Abduction, Uncertainty,
and
Probabilistic Reasoning

Chapter 15 and more



| ntroduction

* Abduction isareasoning process that triesto form plausible
explanations for abnormal observations

— Abduction is distinct different from deduction and induction
— Abduction is inherently uncertain
« Uncertainty becomes an important issue in Al research
« Some major formalisms for representing and reasoning about
uncertainty
— Mycin’s certainty factor (an early representative)
— Probability theory (esp. Bayesian belief networks)
— Dempster-Shafer theory
— Fuzzy logic
— Truth maintenance systems



Abduction

 Definition (Encyclopedia Britannica): reasoning that derives
an explanatory hypothesis from a given set of facts

— The inference result is a hypothesis, which if true, could
explain the occurrence of the given facts

« Examples
— Dendral, an expert system to construct 3D structure of
chemical compounds

 Fact: mass spectrometer data of the compound and its
chemical formula

o KB: chemistry, esp. strength of different types of bounds

» Reasoning: form a hypothetical 3D structure which meet the
given chemical formula, and would most likely produce the
given mass spectrum if subjected to electron beam
bombardment



— Medical diagnosis
» Facts: symptoms, lab test results, and other observed findings
(called manifestations)
« KB: causal associations between diseases and manifestations

 Reasoning: one or more diseases whose presence would
causally explain the occurrence of the given manifestations

— Many other reasoning processes (e.g., word sense
disambiguation in natural language process, image
understanding, detective swork, etc.) can aso been seen as
abductive reasoning.



Comparing abduction, deduction and induction

Deduction: major premise: All ballsin the box are black
minor premise: These balls are from the box
conclusion: These balls are black

Abduction: rule: All ballsin the box are black
observation: These balls are black
explanation: These balls are from the box

| nduction: case: These balls are from the box
observation: These balls are black

hypothesized rule: All ball in the box are black

Induction: from specific cases to general rules

Abduction and deduction:
both from part of a specific case to other part of
the case using general rules (in different ways)

Possibly A

Whenever
A then B
but not
viceversa
Possibly
A=>B




Characteristics of abduction reasoning

1. Reasoning results are hypotheses, not theorems (may be
false even If rules and facts are true),
— e.g., misdiagnosis in medicine
2. There may be multiple plausible hypotheses
— When givenrulesA =>B and C => B, and fact B
both A and C are plausible hypotheses
— Abduction is inherently uncertain
— Hypotheses can be ranked by their plausibility if that can be
determined

3. Reasoning is often a Hypothesize- and-test cycle
— hypothesize phase: postulate possible hypotheses, each of
which could explain the given facts (or explain most of the
Important facts)
— test phase: test the plausibility of all or some of these
hypotheses



— Oneway to test ahypothesis H isto query if some thing
that is currently unknown but can be predicted from H is
actually true.
 |fweasoknow A=>DandC=>E,thenaskif D and E are

true.
o Ifitturnsout D istrue and E isfalse, then hypothesis A
becomes more plausible (support for A increased, support for
C decreased)
4. Reasoning is non-monotonic

— Plausihbility of hypotheses can increase/decrease as new
facts are collected (deductive inference determinesif a
sentence is true but would never change its truth value)

— Some hypotheses may be discarded, and new ones may be
formed when new observations are made



Sour ce of Uncertainty

e Uncertain data (noise)

« Uncertain knowledge (e.g, causal relations)
— A disorder may cause any and all POSSIBLE manifestationsin a
specific case
— A manifestation can be caused by more than one POSSIBLE
disorders
» Uncertain reasoning results
— Abduction and induction are inherently uncertain
— Default reasoning, even in deductive fashion, is uncertain
— Incompl ete deductive inference may be uncertain



Probabilistic | nference

» Based on probability theory (especially Bayes theorem)
— Well established discipline about uncertain outcomes
— Empirical science like physics/chemistry, can be verified by
experiments
 Probability theory istoo rigid to apply directly in many
applications
— Some assumptions have to be made to ssmplify the reality
— Different formalisms have been developed in which some aspects
of the probability theory are changed/modified.
 We will briefly review the basics of probability theory before
discussing different approaches to uncertainty

* The presentation uses diagnostic process (an abductive and
evidential reasoning process) as an example



