
1

Inference in Inference in
First Order LogicFirst Order Logic

Chapter 9
Some material adopted from notes

by Tim Finin,
Andreas Geyer-Schulz,

and Chuck Dyer

2

Inference Rules for FOL

• Inference rules for PL apply to FOL as well (Modus
Ponens, And-Introduction, And-Elimination, etc.)

• New (sound) inference rules for use with quantifiers:
– Universal Elimination

– Existential Introduction

– Existential Elimination

– Generalized Modus Ponens (GMP)

• Resolution
– Clause form (CNF in FOL)

– Unification (consistent variable substitution)

– Refutation resolution (proof by contradiction)

3

Universal Elimination (∀∀x) P(x) |-- P(c).
• If (∀x) P(x) is true, then P(c) is true for any constant c in the

domain of x, i.e.,, (∀x) P(x) |= P(c).
• Replace all occurrences of x in the scope of ∀x by the same ground

term (a constant or a ground function).
• Example: (∀x) eats(Ziggy, x) |-- eats(Ziggy, IceCream)

Existential Introduction P(c) |-- (∃∃x) P(x)
• If P(c) is true, so is (∃∃x) P(x), i.e., P(c) |= (∃∃x) P(x)
• Replace all instances of the given constant symbol by the same new

variable symbol.
• Example eats(Ziggy, IceCream) |-- (∃∃x) eats(Ziggy, x)

Existential Elimination
• From (∃∃x) P(x) infer P(c), i.e., (∃∃x) P(x) |= P(c), where c is a new

constant symbol,

– All we know is there must be some constant that makes this true, so
we can introduce a brand new one to stand in for that constant, even
though we don’t know exactly what that constant refer to.

– Example: (∃∃x) eats(Ziggy, x) |= eats(Ziggy, Stuff)

4

• Things become more complicated when there are universal quantifiers

(∀x)(∃∃y) eats(x, y) |= (∀x)eats(x, Stuff) ???

(∀x)(∃∃y) eats(x, y) |= eats(Ziggy, Stuff) ???

– Introduce a new function food_sk(x) to stand for ∃∃y because that y
depends on x

(∀x)(∃∃y) eats(x, y) |-- (∀x)eats(x, food_sk(x))

(∀x)(∃∃y) eats(x, y) |-- eats(Ziggy, food_sk(Ziggy))

– What exactly the function food_sk(.) does is unknown, except that it
takes x as its argument

• The process of existential elimination is called “Skolemization”, and the
new, unique constants (e.g., Stuff) and functions (e.g., food_sk(.)) are
called skolem constants and skolem functions

5

Generalized Modus Ponens (GMP)
• Combines And-Introduction, Universal-Elimination, and Modus

Ponens

• Ex: P(c), Q(c), (∀x)(P(x) ^ Q(x)) => R(x) |-- R(c)

P(c), Q(c) |-- P(c) ^ Q(c) (by and-introduction)

(∀x)(P(x) ^ Q(x)) => R(x)

|-- (P(c) ^ Q(c)) => R(c) (by universal-elimination)

P(c) ^ Q(c), (P(c) ^ Q(c)) => R(c) |-- R(c) (by modus ponens)

• All occurrences of a quantified variable must be instantiated to the
same constant.
P(a), Q(c), (∀x)(P(x) ^ Q(x)) => R(x) |-- R(c)

because all occurrences of x must either instantiated to a or c which
makes the modus ponens rule not applicable.

6

Resolution for FOL
• Resolution rule operates on two clauses

– A clause is a disjunction of literals (without explicit quantifiers)

– Relationship between clauses in KB is conjunction

• Resolution Rule for FOL:
– clause C1: (l_1, l_2, ... l_i, ... l_n) and

clause C2: (l’_1, l’_2, ... l’_j, ... l’_m)

– if l_i and l’_j are two opposite literals (e.g., P and ~P) and their
argument lists can be be made the same (unified) by a set of variable
bindings θ = {x1/y1, ... Xk/yk} where x1, ... Xk are variables and y1,
... Yk are terms, then derive a new clause (called resolvent)

subst((l_1, l_2, ... l_n, l’_1, l’_2, ... l’_m), θ)
where function subst(expression, θ) returns a new expression by
applying all variable bindings in θ to the original expression

7

We need answers to the following questions

• How to convert FOL sentences to clause form (especially how
to remove quantifiers)

• How to unify two argument lists, i.e., how to find their most
general unifier (mgu) θ

• How to determine which two clauses in KB should be resolved
next (among all resolvable pairs of clauses) and how to
determine a proof is completed

8

Converting FOL sentences to clause form

• Clauses are quantifier free CNF of FOL sentences

• Basic ideas

– How to handle quantifiers
• Careful on quantifiers with preceding negations (explicit or

implicit)

~∀x P(x) is really ∃∃x ~P(x)

(∀x P(x)) => (∀y Q(y)) ~(∀x P(x)) v (∀y Q(y))

∃∃x ~P(x) v ∀y Q(y)

• Eliminate true existential quantifier by Skolemization

• For true universally quantified variables, treat them as such
without quantifiers

– How to convert to CNF (similar to PL but need to work with
quantifiers)

≡
≡

9

Conversion procedure

step 1: remove all “=>” and “<=>” operators

(using P => Q ~P v Q and P <=> Q P => Q ^ Q => P)

step 2: move all negation signs to individual predicates

(using de Morgan’s law)
step 3: remove all existential quantifiers ∃∃y

case 1: y is not in the scope of any universally quantified variable,
then replace all occurrences of y by a skolem constant

case 2: if y is in scope of universally quantified variables x1, ... xi,
then replace all occurrences of y by a skolem function

step 4: remove all universal quantifiers ∀x (with the understanding that
all remaining variables are universally quantified)

step 5: convert the sentence into CNF (using distribution law, etc)
step 6: use parenthesis to separate all disjunctions, then drop all v’s and

