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Introduction

• Abduction is a reasoning process that tries to form plausible 
explanations for abnormal observations
– Abduction is distinct different from deduction and induction
– Abduction is inherently uncertain

• Uncertainty becomes an important issue in AI research
• Some major formalisms for representing and reasoning about  

uncertainty
– Mycin’s certainty factor (an early representative)
– Probability theory (esp. Bayesian belief networks)
– Dempster-Shafer theory
– Fuzzy logic
– Truth maintenance systems
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Abduction

• Definition (Encyclopedia Britannica): reasoning that derives 
an explanatory hypothesis from a given set of facts
– The inference result is a hypothesis, which if true, could 

explain the occurrence of the given facts
• Examples

– Dendral, an expert system to construct 3D structure of 
chemical compounds 
• Fact: mass spectrometer data of the compound and its 

chemical formula
• KB: chemistry, esp. strength of different types of bounds
• Reasoning: form a hypothetical 3D structure which meet the 

given chemical formula, and would most likely produce the 
given mass spectrum if subjected to electron beam 
bombardment
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– Medical diagnosis
• Facts: symptoms, lab test results, and other observed findings 

(called manifestations)

• KB: causal associations between diseases and manifestations

• Reasoning: one or more diseases whose presence would 
causally explain the occurrence of the given manifestations

– Many other reasoning processes (e.g., word sense 
disambiguation in natural language process, image 
understanding, detective’s work, etc.) can also been seen as 
abductive reasoning. 
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Comparing abduction, deduction and induction

Deduction: major premise:      All balls in the box are black
minor premise:      These balls are from the box
conclusion:            These balls are black

Abduction: rule:                       All balls in the box are black
observation:           These balls are black
explanation:  These balls are from the box

Induction: case:                     These balls are from the box
observation:           These balls are black
hypothesized rule:  All ball in the box are black

A => B  
A 
---------
B

A => B  
B

-------------
Possibly A

Whenever 
A then B 
but not 
vice versa
-------------
Possibly 
A => BInduction:  from specific cases to general rules

Abduction and deduction: 
both from part of a specific case to other part of
the case using general rules (in different ways)
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Characteristics of abduction reasoning

1. Reasoning results are hypotheses, not theorems (may be 
false even if rules and facts are true), 

– e.g., misdiagnosis in medicine
2. There may be multiple plausible hypotheses

– When given rules A => B and C => B, and fact B
both A and C are plausible hypotheses 

– Abduction is inherently uncertain
– Hypotheses can be ranked by their plausibility if that can be 

determined 
3. Reasoning is often a Hypothesize- and-test cycle

– hypothesize phase: postulate possible hypotheses, each of 
which could explain the given facts (or explain most of the 
important facts)

– test phase: test the plausibility of all or some of these 
hypotheses
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– One way to test a hypothesis H is to query if some thing 
that is currently unknown but can be predicted from H is 
actually true.
• If we also know A => D and C => E, then ask if D and E are 

true.
• If it turns out D is true and E is false, then hypothesis A 

becomes more plausible (support for A increased, support for 
C decreased)

4. Reasoning is non-monotonic 
– Plausibility of hypotheses can increase/decrease as new 

facts are collected (deductive inference determines if a 
sentence is true but would never change its truth value)

– Some hypotheses may be discarded, and new ones may be 
formed when new observations are made
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Source of Uncertainty

• Uncertain data (noise)
• Uncertain knowledge (e.g, causal relations)

– A disorder may cause any and all POSSIBLE manifestations in a 
specific case

– A manifestation can be caused by more than one POSSIBLE 
disorders

• Uncertain reasoning results
– Abduction and induction are inherently uncertain
– Default reasoning, even in deductive fashion, is uncertain
– Incomplete deductive inference may be uncertain
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Probabilistic Inference

• Based on probability theory (especially Bayes’ theorem)
– Well established discipline about uncertain outcomes
– Empirical science like physics/chemistry, can be verified by 

experiments

• Probability theory is too rigid to apply directly in many 
applications
– Some assumptions have to be made to simplify the reality
– Different formalisms have been developed in which some aspects 

of the probability theory are changed/modified.