Probability of Events

o Sample space and events

— SamplespaceS  (e.g., al peoplein an area)

—EventsEll S (eg., al people having cough)

E21 S  (eg., al people having cold)

 Prior (marginal) probabilities of events

—P(E) =|E|/ |9 (frequency interpretation)

—P(E) =0.1 (subjective probability)

— 0<=P(E) <=1for al events

— Two specia events: A£and S P(A) =0and P(S) = 1.0
» Boolean operators between events (to form compound events)

— Conjunctive (intersection): E1"E2(E1C E2)

— Disjunctive (union): ElvE2(E1E E2

— Negation (complement):  ~E(E¢=S-E)
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 Probabilities of compound events
— P(~E) = 1-P(E) because P(~E) + P(E) =1
—P(E1v E2) =P(El) + P(E2) - P(E1 " E2)
— But how to compute the joint probability P(E1 " E2)?

OIIaD

E1MN E2

 Conditional probability (of E1, given E2)
— How likely E1 occurs in the subspace of E2
|EIUE2| _|E1UE2|/|S|_ P(E1UE2)
|E2]| |E2|/|S]| P(E?2)

P(E1|E2) =

P(ELUE?2) = P(E1|E2)P(E2)



* |ndependence assumption
— Two events E1 and E2 are said to be independent of each other if

P(E1|E2) = P(ED (given E2 does not change the likelihood of
E1)

— It can simplify the computation
P(ELUE2) = P(E1|E2)P(E2) = P(E])P(E2)
P(EIUE2)=P(E1)+P(E2)- P(ELUE?2)

=P(ED)+P(E2)- P(E)P(E2)
=1- 1- P(ED@1- P(E2))

e Mutually exclusive (ME) and exhaustive (EXH) set of events
~-ME:  E,UE, =/ (P(E,UE;)=0),i,j=1.,n,i* ]
—~EXH: E,U..UE, =S (P(E,U..UE,) =1

12



Bayes Theorem

* |nthe setting of diagnostic/evidential reasoning

H, P(H)) hypotheses
AN
E, j E. evidence/manifestations

— Know prior probability of hypothesis P(H))
conditional probability P(E;|H))
— Want to compute the posterior probability P(H; |E;)
» Bayes' theorem (formulal): P(H,|E;)=P(H,)P(E, |H,)/P(E))
e |f the purposeisto find which of the n hypotheses H,,....,H,
Is more plausible given E , then we can ignore the denominator

and rank them userdative likelihood
rel(H; |E;) =P(E, |H;)P(H;)
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* P(E,;) can be computed fromP(E; |H;) and P(H,), if we
assume all hypotheses H,,...,H  are ME and EXH

P(E;)=P(E, U(H,U..UH ) (by EXH)
=3 P(E; UH,) (by ME)

=a P(E; [H)P(H,)
* Then we have another version of Bayes' theorem:
P(H, |E;)= nP(Elei)P(Hi) _ nreI(Hi|Ej)
a P(E;|H)P(H,) Qre(H,|E))

k=1 k=1

where & P(E, [H,)P(H,), the sum of relative likelihood of all

k=1

n hypotheses, is a normalization factor
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Probabilistic I nference for ssmple diagnostic problems

* Knowledge base:
E,...E,: evidence/manifestation

H,.,H,: hypotheses/disorders

n

E, and H, arebinary and hypothesesformaME & EXH set
P(E,|H,),i=1..n,j=1.m  conditional probabilities

e Caseinput: E,,...,E,
 Find the hypothesis H .with the highest posterior
probability P(H, | E,,...,E,)

By Bayes theorem P(H, |E,,...,E,) = P(E,...E, |H))P(H))

P(E,,..E))
» Assume all pieces of evidence are conditionally
Independent, given any hypothesis

P(E,..E |H)=P ljzlp(Ej |H;)
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e Therelative likelihood
rel(H, |E,....E)) = P(E,,..., EI|Hi)P(Hi):P(Hi)P|j:1P(Ej|Hi)

 The absolute posterior probability
__ré(H,|E,.,E) _ P(H)PP(E [H)
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Assessment of Assumptions

e Assumption 1. hypotheses are mutually exclusive and

exhaustive
— Single fault assumption (one and only hypothesis must true)
— Multi-faults do exist in individual cases
— Can be viewed as an approximation of situations where
hypotheses are independent of each other and their prior
probabilities are very small

