modeling

iIn OWL Ontology

Zhongli DING, Yun PENG, Rong PAN

Abstract-- Dealing with uncertainty is crucial in ontology
engineering tasks such as domain modeling, ontology reasoning,
and concept mapping between ontologies. This paper presents our
on-going resear ch on modeling uncertainty in ontologies based on
Bayesian networks (BN). This includes 1) extending OWL to
allow additional probabilistic markups for attaching probability
information, 2) directly converting a probabilistically annotated
OWL ontology into a BN structure by a set of structural
trandation rules, and 3) constructing the conditional probability
tables (CPTs) of this BN using a new method based on iterative
proportiobal fitting procedure (IPFP). The translated BN can
support more accurate ontology reasoning under uncertainty as
Bayesian inferences.

Index Terms-- Bayesian Networks, |PFP, Ontology, Semantic
Web, Uncertainty.

. INTRODUCTION ANDMOTIVATION

variables. In our approach, OWL is first augmentedllow
additional probabilistic markups so that probapilinlues can
be attached to individual concepts in an ontol@&@gcondly, a
set of structural translation rules is defined tinwert this
probabilistically annotated OWL ontology taxonomyto a
directed acyclic graph (DAG) of a BN. Finally, tiBN is
completed by constructing conditional probabilitgbles
(CPTs) for each node in the DAG.

To help understand our approach, in the remaininthie
section, we give a simple review of OWL [18] and B}l

A. Web Ontology Language (OWL)

An OWL document can include an optional ontologgder
and any number of classes, properties, axiomsratididual
descriptions. In an ontology defined by OWL, a ndroass is
described by a class identifier. An anonymous clzess be
described by some value (owl:hasValue, owl:allVakrem,

IN the semantic web [17], an important component rof aowl:some.VaI.uesFrom). or cqrdinality (ovyl:gardinalitpwl:-
ontology defined in OWL [18] or RDF(S) [19] is the maxCardinality, owl:minCardinality) restriction oproperty

taxonomical concept subsumption hierarchy basedclass
axioms (defined by rdfs:subClassOf, owl:equivaléa$S, and
owl:disjointWith) and logical relations among th@ncept
classes (defined by owl:unionOf, owl:intersectionGind
owl:complementOf). Such an ontology taxonomy dé&fni is
based on crisp logic and thus cannot quantify #grek of the
overlap or inclusion between two concepts, canngipsrt
reasoning in how close a descripti@n is to its most specific

(owl:Restriction); by exhaustively enumerating athe
individuals that form the instances of this classl(oneOf); or
by logical operation on two or more classes (owhnOf,
owl:intersectionOf, owl:complementOf). Three classioms
(rdfs:subClassOf, owl:equivalentClass, owl:disjdiith) can
be used for defining necessary and sufficient dant of a
class. Two kinds of properties can be defined: d@lpeoperty
(owl:ObjectProperty) which links individuals to ineluals,

subsumer and most general subsumee, and tendsete ofnd datatype property (owl:DatatypeProperty) whiatks

generalize with noisy input [2]. Uncertainty becammore
prevalent in web environment when more than onelogy
are involved where it is often the case that a ephdefined in
one ontology can only find partial matches to omenmre
concepts in another ontology.

To model uncertainty in ontology representatiomsoaing
and mapping, this paper presents a new probabibgtension
to OWL ontology taxonomy based on Bayesian netw(iBRs)
[1], a widely used graphic model of dependencieram
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individuals to data values. “rdfs:subPropertyOf’ used to
define that one property is a subproperty of aropieperty.

Besides these most commonly used constructorse thex

some other constructors (e.g., owl:equivalentPiypand

owl:inverseOf to relate two properties; owl:FunotidProperty
and owl:InverseFunctionalProperty to impose caiiina
restrictions on properties; etc.)

The semantics of OWL is defined based on modelrthieo
the way analogous to the semantics of descriptigic|(DL).
With a set of vocabulary (mostly as described ahawee can
define an ontology as a set of (restricted) RDpldés which
can be represented as a RDF graph.