• We will briefly review the basics of probability theory before 
discussing different approaches to uncertainty

• The presentation uses diagnostic process (an abductive and 
evidential reasoning process) as an example
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Probability of Events

• Sample space and events
– Sample space S: (e.g., all people in an area)
– Events E1 ⊆ S:    (e.g., all people having cough)

E2 ⊆ S:    (e.g., all people having cold)
• Prior (marginal) probabilities of events

– P(E) = |E| / |S|     (frequency interpretation)
– P(E) = 0.1           (subjective probability)
– 0 <= P(E) <= 1 for all events 
– Two special events: ∅ and S: P(∅) = 0 and P(S) = 1.0

• Boolean operators between events (to form compound events)
– Conjunctive (intersection): E1 ^ E2 ( E1 ∩ E2)
– Disjunctive (union): E1 v E2 ( E1 ∪ E2) 
– Negation (complement): ~E (E   = S – E)C
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• Probabilities of compound events
– P(~E) = 1 – P(E)  because P(~E) + P(E) =1
– P(E1 v E2) = P(E1) + P(E2) – P(E1 ^ E2)
– But how to compute the joint probability P(E1 ^ E2)?

• Conditional probability (of E1, given E2)
– How likely E1 occurs in the subspace of E2

E
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• Independence assumption
– Two events E1 and E2 are said to be independent of each other if

(given E2 does not change the likelihood of 
E1)

– It can simplify the computation

• Mutually exclusive (ME) and exhaustive (EXH) set of events
– ME: 

– EXH:

)1()2|1( EPEEP =

)2()1()2()2|1()21( EPEPEPEEPEEP ==∧
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Bayes’ Theorem

• In the setting of diagnostic/evidential reasoning

– Know prior probability of hypothesis

conditional probability 

– Want to compute the posterior probability

• Bayes’ theorem (formula 1):

• If the purpose is to find which of the n hypotheses

is more plausible given    , then we can ignore the denominator 

and  rank them use relative likelihood

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H
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• can be computed from                  and        , if we 
assume all hypotheses                are ME and EXH

• Then we have another version of Bayes’ theorem:

where , the sum of relative likelihood of all 

n hypotheses, is a normalization factor
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Probabilistic Inference for simple diagnostic problems

• Knowledge base:

• Case input: 
• Find the hypothesis     with the highest posterior 

probability

• By Bayes’ theorem

• Assume all pieces of evidence are conditionally 
independent, given any hypothesis
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• The relative likelihood

• The absolute posterior probability

• Evidence accumulation (when new evidence discovered)
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Assessment of Assumptions

• Assumption 1: hypotheses are mutually exclusive and 
exhaustive 
– Single fault assumption (one and only hypothesis must true)
– Multi-faults do exist in individual cases
– Can be viewed as an approximation of situations where 

hypotheses are independent of each other and their prior 
probabilities are very small

• Assumption 2: pieces of evidence are conditionally 
independent of each other, given any hypothesis
– Manifestations themselves are not independent of each other, they 

are correlated by their common causes
– Reasonable under single fault assumption
– Not so when multi-faults are to be considered

small very are )( and )(both  if 0)()()( 212121 HPHPHPHPHHP ≈=∧
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Limitations of the simple Bayesian system

• Cannot handle well hypotheses of multiple disorders
– Suppose                    are independent of each other
– Consider a composite hypothesis
– How to compute the posterior probability (or relative likelihood)

– Using Bayes’ theorem

),...(

)^()^|,...(
),...,|^(

1

21211
121

l

l
l EEP

HHPHHEEP
EEHHP =

? ),...,|^( 121 lEEHHP

tindependen are they because )()()^( 2121 HPHPHHP =

21

211211

^given  t,independen are  assuming     
)^|()^|,...(

HHE
HHEPHHEEP

j

j
l
jl =Π=

?)^|( compute  toHow 21 HHEP j

nHH ,...,1

21^ HH



19

–

but this is a very unreasonable assumption

• Cannot handle causal chaining
– Ex. A: weather of the year

B: cotton production of the year
C: cotton price of next year

– Observed: A influences C
– The influence is not direct (A -> B -> C)

P(C|B, A) = P(C|B): instantiation of B blocks influence of A on C
• Need a better representation and a better assumption