P(H,UH,)=P(H,)P(H,) » 0if both P(H,) and P(H ) are very small

e Assumption 2: pieces of evidence are conditionally

Independent of each other, given any hypothesis
— Manifestations themselves are not independent of each other, they
are correlated by their common causes
— Reasonable under single fault assumption
— Not so when multi-faults areto be considered
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L imitations of the ssimple Bayesian system

« Cannot handle well hypotheses of multiple disorders
— Suppose H,,..., H, areindependent of each other
— Consider acomposite hypothesis H,"H,
— How to compute the posterior probability (or relative likelihood)
P(H/ H,|E,...E)?
— Using Bayes' theorem

P(E,,..E, |H,"H,)P(H,"H
P(HlAHzlEl,---,E|): ( 1 || 1 2) ( 1 2)

P(E,....E))
P(H,"H,)=P(H,)P(H,) becausethey areindependent
P(E,...E, |H,"H,) =P _P(E, |H,"H,)
assuming E; areindependent, given H " H,
How to compute P(E; [H,"H,)?
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— Assuming H,..., H , areindependent, given E,...,E,) ?

P(H"H,|E,,....E)=P(H,|E,....E/) P(H,|E....E|)
but thisis a very unreasonable assumption

E and B are independent

E: earth quake B: burglar S
But when A isgiven, they
/ are (adversely) dependent
A alarm set off because they become
competitorsto explain A
 Cannot handle causal chaining P(BIA, E) <<P(BIA)

— EX. A: weather of the year
B: cotton production of the year
C: cotton price of next year
— Observed: A influences C
— Theinfluenceisnot direct (A ->B -> C)
P(C|B, A) = P(C|B): instantiation of B blocks influence of A on C

* Need a better representation and a better assumption
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Bayesian Belief Networks (BBN)

« Definition: A BBN = (DAG, CPD)
— DAG: directed acyclic graph
nodes. random variables of interest (binary or multi-valued)
arcs. direct causal/influential relations between nodes
— CPD: conditional probability distribution at each node X;

P(x. |p,) wherep, istheset of all parent nodesof x.
— For root nodes p, =4 0 P(x; |p;) = P(x,)
Since roots are not influenced by anyone, they are considered
Independent of each other

 Example BBN
P(A) = 0.001

/ \ P(BJA) = 0.3 P(B|~A) = 0.001
P(CJA) = 0.2 P(C|~A) = 0.005

\ P(D|B,C)=01  P(D[B,~C)=0.1

P(D|-B,C) =0.01 P(D|~B,~C) = 0.00001
P(E|C) = 0.4 P(E|~C) = 0.002
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e |ndependence assumption

- P(X [p;,q) = P(Xx; |p;)
where g isany set of variables \/ q
(nodes) other than X; and its successors ”

— P; blocks influence of other nodeson X |
and its successors (g influences X; only / \
through variablesin P, )

— With this assumption, the complete joint probability distribution of all
variables in the network can be represented by (recovered from) local
CPD by chaining these CPD

P(Xy, X3) = PiLP(X; [P;)

P(A, B, C,D, E)
P(E|A, B, C, D) P(A, B, C, D) by Bayes theorem
P(E|IC) P(A, B, C, D) by indep. assumption

P(E|C) P(DIA, B, C) P(A, B, C)
P(E|C) P(D|B, C) P(C|A, B) P(A, B)
P(E|C) P(D|B, C) P(C|A) P(BIA) P(A)
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| nference with BBN

» Belief update
— Original belief (no variableisinstantiated) : the prior probability P(X;)
If x. isaroot, then P(x;)isgivenin BBN.
Otherwise, P(x,) =& P(x, |p,)P(,)

P(X |p;) isgiven,bL'Jt computer P(p.) iscomplicated

Ex:P(B,C)=P(A,B,C)+P(~A,B,C)
=P(B|A,C)P(AC)+P(B|~ AC)P(~A,C)
=P(B|A)P(C|AP(A)+P(B|~-A)P(C|~-A)P(~A)

— When some variablesareinstantiated (say x; hasvalue X ),
beliefson all other variable x; iIschangedto P(X; | X))

P(x; | X,) can becomputed from the joint probability distribution
Ex:d=Dande=E

A P(A,b,c,D,E
P(A,D,E):ba,c( ¢ )

