
1

Logical Reasoning Logical Reasoning
SystemsSystems
Chapter 10

Some material adopted from notes
by Tim Finin,

Andreas Geyer-Schulz
and Chuck Dyer

2

Introduction

• Real knowledge representation and reasoning systems come
in several major varieties.

• They all based on FOL but departing from it in different ways
• These differ in their intended use, degree of formal semantics,

expressive power, practical considerations, features,
limitations, etc.

• Some major families of reasoning systems are
– Theorem provers
– Logic programming languages
– Rule-based or production systems
– Semantic networks
– Frame-based representation languages
– Databases (deductive, relational, object-oriented, etc.)
– Constraint reasoning systems
– Truth maintenance systems
– Description logics

3

Production Systems (forward-chaining)

• The notion of a “production system” was invented in 1943
by Post to describe re-write rules for symbol strings

• Used as the basis for many rule-based expert systems

• Most widely used KB formulation in practice

• A production is a rule of the form:

C1, C2, … Cn => A1 A2 …Am

Left hand side (LHS)
Conditions/antecedents

Right hand side (RHS)
Conclusion/consequence

Condition which must
hold before the rule
can be applied

Actions to be performed
or conclusions to be drawn

when the rule is applied

4

Three Basic Components of PS

• Rule Base
– Unordered set of user-defined "if-then" rules.
– Form of rules: if P1 ^ ... ^ Pm then A1, ..., An
– the Pis are conditions (often facts) that determine when

rule is applicable.
– Actions can add or delete facts from the Working

Memory.
– Example rule (in CLIPS format)

(defrule determine-gas-level
(working-state engine does-not-start)
(rotation-state engine rotates)
(maintenance-state engine recent)
=> (assert (repair "Add gas.")))

5

• Working Memory (WM) -- A set of "facts“, represented as
literals, defining what's known to be true about the world

– Often in the form of “flat tuples” (similar to predicates),
e.g., (age Fred 45)

– WM initially contains case specific data (not those facts
that are always true in the world)

– Inference may add/delete fact from WM

– WM will be cleared when a case is finished

• Inference Engine -- Procedure for inferring changes
(additions and deletions) to Working Memory.

– Can be both forward and backward chaining

– Usually a cycle of three phases: match, conflict
resolution, and action, (in that order)

6

Basic Inference Procedure

While changes are made to Working Memory do:
• Match the current WM with the rule-base

– Construct the Conflict Set -- the set of all possible (rule, facts)
pairs where rule is from the rule-base, facts from WM that
unify with the conditional part (i.e., LHS) of the rule.

• Conflict Resolution: Instead of trying all applicable rules
in the Conflict set, select one from the Conflict Set for
execution. (depth-first)

• Act/fire: Execute the actions associated with the
conclusion part of the selected rule, after making variable
substitutions determined by unification during match phase

• Stop when conflict resolution fails to returns any (rule,
facts) pair

7

Conflict Resolution Strategies

• Refraction
– A rule can only be used once with the same set of facts in WM. This

strategy prevents firing a single rule with the same facts over and
over again (avoiding loops)

• Recency
– Use rules that match the facts that were added most recently to WM,

providing a kind of "focus of attention" strategy.

• Specificity
– Use the most specific rule,
– If one rule's LHS is a superset of the LHS of a second rule, then the

first one is more specific
– If one rule's LHS implies the LHS of a second rule, then the first one

is more specific

• Explicit priorities
– E.g., select rules by their pre-defined order/priority

• Precedence of strategies

8

• Example
– R1: P(x) => Q(x); R2: Q(y) => S(y); WM = {P(a), P(b)}

conflict set: {(R1, P(a)), (R1, P(b))}

by rule order: apply R1 on P(a); WM = {Q(a), P(a), P(b)}

conflict set: {(R2, Q(a)), (R1, P(a)), (R1, P(b))}

by recency: apply R2 on Q(a) WM = {S(a), Q(a), P(a), P(b)}

conflict set: {(R2, Q(a)), (R1, P(a)), (R1, P(b))}

by refraction, apply R1 on P(b): WM = {Q(b), S(a), Q(a), P(a), P(b)}

conflict set: {(R2, Q(b)), (R2, Q(a)), (R1, P(a)), (R1, P(b))}

by recency, apply R2 on P(b): WM = {S(b), Q(b), S(a), Q(a), P(a), P(b)}

– Specificity

R1: bird(x) => fly(x) WM={bird(tweedy), penguin(tweedy)}

R2: penguin(z) => bird(z)

R3: penguin(y) => ~fly(y)

R3 is more specific than R1 because according to R2, penguin(x) implies
bird(x)

9

Default Reasoning
• Reasoning that draws a plausible inference on the basis of less than

conclusive evidence in the absence of information to the contrary
– If WM = {bird(tweedy)}, then by default, we can conclude that

fly(tweedy)

– When also know that penguin(tweedy), then we should change the
conclusion to ~fly(tweedy)

– Bird(x) => fly(x) is a default rule (true in general, in most cases, almost)