 ),...,|( ),...,|( ),...,|^( 1211121 lll EEHPEEHPEEHHP =

? ),...,given  t,independen are ,..., Assuming 11 ln EEHH

E: earth quake B: burglar

A: alarm set off

E and B are independent
But when A is given, they 
are (adversely) dependent 
because they become 
competitors to explain A

P(B|A, E) <<P(B|A)
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Bayesian Belief Networks (BBN)

• Definition: A BBN = (DAG, CPD) 
– DAG: directed acyclic graph

nodes: random variables of interest (binary or multi-valued)
arcs: direct causal/influential relations between nodes

– CPD: conditional probability distribution at each node 

– For root nodes 
Since roots are not influenced by anyone, they are considered 
independent of each other

• Example BBN

iiii xxP  of nodesparent  all ofset   theis    where)|( ππππ
ix 

)()|( so , iiii xPxP =∅= ππππ

a

b                    c

d                 e

P(A) = 0.001
P(B|A) = 0.3 P(B|~A) = 0.001
P(C|A) = 0.2 P(C|~A) = 0.005
P(D|B,C) = 0.1 P(D|B,~C) = 0.01
P(D|~B,C) = 0.01     P(D|~B,~C) = 0.00001
P(E|C) = 0.4 P(E|~C) = 0.002
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• Independence assumption
–

where q is any set of variables 
(nodes) other than       and its successors

– blocks influence of other nodes on     
and its successors (q influences       only
through variables in      )

– With this assumption, the complete  joint probability distribution of all 
variables in the network can be represented by (recovered from) local 
CPD by chaining these CPD

P(A, B, C, D, E) 
= P(E|A, B, C, D) P(A, B, C, D) by Bayes’ theorem
= P(E|C) P(A, B, C, D) by indep. assumption
= P(E|C) P(D|A, B, C) P(A, B, C) 
= P(E|C) P(D|B, C) P(C|A, B) P(A, B)
= P(E|C) P(D|B, C) P(C|A) P(B|A) P(A)

ix 

)|(),...,( 11 ii
n
in xPxxP ππ=Π=

)|(),|( iiii xPqxP ππππ =

ix iππ ix 

iππ 
q

ix 
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Inference with BBN
• Belief update

–

–
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– Algorithmic approach (Pearl and others)
• Singly connected network, SCN (also known as poly tree) 

there is at most one undirected path between any two nodes
(i.e., the network is a tree if the direction of arcs are ignored)

• The influence of the instantiated variable spreads to the rest of the network 
along the arcs
– The instantiated variable influences 

its predecessors and successors differently
– Computation is linear to the diameter of

the network (the longest undirected path)
• For non-SCN (network with general structure)

– Conditioning: find the the network’s smallest cutset C (a set of nodes 
whose removal will render the network singly connected)
for each instantiation of C, compute the belief update with the SCN 
algorithm

– Combine the results from all possible instantiation of C.
– Computationally expensive (finding the smallest cutset is itself NP-hard, 

and total number of possible instantiations of C is O(2^|C|.)

a

b                    c

d e = E      f
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– Stochastic simulation
• Randomly generate large number of instantiations of ALL 

variables according to CPD
• Only keep those instantiations       which are consistent with 

the values of given instantiated variables
• Updated belief of those un-instantiated variables as their 

frequencies in the pool of recorded 
• The accuracy of the results depend on the size of the pool 

(asymptotically approaches the exact results)

)( n
kI

)( n
kI

)( n
kI
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• MAP problems
–

– This is an optimization problem
– Algorithms developed for exact solutions for different special 

BBN (Peng, Cooper, Pearl) have exponential complexity
– Other techniques for approximate solutions

• Genetic algorithms
• Neural networks
• Simulated annealing
• Mean field theory

))|((max                
 i.e., ,given  , ofion instantiat probablemost   thefind  tois

 problem )( MAP Then the varialbes.
 edinstantiat-un all ofset   the , variablesedinstantiat of

set   the BBN, ain   variablesall ofset   thedenote Let 

VUP
VU

VXU
XVX

u

yprobabilit iaposterior maximum
−=

⊆
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• A special BBN of binary variables (Peng & Reggia, Cooper)
–