B. Bayesian Network
In the most general form, a BN of variables consists of a
DAG of n nodes and a number of arcs. Nodésin a DAG

correspond to random variables, and directed atvgden two
nodes represent direct causal or influential retegifrom one
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variable to the other. The uncertainty of the chredationship “hasVarible” and “hasProbValue”. A probability withe form
is represented locally by the CHA(X; | 75) associated with P(C|O.) is defined as an instance of class “CondProb” with

each nodeX;, where 77 is the parent set oK;. Under a three mandatory properties: “hasCondition” (at tease),
conditional independence assumption, the joint probabilif asVarla_b!e",” and “‘r‘\asProbValu:e”_. The range ofemies
distribution of X = (X, ..., X, )can be factored out as a_ aS.CE:’](Ei,ItIO?]. ﬁ”g hz:\;VanabIg tls a deflnetz.d ?Igge?
product of the CPTs in the network (named “the chain rule g a”? e, w I,F u as two Inan_ atory properties. SS.
o _ o 77 and “hasState”. “hasClass” points to the conceps<lthis
BN"): P(X =x) =iz P(x | 77) . With the joint probability propapility is about and “hasState” gives the “Tr(eelong
distribution, BN supports, at least in theory, gmgbabilistic to) or “False” (not belong to) state of this prolliab

inference in the joint space. For example,P(c) = 0.8 the prior probability that an
Besides the power of probabilistic reasoning pregidy 4pitrary individual belongs to class, can be expressed as
BN itself, we are attracted to BN in this work alby the follows:

structural similarity between the DAG of a BN arm tRDF <Variable rdfID="c">

graph of OWL ontology: both of them are directedpirs, and <hasClass>C</hasClass>
direct correspondence exists between many nodesrasdn <hasState>True</hasState>
the two graphs. In this work, we only consider togy </Variable>

taxonomy which uses only constructors for the tealaigy <PriorProb rdf:ID="P(c)">

part of DL. Constructors related to propertiesjvittlials, and <hasVariable>c</hasVariable>

<hasProbValue>0.8</hasProbValue>
</PriorProb>

and P(c| pl, p2, p3) = 0.8, the conditional probability that an

datatypes will be considered in the future.

The rest of this paper is organized as follows:tiSecl|
extends OWL for encoding probabilities into ontglpg
Section Ill presents a set of rules that are usettanslate individual of the intersection class &L, P2, and P3 also
OWL ontology into DAG of BN; Section IV develops abelongs to clas€, can be expressed as follows:
method to construct CPTs for each node in the D8&tion ~ <Variable rdf:ID="c">
V briefly discusses how ontology reasoning may egqomed <hasClass>C</hasClass>
over this translated BN. The paper concludes ini&@ecd/I <hasState>True</hasState>

. . . L </Variable>
with discussions of related work and directions foture <Variable rdf:D="p1">

research. <hasClass>P1</hasClass>
<hasState>True</hasState>
[I. ENCODING PROBABILITIES IN ONTOLOGY </Variable>
The model-theoretic semantics of OWL [18] treate th <Vvariable rdfiD="p2">
domain as a non-empty collection of individualsclHssesA ::Zzggtses:; i:g?;g';:;
and B represent two concepts, we treat them as random

</Variable>
binary variables and interpreP(A=a )as the prior  <yariable rdf:ID="p3">
probability or one’s belief that an arbitrary inidiwal belongs <hasClass>P3</hasClass>
to classA, and P(a|b ) as the conditional probability that an ~ <hasState>True</hasState>
individual of classB also belongs to clash . Similarly, We  <oendpron rdHD="P(clpL. p2, p3)’>
can interpretP(a) , P(a|b), P(a|b), and P(a|b) with the <hasCondition>p1</hasCondition>

<hasCondition>p2</hasCondition>

negation interpreted as “not belonging to”. These types of " ”
<hasCondition>p3</hasCondition>

probabilities (prior or conditional) correspond unadly to <hasVariable>ce/hasVariable>

classes and relations in an ontology, and are hkedy to be <hasProbValue>0.8</hasProbValue>
available to ontology designers. Currently, ourngtation </CondProb>

framework can encode two types of probabilistioiniation  For simplicity we did not consider the namespacestiove
into the original ontology: for a concept claSsand its parent examples. For a complete definition of probabiistiarkups,
superconcept class sat please refer tahttp://www.csee.umbc.edu/~zding1/owl/prob.owl

(1) Prior or marginal probability?(C ;)
(2) Conditional probabilityP(C|O. )where O O 77 ,
20,0 20.

[ll. STRUCTURAL TRANSLATION

The ontology augmented with probability values as
, ) ) , .. described in Section Il will still be an OWL filét can be

To add such uncertainty information into an ex®tiny,ngiated into a BN by first forming a DAG follavg a set of
ontology, we treat a probability as a kind of resey and o5 The general principle underlying these rigethat all
define two OWL classes: “PriorProb”, *CondProb”. Agjaqses (specified as “subjects” and “objects” BFRriples of
probability with the formP(C )is defined as an instance Ofthe OWL file) are translated into nodes in BN, amdarc is

class “PriorProb”, which has two mandatory pro@sti drawn between two nodes in BN if the corresponding
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classes are related by a “predicate” in the OW4, filith the
direction from the superclass to the subclass itah be
determined. Control nodes are created during Hreskation to
facilitate modeling relations among class nodesdharelated
by OWL logical operator. These structural transkatiules are
summarized as follows:

(1) Every primitive or defined concept claSs is mapped
into a two-state (either “True” or “False”) varialshode in the
translated BN,C is in “True” state when an instanae
belongs to it;

(2) There is a directed arc from a parent supesatasle to
a subclass node, for example, a concept daskefined with
superconcept class€ (i =1 ...,n) by “rdfs:subClassOf” is

mapped into a subnet in the translated BN with acorererging
connection (Fig.1) from eac@; to C;

D,

Fig.1. — “rdfs:subClassOf”

| Bridge_Complement | | Bridge_Equivalent | ‘ Bridge_Disjoint

Fig.4. — “owl:complementOf, owl:equivalentClass,|aigjointWith”

(5) If two concept classe€, and C, are related by

complement (owl:complementOf), equivalent (owl:eguént-
Class), or disjoint (owl:disjointWith) relation, ¢h a control
node (named “Bridge_Complement”, “Bridge_Equivalent
“Bridge_Disjoint” respectively, as in Fig.4) is a=itl to the
translated BN, and there are directed links frdmand C, to
this node.

Based on rule (1) to (5), the translated BN comstdimo
kinds of nodes: regular nodes for concept clasedscantrol
nodes which bridging nodes that are associatedobicdl
relations. The CPT of a control node will be seaiway such
that when the state of this control node is setTrue”, the
corresponding logical relation among its parentcemt class
nodes will be held (see Subsection IV.A for mor&aiig). By
using control nodes, the logical relations are s&pd from
the “rdfs:subClassOf” relation, so the in-arcs teegular node
C will only come from its parent superclass nodekjctv

(3) A concept clas€ defined by set intersection operationmakesc 's CPT smaller and easier to construct, compared to

(owl:intersectionOf) of concept class&€ (i=1...,n) is

mapped into a subnet (Fig.2) in the translated Bt wne
converging connection from eack; to C , and

converging connection fro® and eachC; to a control node
called “Bridge_Intersection”;

Bridge Intersection

Fig.2. — “owl:intersectionOf”

(4) A concept classC defined by set union operation
(owl:unionOf) of concept classés; (i =1, ...,n) is mapped
into a subnet (Fig.3) in the translated BN with aoaverging
connection fromC to each C; , and one converging

connection fromC and eachC; to a control node called
“Bridge_Union”;

Bridge Union

Fig.3. — “owl:unionOf”

our old method in [2]. In the translated BN, alethrcs are
directed based on OWL statements, two concept cladss
without any defined or derived relations are d-sefeal with
each other, and two implicitly dependent conceps<inodes
are d-connected with each other but there is nobatween
them.

IV. CONSTRUCTINGCPTS

Once we had the network structured, the last step t
complete the translation is to assign a conditigmabability
table (CPT) P(C|m: )to each variable nod€ in the

structure, wheret. is the set of all parent nodes ©f. From

structural translation we know that all nodés in the
translated BN can be partitioned into two subsetgular
nodes Xg which denote concept classes, and control nodes

X for bridging nodes that are associated by logiefitions.
For a regular nod€ O X, as described in Section II, we
have prior probabilityP(C )attached to it if it does not have
any parent nodes; or conditional probabili(C|O, )
attached to it if its parent set- # 0 and O O 77 . Details
about how to construct CPTs for regular nodein based

on attached probabilistic information in the prolistically
annotated ontology will be given later in Subsett®. Here
we deal with CPTs for the control nodesX. first.

A. CPTs for Control Nodes

Based on the structural translation rules, theeefige types
of control nodes corresponding to the five logie@tors in
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OWL. They are “Bridge_Complement”, “Bridge_Disjdint
“Bridge_Equivalent”, “Bridge_Intersection”, “Bridgé&Jnion”.
Their CPTs are determined by the logical relatiomoag its
parent concept class nodes, which are specified nex

(1) Bridge_Complement (Table 1): When its statedsto
“True”, C, and C, are complement of each other;

Table 1 — CPT of Bridge_Complement

1 Cc2
True

True False

True 0.000
loo.o0
loo.o0

0.000

100.00
0.000
0.000

100.00

False
True

True
False

False False

(2) Bridge_Disjoint (Table 2): When its state ist ¢e
“True”, C, and C, are disjoint with each other;

Table 2 — CPT of Bridge_Disjoint

1 2

True
True

True False

True
Falze

0.000
100.00
100,00
100,00

Lo0.00
0.000
0.000
0.000

False True

False False

(3) Bridge_Equivalent (Table 3): When its statesét to
“True”, C, and C, are equivalent with each other;

Table 3 — CPT of Bridge_Equivalent

1 Q2

True
True

True False

True
False

100,00
0.000
0.000

1a0. 00

0.oo0o0
100,00
100,00

0.000

True
False

False
False

(4) Bridge_Intersection (Table 4): When its stateset to
“True”, C is the intersection o€, and C,;

Table 4 — Bridge_Intersection

1 c2 C
True

True False

True True
True
False
False
True
True
False
False

1o00.00
0.000
0.000

100.00
0.000

100.00
0.000

100,00

0.000
100,00
100.00

0.000
100,00

0.000
100,00

0.000

True False
True
False

True

True
True
Falss
False
True
False

False
False
False

In a more general case, if a concept clasg the intersection
of n>2 concept classes then tB8" entries in the CPT of
“Bridge_Intersection” can be obtained analogously.