– Default reasoning is thus non-monotonic

– Formal study of default reasons: default logic (Reiter), nonmonotonic
logic (McDermott), circumscription (McCarthy)

one conclusion: default reasoning is totally undecidable

– Production system can handle simple default reasoning

• By specificity: default rules are less specific

• By rule priority: put default rules at the bottom of the rule base

• Retract default conclusion (e.g., fly(tweedy)) is complicated

10

Other Issues

• PS can work in backward chaining mode
– Match RHS with the goal statement to generate subgoals
– Mycin: an expert system for diagnosing blood infectious diseases

• Expert system sell
– A rule-based system with empty rule base
– Contains data structure, inference procedures, AND user interface to

help encode domain knowledge
– Emycin (backward chaining) from Stanford U
– OPP5 (forward chaining) from CMU and its descendents CLIPS,

Jess.

• Metarules
– Rules about rules
– Specify under what conditions a set of rules can or cannot apply
– For large, complex PS

• Consistency check of the rule-base is crucial (as in FOL)
• Uncertainty in PS (to be discussed later)

11

Comparing PS and FOL
• Advantages

– Simplicity (both KR language and inference),
– Inference more efficient
– Modularity of knowledge (rules are considered, to a degree,

independent of each other), easy to maintain and update
– Similar to the way humans express their knowledge in many domains
– Can handle simple default reasoning

• Disadvantages
– No clearly defined semantics (may derive incorrect conclusions)
– Inference is not complete (mainly due to the depth-first procedure)
– Inference is sensitive to rule order, which may have unpredictable side

effects
– Less expressive (may not be suitable to some applications)

• No explicit structure among pieces of knowledge in BOTH
FOL (a un-ordered set of clauses) and PS (a list of rules)

12

Semantic Networks

• Structured representations (semantic networks and frame
systems)
– Put structures into KB (capture the interrelations between pieces of

knowledge
– Center around object/classes
– More for what it is than what to do

• History of semantics networks (Quillian, 1968)
– To represent semantics of natural language words by dictionary-like

definitions in a graphic form
– Defining the meaning of a word in terms of its relations with other

words
– Semantic networks were very popular in the 60’s and 70’s and

enjoy a much more limited use today.
– The graphical depiction associated with a semantic network is a

big reason for their popularity.

13

– Nodes for words

– Directed links for relations/associations between words

– Each link has its own meaning

– You know the meaning (semantics) of a word if you know the
meaning of all nodes that are used to define the word and the
meaning of the associated links

– Otherwise, follow the links to the definitions of related words

airplane

machine

move cargo move people pilot

fly

is a
can do

operated byused forused for

Boeing 747

is a

pilot

14

Semantic Networks

• A semantic (or associative) network is a simple
representation scheme which uses a graph of labeled nodes
and labeled, directed arcs to encode knowledge.
– Labeled nodes: objects/classes/concepts.
– Labeled links: relations/associations between nodes
– Labels define the semantics of nodes and links
– Large # of node labels (there are many distinct objects/classes)

Small # of link labels (types of associations can be merged into a few)
buy, sale, give, steal, confiscation, etc., can all be represented as a
single relation of “transfer ownership” between recipient and donor

– Usually used to represent static, taxonomic, concept dictionaries

• Semantic networks are typically used with a special set of
accessing procedures which perform “reasoning”
– e.g., inheritance of values and relationships

• often much less expressive than other KR formalisms

15

Nodes and Arcs

• Nodes denote objects/classes

• arcs define binary relationships between objects.

john 5Sue

age

mother

mother(john,sue)
age(john,5)
wife(sue,max)
age(sue,34)
...

34

age

father

Max

wifehusband

age

16

Reification

• Non-binary relationships can be represented by “turning the
relationship into an object”

• This is an example of what logicians call “reification”
– reify v : consider an abstract concept to be real

• We might want to represent the generic “give” event as a
relation involving three things: a giver, a recipient and an
object, give(john, mary, book32)

give

mary book32

john

recipient

giver

object

17

Inference by association

• Red (a robin) is related to Air Force One by association (as directed
path originated from these two nodes join at nodes Wings and Fly)

• Bob and Bill are not related (no paths originated from them join in
this network

Wings

isa

isa

isa

Boeing 747

Airplane

Machine

Air Force one

Fly
can-do

has-partisa

isa

isaisa

Robin

Bird

Animal

RedRusty

Has-part

can-do

owner

Bob Bill
passenger

18

Inferring Associations

• Marker passing
– Each node has an unique marker
– When a node is activated (from outside), it sends copies of its

marker to all of its neighbors (following its outgoing links)
– Any nodes receiving a marker sends copies of that marker to its

neighbors
– If two different markers arrive at the same node, then it is

concluded that the owners of the two markers are associated

• Spreading activation
– Instead of passing labeled markers, a node sends labeled activations

(a numerical value), divided among its neighbors by some
weighting scheme

– A node usually consumes some amount of activation it receives
before passing it to others

– The amount of activation received by a node is a measure of the
strength of its association with the originator of that activation

– The spreading activation process will die out after certain radius

19

ISA hierarchy

• The ISA (is a) or AKO (a
kind of) relation is often
used to link a class and its
superclass.