– Causation independence: parent nodes influence a child 
independently

• Advantages:
– One-to-one correspondence between causal links and causal 

strengths 
– Easy for humans to understand (acquire and evaluate KB)
– Fewer # of probabilities needed in KB

– Computation is less expensive
• Disadvantage: less expressive (less general)
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Learning  BBN (from case data)

• Need for learning
– Experts’ opinions are often biased, inaccurate, and 

incomplete
– Large databases of cases become available

• What to learn
– Learning CPD when DAG is known (easy)
– Learning DAG (hard)

• Difficulties in learning DAG from case data
– There are too many possible DAG when # of variables is 

large (more than exponential)
n = 3, # of possible DAG = 25
n = 10, # of possible DAG = 4*10^18

– Missing values in database
– Noisy data
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• Approaches
– Early effort: Based on variable dependencies (Pearl)

• Find all pairs of variables that are dependent of each other 
(applying standard statistical method on the database)

• Eliminate (as much as possible) indirect dependencies
• Determine directions of dependencies
• Learning results are often incomplete (learned BBN contains 

indirect dependencies and undirected links)

– Bayesian approach (Cooper)
• Find the most probable DAG, given database DB, i.e.,

max(P(DAG|DB)) or max(P(DAG, DB))
• Based on some assumptions, a formula is developed to 

compute P(DAG, DB) for a given pair of DAG and DB
• A hill-climbing algorithm (K2) is developed to search a 

(sub)optimal DAG
• Extensions to handle some form of missing values
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– Minimum description length (MDL) (Lam)
• Sacrifices accuracy for simpler (less dense) structure

– Case data not always accurate
– Fewer links imply smaller CPD tables and less expensive inference

• L = L1 + L2  where
– L1: the length of the encoding of DAG (smaller for simpler DAG)
– L2: the length of the encoding of the difference between DAG and DB 

(smaller for better match of DAG with DB)
– Smaller L2 implies more accurate (and more complex) DAG, and thus 

larger L1
• Find DAG by heuristic best-first search, that Minimizes L 

– Neural network approach (Neal, Peng)
• For noisy-or BBN
•

network learned in theanother 
 ,in  one :onsdistributi  two theof similarity  themeasures 

network learned  theof vector state :
~

 ;in  case :  database; case :

 where)
~

(ln Maximizing

DL

VDVD

VVPL

r

r

DV r
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∈
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Dempster-Shafer theory
• A variation of Bayes’ theorem to represent ignorance
• Uncertainty and ignorance

– Suppose two events A and B are ME and EXH, given an 
evidence E
A: having cancer B: not having cancer E: smoking

– By Bayes’ theorem: our beliefs on A and B, given E, are measured by 
P(A|E) and P(B|E), and P(A|E) + P(B|E) = 1 

– In reality, 
I may have some belief in A, given E
I may have some belief in B, given E
I may have some belief not committed to either one, 

– The uncommitted belief (ignorance) should not be given to 
either A or B, even though I know one of the two must be true, 
but rather it should be given to “A or B”, denoted {A, B}

– Uncommitted belief may be given to A and B when new 
evidence is discovered
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• Representing ignorance
–

– Ex: θ = {A,B,C}

• Belief function
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– Plausibility (upper bound of belief of a node)

{A,B,C} 0.15

{A,B} 0.1     {A,C} 0.1     {B,C}0.05

{A} 0.1   {B} 0.2   {C}0.3

{} 0
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C
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(known 
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Upper 
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possible)
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• Evidence combination (how to use D-S theory)
– Each piece of evidence has its own m(.) function for the same θ

– Belief based on combined evidence can be computed from
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– Ignorance is reduced 
from m1({A,B}) = 0.3 to m({A,B}) = 0.049)

– Belief interval is narrowed 
A: from [0.2,  0.5] to [0.607,   0.656] 
B: from [0.5,  0.8] to [0.344,   0.393]

• Advantage:
– The only formal theory about ignorance
– Disciplined way to handle evidence combination

• Disadvantages
– Computationally very expensive (lattice size 2^|θ|)
– Assuming hypotheses are ME and EXH
– How to obtain m(.) for each piece of evidence is not clear, 

except subjectively
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Fuzzy sets and fuzzy logic
• Ordinary set theory