(5) Bridge_Union (Table 5): When its state is sefTrue”,
C is the union ofC; andC,;

Table 5 — Bridge_Union
1 c2 C
True

True False

True True 100,00
0.0o0
100,00
0.000
100,00
0.0o0
0.0o0

100,00

0. 000
100,00
0. 000
100,00
0. 000
100.00
100,00
0.000

False
True

True
False
False
True
True
False
False

True
True
True False
True

False

False
False

False True

False False

In a more general case, if a concept cldss the union of

n>2 concept classes then ti#* entries in the CPT of
“Bridge_Union” can be obtained analogously.

When the CPTs for control nodes are properly detextn
as above, if we set the states of all the coniodes to “True”,
the logical relations defined in the original owigy will be
held in the translated BN, which is thus consistsith the
OWL semantics. We denote this situation that al ¢bntrol
nodes in the translated BN are in “True” stateCds.

The remaining issue is to construct CPTs for thgules
nodes in Xz so that P(Xg|CT ), the joint probability

distribution of all regular nodes in the subspa€eCa , is
consistent with all the given prior and conditiopabbabilities
attached to the nodes My. This issue is difficult because 1)

the product of CPTs of all variables gives the fjdiistribution
in the general space, not the subspace GX (the
dependencies changes when going from the genesiak Sp
the subspace ofT ); and 2) the probabilistic information
encoded is in the form of prior probabilityP(C ))and

conditional probability (C|O. ) 77 20, O O 71 ), not

directly in the form of CPT € may have other parent nodes
in addition toO, ).

To address these issues, we developed an algotihm
approximate these CPTs foXp based on the “iterative

proportional fitting procedure” (IPFP) [3]-[8], aelrknown
mathematical procedure that modifies a given distion to
meet a set of constraints while minimizidedivergence
(Kullback-Leibler distance) to the original distuion.

B. Brief Introduction to IPFP

In this subsection we give a brief introduction tiwe
iterative proportional fitting procedure (IPFP), ialinwas first
published by [3] in 1937, and in [4] it was propdsas a
procedure to estimate cell frequencies in contingembles
under some marginal constraints. In 1975, |. Csidsd
provided an IPFP convergence proof based-divergence
geometry. J. Vomlel rewrote a discrete versiorhedf proof in
his PhD thesis [6] in 1999. IPFP was extended [n[B] as
conditional iterative proportional fitting proce@ufCIPF-P) to
also take conditional distributions as constrairdad the
convergence was established for the finite disarase.

We give definitions ofl-divergenceand I-projection first
before going into the details of IPFP. In our canteall
random variables are finite and all probabilitytdigitions are
discrete.

Definition 3.1 (I-divergence)

Let P be a set of probability distributions, and fefQ P,
I-divergence(also known asullback-Leibler divergencer
Cross-entropy which is often used as a distance measure
between two probability distributions) is definedd a

I(PIQ) = ><I]X,§(x)>0

+ o0

P(x) .
P(x)log@ if P<<Q

if P#<Q

1)
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Here P << Q meansP is dominated byQ, i.e.

{xOX|P(x) >0} O{yd X |Q(y) >0}

where x (or y) is an assignment oX , or equivalently:
{yOX|Q(y) =0} O{xU X |P(x) =0}

since a probability value is always non-negativene T

dominance condition in (1) guarantees division byozwill
not occur because whenever the denomin@(r is zgro, the

numeratorP(x) will be zero. Note thatdivergences zero if

and only if P and Q are identical and-divergenceis non-

symmetric.

Definition 3.2 (I-projection)

The l.-projection of a probability distributiorQ0 P on a set
of probability distributions £ is a unique probability
distribution PO & such that thd-divergence® I (P||Q) " is

minimal among all probability distributions ia. Similarly,
the I--projectiors of Q on & are probability distributions in

€ that minimize thel-divergence “ I(Q]||P) " and I

projectionis not generally unique.
If £ is a given set of probability distributions thatisfies
all given constraints, thdi.-projection Pe of Q is a

distribution that has the minimum distance fr@mamong all
those ing [6].