P(D,E) g P(ab,c,D,E)
a,b,c

Thisapproach is not computationally feasible with large network

P(A|D,E)=

22



— Algorithmic approach (Pearl and others)
 Singly connected network, SCN (also known as poly tree)
there is at most one undirected path between any two nodes
(i.e., the network is atree if the direction of arcs are ignored)

* Theinfluence of the instantiated variable spreads to the rest of the network

along the arcs
N

— The instantiated variable influences /
Its predecessors and successors differently /
— Computation is linear to the diameter of / // c\\:
the network (the longest undirected path) o—E :

e For non-SCN (network with genera structure)

— Conditioning: find the the network’s smallest cutset C (a set of nodes
whose removal will render the network singly connected)
for each instantiation of C, compute the belief update with the SCN
algorithm

— Combine the results from all possible instantiation of C.

— Computationally expensive (finding the smallest cutset isitself NP-hard,
and total number of possible instantiations of Cis O(2"|C|.)
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— Stochastic simulation

« Randomly generate large number of instantiations of ALL
variables | (" according to CPD

« Only keep those instantiations | {which are consistent with
the values of given instantiated variables

o Updated belief of those un-instantiated variables as their
frequenciesin the pool of recorded | ("

e The accuracy of the results depend on the size of the pool
(asymptotically approaches the exact results)

24



* MAP problems

— Let X denotetheset of all variablesinaBBN,V | X theset
of instantiated variables U = X - V theset of al un-instantiated
varialbes. Then the M AP (maximum aposteriori probability ) problem
Isto find the most probableinstantiation of U, givenV , i.e.,

max, (P(U [V))

— Thisis an optimization problem

— Algorithms developed for exact solutions for different special
BBN (Peng, Cooper, Pearl) have exponential complexity

— Other techniques for approximate solutions

Genetic algorithms

Neural networks

Simulated annealing
Mean field theory

25



Noisy-Or BBN

» A special BBN of binary variables (Peng & Reggia, Cooper)
— Eachlink x; ® x; isassociated with a probability valuecalled
causal strength c; that measuresthestrength of x; alone may

causex;,l.e,c; = P(x | X; istrueand al othersmp arefalse)
— Causation independence: parent nodes influence a child
Independently
« Advantages.
— One-to-one correspondence between causal links and causal
strengths

— Easy for humans to understand (acquire and evaluate KB)
— Fewer # of probabilities needed in KB

Complete joint prob. distribution : 2n
Genera BBN: g 2"
Noisy - Or BBN: ai:1|pi|

— Computation is less expensive
» Disadvantage: less expressive (less general)
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Learning BBN (from case data)

* Need for learning
— Experts’ opinions are often biased, inaccurate, and
Incomplete
— Large databases of cases become available
e What to learn
— Learning CPD when DAG is known (easy)
— Learning DAG (hard)
o Difficultiesinlearning DAG from case data
— There are too many possible DAG when # of variablesis

large (more than exponential)
n=3, # of possible DAG =25
n=10, #of possible DAG =4*10"18

— Missing values in database
— Noisy data
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o Approaches

— Early effort: Based on variable dependencies (Pearl)
e Find all pairs of variables that are dependent of each other
(applying standard statistical method on the database)
« Eliminate (as much as possible) indirect dependencies
» Determine directions of dependencies
 Learning results are often incomplete (learned BBN contains
Indirect dependencies and undirected links)

— Bayesian approach (Cooper)
 Find the most probable DAG, given database DB, i.e.,
max(P(DAG|DB)) or max(P(DAG, DB))

» Based on some assumptions, aformulais developed to
compute P(DAG, DB) for agiven pair of DAG and DB

A hill-climbing algorithm (K2) is developed to search a
(sub)optimal DAG

» Extensionsto handle some form of missing values
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— Minimum description length (MDL) (Lam)
 Sacrifices accuracy for simpler (less dense) structure
— Case data not always accurate
— Fewer links imply smaller CPD tables and less expensive inference
e L=L1+L2 where
— L 1: the length of the encoding of DAG (smaller for ssmpler DAG)

— L2: the length of the encoding of the difference between DAG and DB
(smaller for better match of DAG with DB)