–

– There are sets that are described by vague linguistic terms (sets 
without hard, clearly defined boundaries), e.g., tall-person, fast-
car
• Continuous
• Subjective (context dependent)
• Hard to define a clear-cut 0/1 membership function

  
otherwise     0

    if     1
)( Predicate



 ∈

=
Ax

xA

  ) (y probabilit use ,  ifuncertain  isit When AxPAx ∈∈

Axf

Ax
xf

A

A

set  offunction  membershipor  sticcharacteri  thecalled is )(      

  
otherwise     0

    if     1
)(



 ∈

=



37

• Fuzzy set theory
–

height(john) = 6’5” Tall(john) = 0.9
height(harry) = 5’8” Tall(harry) = 0.5
height(joe) = 5’1” Tall(joe) = 0.1

– Examples of membership functions

Ax
xf A

set   tobelong o thought tis  degree for the stands
1] [0, continuous  to1} {0,binary  from )(Relax 

Set of teenagers

0                 12               19

1 -

Set of young people

0                 12               19

1 -

Set of mid-age 
people

20         35       50        65        80

1 -
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• Fuzzy logic: many-value logic
– Fuzzy predicates (degree of truth)
– Connectors/Operators 

• Compare with probability theory
– Prob. Uncertainty of outcome, 

• Based on large # of repetitions or instances
• For each experiment (instance), the outcome is either true or false 

(without uncertainty or ambiguity)
unsure before it happens but sure after it happens

Fuzzy: vagueness of conceptual/linguistic characteristics
• Unsure even after it happens

whether a child of tall mother and short father is tall 
unsure before the child is born
unsure after grown up (height = 5’6”)

y  )( ify  )( == xfxF AA

)}(, )(max{ )( )( :ndisjunctio 
)}(, )(min{ )( )( :nconjunctio

)(1 )( :negation     

xFxFxFxF
xFxFxFxF

xFx~F

BABA

BABA

AA

=∨
=∧

−=
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– Empirical vs subjective (testable vs agreeable)
– Fuzzy set connectors may lead to unreasonable results

• Consider two events A and B with P(A) < P(B)
• If A => B (or A ⊆ B) then

P(A ^ B) = P(A) = min{P(A), P(B)}
P(A v B) = P(B) = max{P(A), P(B)}

• Not the case in general
P(A ^ B) = P(A)P(B|A) ≤ P(A) 
P(A v B) = P(A) + P(B) – P(A ^ B) ≥ P(B) 
(equality holds only if P(B|A) = 1, i.e., A => B)

– Something prob. theory cannot represent
• Tall(john) = 0.9, ~Tall(john) = 0.1

Tall(john) ^ ~Tall(john) = min{0.1, 0.9) = 0.1
john’s degree of membership in the fuzzy set of “median-
height people” (both Tall and not-Tall)

• In prob. theory: P(john ∈ Tall ^ john ∉Tall) = 0
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Uncertainty in rule-based systems

• Elements in Working Memory (WM) may be uncertain because
– Case input (initial elements in WM) may be uncertain

Ex: the CD-Drive does not work 70% of the time
– Decision from a rule application may be uncertain even if the 

rule’s conditions are met by WM with certainty
Ex: flu => sore throat with high probability

• Combining symbolic rules with numeric uncertainty: Mycin’s 
Uncertainty Factor (CF)
– An early attempt to incorporate uncertainty into KB systems
– CF ∈ [-1, 1]
– Each element in WM is associated with a CF: certainty of that 

assertion
– Each rule C1,...,Cn => Conclusion is associated with a CF: 

certainty of the association (between C1,...Cn and Conclusion).
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– CF propagation: 
• Within a rule: each Ci has CFi, then the certainty of Action is

min{CF1,...CFn} * CF-of-the-rule
• When more than one rules can apply to the current WM for the 

same Conclusion with different CFs, the largest of these CFs
will be assigned as the CF for Conclusion

• Similar to fuzzy rule for conjunctions and disjunctions
– Good things of Mycin’s CF method

• Easy to use
• CF operations are reasonable in many applications
• Probably the only method for uncertainty used in real-world 

rule-base systems
– Limitations

• It is in essence an ad hoc method (it can be viewed as a 
probabilistic inference system with some strong, sometimes 
unreasonable assumptions)

• May produce counter-intuitive results.