Definition 3.3 (IPFP)

Let X={X;,X,,...,X,} be a space of discrete random

variables, given a consistent set rof marginal probability
distributions {R(S)} where XOS #0 and an initial

probability distributionQ,, 0 P, iterative proportional fitting
procedure (IPFP) is a procedure for determiningoiamt

distribution P(X)=P(Xy, X,,...,X,) <<Q, satisfying all

constraints in{R(S)} by repeating the following compu-
tational process ovek andi = ((k—1) modm) + 1

0 if Qu-(§)=0
Quo(X)= Q(k—l)(x)gﬂ it Qu(S)>0 @
Qi (S)

This process iterates over distributions{R(S)} in cycle.
It can be shown [6] that in each step Qy,(X) is anl-

projection of Qy_y(X) that satisfies the constraii(§ )
andQ = limy . Qy is anl-projectionof Qq, satisfying all

constraints, i.e.Q" converges tdP(X) = P(X1, X5, Xy )

CIPF-P from [7], [8] is an extension of IPFP tooall
constraints with the form of conditional probalyilit
distributions, i.e.R(§ |L )where L, O X . The procedure

can be written as

0 if Qu(§ 1) =0
Q(k)(X) ) Q(k—l)(x)lz"(% if Q(k—l)(s IL)>0 )

CIPF-P has similar convergence result [8] as IP#dP(3) is
in fact a special case of (3) with =0 .

C. Constructing CPT for Regular Nodes

Let X ={X,....X,,} be the set of binary (i.eX; 0{x,%})
variables in the translated BN the set of regular nodes,
and X. the set of control nodes, as stated earlier in this
section. The remaining issue is to construct CR{Y | 7, )

for the regular nodey; in Xz so thatQ(x,|CT), the joint
probability distribution of Xg in the subspace ofT , is

consistent with all the given prior and conditional
probabilities. Again, we restrict the encoded philitées to
the two forms: (1) prior or marginal probabili{C and (2)

conditional probabilityP(C | O, )whereO. O 1, 77 20,
Oc 20, and each is attached to a nodeXg. This is a

constraint satisfaction problem in the scope offPHowever,
it would be very expensive in each iteration of {@ompute
the joint distributionQ, (X )over all the variables and then

decompose it into CPTs at the end. We provide a new
algorithm (calledDecomposed-I PFP or D-1PFP for short) to
overcome this problem by utilizing the chain rubé8N [1].

Let Ry (X) =My ox Rnit (X | 75) be the initial distribution
of the translated BN where CPTs for control nodeX{ are

set properly as in Subsection A and CPTs for regubaes in
Xgr are set to some arbitrary values that are comsistih

the semantics of the subclass relation betweemparel child
nodes. Lef{R(V; | L; )}be the set ofm given prior (4 =0) or

conditional (7, UL; #U ) probability distributions asso-
ciated withV, 0 Xg. The basic idea of our approach is: in

each iteration stegk , instead of computing a new joint
probability distributionQ, (X )over all the variables on one

constraint in{R(V; | L;)} , we compute a new CPQ,, (v, | 7z,)
for nodeV, over that constraint. The iteration process loops

continuously over alR(V; | L; until Q converges. D-IPFP is
given below:

Qo) = Bnit (X) =T x,ox Pie (Xi 173)

RVi IL) 4)
i = Quep (V .
Quoy Vi 178,) = Qg Vi | 78,) Qun v, 1L;,CT) k-1(7%;)
where ; (7 )= 1
KA > (Q(k—l) (\7 |7T\4 YRV, | L )/Q(k—l) Vi IL,CT))

Vit{vi vi}
is the normalization factor for each possible vadssignment
of 77, .

To guarantee the dominance @, , we define
Quy (Vi I73,) =0 if Qu_yy(Vi |L;,CT) =0. It can be shown that

(Subsection D), if the ontology definition is castsint, given
an consistent and complete input SRV, |L ,)}Q
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converges toQ" with Q" (X, |CT) an lw-projection of  Qu(Xg|CT) is an l:-projection of Q.5 (Xg|CT) over
Pyt (XgICT) over {R\V,[L)} (ie. Q*(XR |CT) has some constraint in the subspaceQ¥f . Because our rule (4) is
minimum  Kullback-Leibler distance tcR,; (X |CT Jand for local updates (change CPTs, nqt the joint ithistion of

. Xgr). and because the CPTs are given for the genpagles
OV OXg:Q (Vi [Li,.CT) =RV, | L))- but constraints are in the subspace @F , l.-projection

D. Convergence Proof of D-IPFP generated at each iteration does not necessardy time given
From previous subsections we have the set of A&PNSIAINIR(Y, |L;). However, we can show they,, (Xg|CT)
variablesX = Xg U X¢ with Xg n X =0 and Xg#0 , is anl-projection of Qy_;(Xg|CT) over another constraint

where Xg ={V;,...Vs} denotes the set of binary (i.e.derived fromR(V; |L; )in the subspace c&T .