— Smaller L2 implies more accurate (and more complex) DAG, and thus
larger L1

e Find DAG by heuristic best-first search, that Minimizes L

— Neural network approach (Neal, Peng)
 For noisy-or BBN

* MaximizingL =In P P(V =V ") where
VD _
D :casedatabase; V' :casein D;V :state vector of thelearned network

L measuresthesimilarity of thetwodistributions:onein D,
another in thelearned network
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Dempster-Shafer theory

« A variation of Bayes theorem to represent ignorance
« Uncertainty and ignorance
— Suppose two events A and B are ME and EXH, given an

evidence E
A: having cancer B: not having cancer  E: smoking
— By Bayes theorem: our beliefson A and B, given E, are measured by
P(A|E) and P(B|E), and P(A|E) + P(BIE) = 1
—In redlity,
| may have some belief in A, given E
| may have some belief in B, given E
| may have some belief not committed to either one,

— The uncommitted belief (ignorance) should not be given to
either A or B, even though | know one of the two must be true,
but rather it should be givento “A or B”, denoted { A, B}

— Uncommitted belief may be given to A and B when new
evidence is discovered
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* Representing ignorance
— Frameof discernment:q ={h,,...,h },aset of ME and EXH
hypotheses. The power set 2* isorganized asalattice of super/subset
relations. Each node Sisasubset of hypotheses(S1 q)

—Ex:q={A,B,C}

Each node Sisassociated with a {AB,C} 0.15
basic probability assignment m(S) _—
O£ m(S) £, {AB}01 {AC}01 {B,C}0.05
m(4) =0 |
Ay, MmO =1 {AY01 {B}O0.2 {C}0.3
* Belief function {10
Bel(S) =8 4, sM(S); Be(AH)=0, Bel(@)=1

Bel({A,B}) =m({ A B}) +m({ A}) + m({ B}) + m(/)
=0.1+0.1+0.2+0=0.4
Bel({A,B}*)=Be({C})=0.3
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— Plausibility (upper bound of belief of anode)

All belief not committed to S® may be commitedto S
Pls(S) =1- Bel(S%)
PIs({A,B}) =1- Bel({C}) =1- 0.3=0.7
[Bel(S), PIs(S)] belief interval

Lo[ver Upper {A,B,C} 0.15

bound bound
(known (maximally
belief) possible)

{AB}0.1 {ACl01 {B,C}0.05

{[AYO1 {B}02  {Cl03

{10
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e Evidence combination (how to use D-S theory)

— Each piece of evidence has its own m(.) function for the same g
g ={ A, B} : A :having cancer; B : not having cancer

{A,B} 0.3 {A,B} 0.1
N
{A} 0.2 {B} 0.5 {A} 0.7 {B} 0.2
{}0 {}0
m,(S) m,(S)
E, :smoking E, :livingin high radiation area

— Belief based on combined evidence can be computed from

m(S) = my(S) A m, (S) = xer=sMOOM:(Y)
m, (X)m,(Y)

/1- a\XCY:E /
1

normalization factor Incompatible combination
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{A,B} 0.3 {A,B} 0.1 {A,B} 0.049

{A}/OZ 1B} 0.5 {A}/07 {B} 0.2 {Aém {B} 0.344
S| SO ]\ _
{} 0 {}0 {10
El E2 E1"E2
A = MAADM AN +m { AHm, (A B}) +m,({ A Bm, ({A})

1- [ml({ A})mz({ B}) + ml({ B})mz({ A})]
_ 0.2>0.7+0.2>0.1+0.3>0.7 _ 0.37 — 0.607

1- [0.250.2+05°0.7]  0.61
m,({B})m,({B}) + m,({B})m,({ A, B}) + m,({ A B})m,({B})

Bl) =
m({B}) 1- [m,({ A})m,({B}) + m,({BH)m, ({ A})]
_0502+0501+0302 _021_ .