• And sometimes an instance
and it’s class.

• Some links (e.g. has-part)
are inherited along ISA
paths.

• The semantics of a semantic
net can be relatively
informal or very formal
– often defined at the

implementation level

isa

isa

isaisa

Robin

Bird

Animal

RedRusty

hasPart

Wings

20

Individuals and Classes

• Many semantic
networks distinguish
– nodes representing

individuals and those
representing classes

– the “subclass” relation
from the “instance-of”
relation

subclass

subclass

instanceinstance

Robin

Bird

Animal

RedRusty

hasPart

Wing

instance

Genus

21

Inference by Inheritance

• One of the main types of reasoning done in a semantic
net is the inheritance of values (properties) along the
subclass and instance links.

• Semantic Networks differ in how they handle the case
of inheriting multiple different values.
– All possible properties are inherited

– Only the “lowest” value or values are inherited

22

Multiple inheritance

• A node can have any number of superclasses that contain it,
enabling a node to inherit properties from multiple "parent"
nodes and their ancestors in the network.

• Conflict or inconsistent properties can be inherited from
different ancestors

• Rules are used to determine inheritance in such "tangled"
networks where multiple inheritance is allowed:
– if X ⊆ A ⊆ B and both A and B have property P (possibly

with different variable instantiations), then X inherits A’s
property P instance (closer ancestors override far away ones).

– If X ⊆ A and X ⊆ B but neither A ⊆ B nor B ⊆ A and both A
and B have property P with different and inconsistent values,
then X will not inherit property P at all; or X will present both
instances of P (from A and B) to the user

23

Nixon Diamond

• This was the classic example circa 1980.

Person

Republican

Nexon

Quaker

instanceinstance

subclasssubclass

FALSEpacifist
TRUE pacifist

24

Exceptions in ISA hierarchy

• Properties of a class are often default in nature (there are
exceptions to these associations for some subclasses/instances)

• Closer ancestors (more
specific) overriding far
way ones (more general)

• Use explicit inhibition
links to prevent inheriting
some properties

isa

isa
Bob

Human

Mammal

isa

isa
Tweedy

penguin

bird

2
has-legs

4
has-legs

Fly
can-do

Inhibition link

25

From Semantic Nets to Frames

• Semantic networks morphed into Frame Representation
Languages in the 70’s and 80’s.

• A Frame is a lot like the notion of an object in OOP, but has
more meta-data.

• A frame represents a stereotypical/expected/default view
of an object

• Frame system can be viewed as adding additional structure
into semantic network, a frame includes the object node and
all other nodes which directly related to that object,
organized in a record like structure

• A frame has a set of slots, each represents a relation to
another frame (or value).

• A slot has one or more facets, each represents some aspect
of the relation

26

Facets
• A slot in a frame holds more than a value.

• Other facets might include:
– current fillers (e.g., values)

– default fillers

– minimum and maximum number of fillers

– type restriction on fillers (usually expressed as another frame
object)

– attached procedures (if-needed, if-added, if-removed)

– salience measure

– attached constraints or axioms

– pointer or name of another frame

28

Other issues

• Procedural attachment
– In early time, AI community was against procedural approach

and stress declarative KR

– Procedures came back to KB systems when frame systems were
developed, and later also adopted by some production systems
(action can be a call to a procedure)

– It is not called by a central control, but triggered by activities in
the frame system

– When an attached procedure can be triggered

if-added: when a new value is added to one of the slot in the frame

if-needed: when the value of this slot is needed

if-updated: when value(s) that are parameters of this procedure is

changed

29

• Example: a real estate frame system
– Slots in a real estate property frame

location
area
price

– A facet in “price” slot is a procedure that finds the unit price (by
location) and computes the prince value as the product of the
unit price and the area

– If the procedure is the type of if-needed, it then will be triggered
by a request for the price from other frame (i.e., transaction
frame)

– If it is the type of if-updated, it then will be triggered by any
change in either location or area

– If it is the type of if-added, it then will be triggered by the first
time when both location and area values are added into this
frame

30

• Description logic
– There is a family of Frame-like KR systems with a formal

semantics.

• E.g., KL-ONE, LOOM, Classic, …

– An additional kind of inference done by these systems is
automatic classification

• finding the right place in a hierarchy of objects for a new
description

– Current systems take care to keep the language simple, so that
all inference can be done in polynomial time (in the number of
objects)

• ensuring tractability of inference

31

• Objects with multiple perspectives
– An object or a class may be associated with different sets of

properties when viewed from different perspectives.
– A passenger in an airline reservation system can be viewed as

• a traveler, whose frame should include slots such as the
date of the travel,
departure/arrive airport;
departure/arrive time, ect.

• A customer, whose frame should include slots such as
fare amount
credit card number and expiration date
frequent flier’s id, etc.

– Both traveler frame and customer frame should be children of
the passenger frame, which has slots for properties not specific
to each perspective. They may include name, age, address,
phone number, etc. of that person