V; O{v;,v:}) regular nodesX. ={B,,....B, Mdenotes the set Let Li'= 7%, \L; (or 7%, is partitioned intol; and L; ), we

of binary (i.e. B, O{b ,H}) control nodes (ifXq #0). define a new constrair®, (V; | 7, ,CT)
Probability constraints can be put in a generamfaf R, (v |L;,L;",CT)
R(Vi [L) wherel; O 7%, . If Lj =0, then the constraint is a R\, [ L))
= B () B — Q- Vi I, L, CT) 9)

prior or marginal, otherwise, a conditional (giveame or all
parents oV, ).

By the chain rule of BN [1], the probability diditition of
Xgr ={Vj ] =1...8 inthe subspace &T is:

Q- (Vi 1L,CT)
To prove that Qu(Xg|CT )is an li-projection of
Qu-1(Xgr [CT) over Ry (V; |7%,,CT) in the subspace of

CT, from (7) and (9) we have:

Qi (X |CT) (5)
S Qo (X [CT)
= Qo (Xr,CT)/Qqy (CT) :
= Qu (Xp\{V}, V,,CT)/Qy (CT) = s () B—IE) (et LD
~ A ) K Q- (Vi IL;,CT) (kIR Q- (Vi ILi, Li',CT)
= Qqq (v, |”\4 ) [BJID_!(C Quy (b; |T|BJ )XiDEl,j;ti Quoy v |T'vJ )/ Quy (CT) - Qe (Xe CT) |:!R'(k) 14,45 ',CT)
From (4) we have: Qu-» MV 1L, L',CT)
RV |L) Ry Vi [, ,CT)
N 7E,) = an - (7R, V|75 (6) =Qu.y(Xg|CT) E—r—"—— (10)
Quo Vi 178,) = a1 (78, ) ey (Vi | 78,) Qe M IL,CT) -1 (XRr Quy ™, 17,.CT)
Substitute (6)_ into (5), also_ note_ that only oneléanamely Then from (3), Q) (Xg|CT ) is an I:-projection of
Qu (Vi Iny,) . is changed at iteratiok, then Qu-1(Xr|CT) over constraint R (V; | 75,,CT )in the
Quo (Xr [CT) subspace of€T, and thus
R i Li A =R A
= [ (78) ey Vi 175, x IL )CT)] Quy Vi [78,,CT) = Ry (Vi | 7%,,CT) (11)
Qu-n Vi 1L, Second, since each iteration is anm-projection we can
[BID'|X Qo (b; |T|Bi)x DI;I y Quo (v IMy,)1Quy (CT) show (analogous to the convergence proof in [6éPa2))
e e that:
R(V; L
=[5 Ry OV, 175 B (] | (Quy (g ICT)lIQuy (X& ICT)) ~ 0 (12)
(k=) Vi i . . .
and since all the random variables are finite, tasa
[lem_lxc Quen By 1M, )xiDQ,m Quen Vj 17,/ Qo (CT) Theorem 2.4 of J. Vomlel's thesis [6] (Page 20) é1@)), the
RV, L, Quep (CT) sequenceQ), Q.. Qu-1,Qu) »--converges to some limit
= a1 () B ), (xq ey e »
Q- (Vi IL;,CT) Qu (CT) probability distribution (denote i@ ) and whenk — o, we
RV, L) obtain:
= By (1%,) — Q-1 (Xg [CT) )
K Q- Vi IL;,CT) kDR Qi (Xr ICT) - Qu-py (Xg |CT) (13)
where Bea(m,) = a4 (7%,) GQ(k—l) (€T) _ Finally, we show that thi€" fulfills all given constraints,
Qu (CT) using (13) together with (7), we have:
Now we show thatQ,, converges to a limit probability R(V; | L
. . (+) B (1) B M lLl)CT -1 14)
distributionQ and Q fulfills all the given constraints in the Qun (Vi IL;,CT)
subspace ofT, i.e. Whenk - o ,we also haveQy,) (CT) - Quy) (CT )so:
OV, Q' (V |L,.CT) =RV, | L) , iie. Ba(my) —» a4 (7%;) (15)
OV limy o, Quo (Vi | L, CT) = R(V; | L) (8) From (14) and (15), we have:

First, we prove that in each iteration step of (4),
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RV |Li)
ak_l(ﬂvi)DQ(k—l) v [L.CT)

Q-1 Vi [ i, CT) - a4 (75, ) [R(Y; | L)

Since bothQ ;) and R(V; | L; ) are probability distributions,
then the normalization factar, 4 (75,) —
limy o Quy (Vi [ Li,.CT) =R(V; | L)

1,ie.