1- [0.2X0.2+05>0.7] 061




— Ignorance is reduced
fromm1({A,B}) =0.3to m({A,B}) = 0.049)
— Belief interval is narrowed
A: from[0.2, 0.5] to[0.607, 0.656]
B: from [0.5, 0.8] t0[0.344, 0.393]
» Advantage:
— The only formal theory about ignorance
— Disciplined way to handle evidence combination
 Disadvantages
— Computationally very expensive (lattice size 2*|q))
— Assuming hypotheses are ME and EXH
— How to obtain m(.) for each piece of evidence is not clear,
except subjectively
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Fuzzy setsand fuzzy logic

e Ordinary set theory
1 if xI A
fA(X )_l

O otherwise
A(x) IS called the characteristic or membership function of set A

_11 if xI A
O otherwise

Whenitisuncertainif xI A, useprobability P(xT A)

— There are sets that are described by vague linguistic terms (sets
without hard, clearly defined boundaries), e.g., tall-person, fast-
car

« Continuous

 Subjective (context dependent)
« Hard to define a clear-cut 0/1 membership function

Predicate A(X) =

36



e Fuzzy set theory

—Relax f ,(x) frombinary{0,1} tocontinuous|O,1]
standsfor thedegree x isthought to belong toset A
height(john) = 6’5" Tall(john) = 0.9
height(harry) =5'8"  Tall(harry) =0.5
height(joe) =5 1" Tall(joe) =0.1

— Examples of membership tunctions

1l-

Set of teenagers
0 12 19 g
A
1
\ Set of young people
0 12 19 g

A
1 -
A Set of mid-age

> eople
20 35 50 65 80 Peop
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e Fuzzy logic: many-valuelogic
— Fuzzy predicates (degree of truth) F,(x)=yif f,(X)=Yy
— Connectors/Operators
negation:~F ,(x) =1- F,(X)
conjunction: F,(x) UF, (x) =min{F,(x), F5(X)}
disunction: F, (x) UF, (X) = max{F ,(X),Fg(x)}
o Compare with probability theory
— Prob. Uncertainty of outcome,
» Based on large # of repetitions or instances
» For each experiment (instance), the outcome is either true or false

(without uncertainty or ambiguity)
unsure before it happens but sure after it happens

Fuzzy: vagueness of conceptual/linguistic characteristics
» Unsure even after it happens
whether a child of tall mother and short father is tall
unsure before the child is born
unsure after grown up (height =5'6")
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— Empirical vs subjective (testable vs agreeable)

— Fuzzy set connectors may lead to unreasonable results
» Consider two events A and B with P(A) < P(B)
« IfA=>B (orAl B)then
P(A * B) = P(A) = min{ P(A), P(B)}
P(A v B) = P(B) = max{ P(A), P(B)}
* Not the case in general
P(A * B) = P(A)P(BIA) £ P(A)
P(A v B)=PA)+PB)-PA"B)3 PB)
(equality holdsonly if P(B|A) =1, 1.e.,, A =>B)
— Something prob. theory cannot represent
e Tdal(john) =0.9, ~Tal(john) =0.1
Tall(john) » ~Tall(john) = min{0.1, 0.9) = 0.1
john’ s degree of membership in the fuzzy set of “median-
height people” (both Tall and not-Tall)
e In prob. theory: P(johnT Tall ~johnT Tall) =0
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Uncertainty in rule-based systems

e Elementsin Working Memory (WM) may be uncertain because
— Case input (initial elementsin WM) may be uncertain
Ex: the CD-Drive does not work 70% of the time
— Decision from arule application may be uncertain even if the
rule’ s conditions are met by WM with certainty
Ex: flu => sore throat with high probability
e Combining symbolic rules with numeric uncertainty: Mycin's

Uncertainty Factor (CF)

— An early attempt to incorporate uncertainty into KB systems

—CFI1 [-1, 1]

— Each element in WM s associated with a CF: certainty of that
assertion

— Eachrule C1,...,Cn => Conclusion is associated with a CF:
certainty of the association (between C1,...Cn and Conclusion).
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— CF propagation:
o Within arule: each Ci has CFi, then the certainty of Actionis
min{CF1,...CFn} * CF-of-the-rule
* \WWhen more than one rules can apply to the current WM for the
same Conclusion with different CFs, the largest of these CFs
will be assigned as the CF for Conclusion
o Similar to fuzzy rule for conjunctions and disunctions
— Good things of Mycin’s CF method
e Easy to use
« CF operations are reasonable in many applications
* Probably the only method for uncertainty used in real-world
rule-base systems
— Limitations
* Itisin essence an ad hoc method (it can beviewed as a
probabilistic inference system with some strong, sometimes
unreasonable assumptions)
* May produce counter-intuitive results.
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