Jthen we have:

E. An Example

We demonstrate the validity of our approach byrapks
example ontology. In this ontology, "Animal" is airpitive
concept class; "Male", "Female", "Human" are sutsds of
"Animal”; "Male" and "Female" are disjoint with éaother;
"Man" is the intersection of "Male" and "Human"; ‘8man"
is the intersection of "Female" and "Human"; "Hurhénthe
union of "Man" and "Woman".

The following constraints or probabilities are aktad to
Xg = {Animal, Male, Female, Human, Man, Woman}:

(1) P(Animal) = 1.0;

(2) P(Male|Animal) = 0.5;

(3) P(Female|]Animal) = 0.48;
(4) P(Human|Animal) = 0.1;
(5) P(Man|Human) = 0.49;
(6) P(Woman|Human) = 0.51.

We obtained the BN by first constructing the DAG (a

described by Section 1ll), then the CPT for nodes (as
described in Subsection IV.A), and finally approating the

CPTs of nodes inXg by running D-IPFP. Fig.5 below shows

the BN we obtained. It can be seen that, whenoaifrol nodes
are set to True, the conditional probability of ‘kla
“Female”, and “Human”, given “Animal”, are 0.5, 84and
0.1, respectively, the same as the given probglaitinstraints.
All other constraints, which are not shown in tlgafe due to
space limitation, are also satisfied.

Animal

True 100
Falze ]

Male
500
500 p—

Female
True 48.0
False 52.0

Human

True 100
False 900 ;

True
False

Man
490
951

T M’nman
False 5.10
948

True
Fals

Bridge_Union
True 100
alse 1]

Bridge_Intersection_1 ‘
True 100
False a :

Bridge_Disjoint__ |
True 100 N
False a

Fig.5. — An Example

Bridge_Intersection 2 |
True 100 —
False o) ¢

were set according to the subclass relation. Ithmseen that
the values on the first row in all CPT have beeanged from
their initial values.

Table 6 — CPT of the Example Ontology

Animal Animal
True | False True Falze
0.3 0.3 0.92752 | 0.0T7248
; Male ] Bale
nimal True | Falsce PR True False
True 0.3 0.3 True | 0.93677 | 0.04323
Falge a 1 Falze a 1
. Female . Female
Sl True | False fuipnl True False
True 0.5 0.5 Trae | 0.75469 | 0.04531
Falge a 1 False a 1
s Human ; Human
Aol True | False SRt True False
True 0.5 0.5 Trae | 018773 | 081227
False 1] 1 False a 1
Man Man
Male | Human Teue | False Idale | Human True False
True True 0.5 0.5 True True | 047045 | 052951
True | Falze 0 1 True | False 0 1
Falge | True 0 1 Falge | True 0 1
Falze | Falze 0 1 Falze | Falze 1} 1
Woman Woman
Female | Human True | False Female | Human True False
True True 0.5 0.5 Trae True | 051433 | 048567
True False 1} 1 True False i} 1
Falge True 0 1 False True 0 1
Falze Falge 0 1 Falze Falze 0 1
Initial arhitvary CPT Final CPT obitained by D-IPFP

F. Discussion over D-IPFP

Some other general optimization methods such aglated
annealing (SA) and genetic algorithm (GA) can d&saised to
construct CPTs of the regular nodes in the trapdld&N.
However, they are much more expensive and the tyuaii
results is often not guaranteed. In our experimebtsPFP
converges quickly (in seconds, most of the timkegs than 30
iterative steps), despite its exponential time dexify in
theoretical analysis. The space complexity of DRR$&- trivial
since each time we only manipulate the CPT of aydennot
the entire joint probability table.

However some theoretical issues regarding D-IPFRaie
to be addressed, including the existence and uné&gseof the
solution and the impact of the input constraint saet the
quality of the solution:

(1) Existence: Under what condition will the inprdnstraint
set specify a multivariate joint distribution?

(2) Unigueness: Assume such joint distribution txiswill it
be unique?

(3) Quality of input set: How to deal with weaklgresistent,
inconsistent or incomplete input set?

Future work also includes extending D-IPFP to hareth

The initial CPTs (of nodes iiX ) used in this example and input set with constraints of more general form,chsu

the final solution CPTs (of nodes g ) obtained by D-IPFP
are listed in Table 6. Note that in all initial CP&lues on the
first row were set to 0.5. They can be set to arbjtrary

values greater than 0 and less than 1. ValuedIfotteer rows

as:{P(A[B)}, where ABUO Xg ={V;,....V;}, AnB=0.
This might be possible since according to the chaile,
P(Vi,..-Vj, |B) can be transformed into a set of constraints

with the form of P(V; |C ) C O{V,,...V3\ {V;}, i.e.
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P, [BV,, ..\,
PV, BV, -..V;)
P, IBV,)
PV, |B)

In our experiments, we also notice that the ordeapply
the constraints will not affect the solution, ame tvalues of
the initial distributionQ (X) = R, (X )(but avoid 0 and 1)

will not affect the solution either.

V. REASONING

The probabilistic-extended ontology can supportsimon
ontology-related reasoning tasks in the subspadgTofHere
we outline how three such tasks can be done inciptan
Detailed algorithms are under development.

A. Concept Satisfiability

Given a concept represented by a descriptigndecide
whether P(e|CT) =0 (False). P(e|CT) can be computed by
applying the chain rule of BN.

B. Concept Overlapping
The degree of the overlap or inclusion betweenreept C
and a descriptior can be measured ®(c|e CT , which

MSC(e, Humar) = 0.0510,
MSC(e,Man) =0,
MSC(e,Woman = 0.0536.

This leads us to conclude that class “Female” & mhost
similar concept toe , since it has the highest similarity
measure among all nodes in this particular example.

VI. CONCLUSION, RELATED WORK AND DISCUSSION

In this paper we present our ongoing research
probabilistic extension to OWL. We have defined mewL
classes (“PriorProb”, “CondProb”, and “Variableijhich can
be used to markup probabilities for classes in Ofilds. We
have also defined a set of rules for translatinglOMitology
taxonomy into Bayesian network DAG and providedeavn
algorithm D-IPFP to construct CPTs for all the faguodes.

Our probabilistic extension to OWL is compatiblettwi
OWL semantics, and the translated BN is associafiéit a
joint probability distribution over the applicatiodomain
consistent with given probabilities. We are curieratctively
working on extending the translation to include p@xies,
developing algorithms to support common ontolodgtesl
reasoning tasks, and formalizing mapping between tw
ontologies as probabilistic reasoning across tandliated BN.
Based on successful resolution of these issues cdhelr
refinement of our framework, we plan to implement

on

can be computed by applying general BN belief updaPrototype which can automatically translate a giv@wL

algorithms € means the “True” state af ).

C. Concept Subsumption

Find the most similar conceg that a given description
belongs to. This task cannot be done by simply agimg the

ontology with uncertainty information into a BN anen also
support common ontology-based reasoning tasks.
Researchers in the past have attempted to apfretit
formalisms such as fuzzy logic, rough set theong, Bayesian
probability as well as ad hoc heuristics into oogiyl definition

posterior probabilityP(C |e,CT) , because any class nodeand reasoning (see [10] for a brief survey). Wothat

would have higher probability (prior or posteridhan its
children, and the root node always has the proibakif 1.
Instead, we define a similarity measutsC(e,C bgtweene
and C based ordaccard Coefficienfl6]:

MSC(e,C)=P(en C|CT)/P(e0C|CT)
=P(e,c|CT)/(P(e|CT) +P(c|CT) - P(e,c|CT)) (16)

This measure is an intuitive and easy-to-computasone,
and whene is a subclass of (i.e.,, P(c|eCT)=1), it
reduces to the Most-Specific-Subsumer of DL. OtligsyC is
a class that has the largest overlap witkiVe are also looking
at other similarity measures, such as those baseshinopy or
mutual information.

In our example ontology (see Fig.5), to find thea=pt that
is most similar to the given descripti@=-Mann Animal,
we compute the similarity measure efand each of the nodes
in Xg = {Animal, Male, Female, Human, Man, Woman}
using (16):

MSQ(e, Animal) = 0.4755,

MSC(e, Male) = 0.4506,

MSC(e, Femalg = 0.5047,

integrate probabilities into description logic baisgystems
(e.g., [9, 11, 12, 13, 14] are particularly relevvemour work.
Works in [12, 13] provide a probabilistic extensiohthe DL
ALC based on probabilistic logics. P-CLASSIC [14] given
informal probabilistic extension to CLASSIC alsosbd on
Bayesian networks, in which each probabilistic comgnt is
associated with a set of p-classes, each of wkicegresented
using a BN. PSHOQD) [11] is the probabilistic extension of
DL SHOQD) [15] based on the notion of probabilistic
lexicographic entailment from probabilistic defatdasoning.
Among these works, only BHOQD) is able to represent
assertional (i.e., Abox) probabilistic knowledgeoabconcept
and role instances. The primary difference betw8and our
work is that their links are pointed from subcortsepo
superconcepts, which makes the construction of CPTs
difficult. Our method are not aimed at providingdaibnal
means to represent uncertainty or probabilisticceispf the
domain but rather at developing formal rules toecty
translate an OWL ontology into a Bayesian network.
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