^’s

≡ ≡

10

Conversion examples

∀∀x (P(x) ^ Q(x) => R(x)) ∃∃y rose(y) ^ yellow(y)
∀x ~(P(x) ^ Q(x)) v R(x) (by step 1) rose(c) ^ yellow(c)

∀x ~P(x) v ~Q(x) v R(x) (by step 2) (where c is a skolem constant)

~P(x) v ~Q(x) v R(x) (by step 4) (rose(c)), (yellow(c))
(~P(x), ~Q(x), R(x)) (by step 6)

∀∀x [person(x) => ∃∃y (person(y) ^ father(y, x))]
∀x [~person(x) v ∃y (person(y) ^ father(y, x))] (by step 1)

∀x [~person(x) v (person(f_sk(x)) ^ father(f_sk(x), x))] (by step 3)

~person(x) v (person(f_sk(x)) ^ father(f_sk(x), x)) (by step 4)

(~person(x) v person(f_sk(x)) ^ (~person(x) v father(f_sk(x), x)) (by step 5)

(~person(x), person(f_sk(x)), (~person(x), father(f_sk(x), x)) (by step 6)

(where f_sk(.) is a skolem function)

11

Unification of two clauses

• Basic idea: ∀∀x P(x) => Q(x), P(a) |-- Q(a)
(~P(x), Q(x)), (P(a))

{x/a} a substitution in which variable x is bound to a
Q(a)

– The goal is to find a set of variable bindings so that the
argument lists of two opposite literals (in two clauses) can be
made the same.

– Only variables can be bound to other things.
• a and b cannot be unified (different constants in general refer to

different objects)
• a and f(x) cannot be unified (unless the inverse function of f is

known, which is not the case for general functions in FOL)
• f(x) and g(y) cannot be unified (function symbols f and g in

general refer to different functions and their exact definitions are
different in different interpretations)

12

– Cannot bind variable x to y if x appears anywhere in y
• Try to unify x and f(x). If we bind x to f(x) and apply the binding

to both x and f(x), we get f(x) and f(f(x)) which are still not the
same (and will never be made the same no matter how many times
the binding is applied)

– Otherwise, bind variable x to y, written as x/y (this
guarantees to find the most general unifier, or mgu)
• Suppose both x and y are variables, then they can be made the

same by binding both of them to any constant c or any function f(.).
Such bindings are less general and impose unnecessary restriction
on x and y.

– To unify two terms of the same function symbol, unify
their argument lists (unification is recursive)
Ex: to unify f(x) and f(g(b)), we need to unify x and g(b)

13

– When the argument lists contain multiple terms, unify each
pair of terms

Ex. To unify (x, f(x), ...) (a, y, ...)
1. unify x and a (θ = {x/a})

2. apply θ to the remaining terms in both lists, resulting

(f(a), ...) and (y, ...)

1. unify f(a) and y with binding y/f(a)

2. apply the new binding y/f(a) to θ
3. add y/f(a) to new θ

14

Unification Examples
• parents(x, father(x), mother(Bill)) and parents(Bill, father(Bill), y)

– unify x and Bill: θ = {x/Bill}

– unify father(Bill) and father(Bill): θ = {x/Bill}

– unify mother(Bill) and y: θ = {x/Bill}, /mother(Bill)}

• parents(x, father(x), mother(Bill)) and parents(Bill, father(y), z)
– unify x and Bill: θ = {x/Bill}

– unify father(Bill) and father(y): θ = {x/Bill, y/Bill}

– unify mother(Bill) and z: θ = {x/Bill, y/Bill, z/mother(Bill)}

• parents(x, father(x), mother(Jane)) and parents(Bill, father(y), mother(y))
– unify x and Bill: θ = {x/Bill}

– unify father(Bill) and father(y): θ = {x/Bill, y/Bill}

– unify mother(Jane) and mother(Bill): Failure because Jane and Bill are
different constants

15

More Unification Examples

• P(x, g(x), h(b)) and P(f(u, a), v, u))
– unify x and f(u, a): θ = {x/ f(u, a)};

remaining lists: (g(f(u, a)), h(b)) and (v, u)

– unify g(f(u, a)) and v: θ = {x/f(u, a), v/g(f(u, a))};

remaining lists: (h(b)) and (u)

– unify h(b) and u: θ = {x/f(h(b), a), v/g(f(h(b), a)), u/h(b)};

• P(f(x, a), g(x, b)) and P(y, g(y, b))
– unify f(x, a) and y: θ = {y/f(x, a)}

remaining lists: (g(x, b)) and (g(f(x, a), b))

– unify x and f(x, a): failure because x is in f(x, a)

16

Unification Algorithm (pp. 302-303, Chapter 10)

procedure unify(p, q, θ) /* p and q are two lists of terms and |p| = |q| */
if p = empty then return θ; /* success */
let r = first(p) and s = first(q);
if r = s then return unify(rest(p), rest(q), θ);
if r is a variable then temp = unify-var(r, s);
else if s is a variable then temp = unify-var(s, r);

else if both r and s are functions of the same function name then
temp = unify(arglist(r), arglist(s), empty);
else return “failure”;

if temp = “failure” then return “failure”; /* p and q are not unifiable */
else θ = subst(θ, temp) temp; /* apply tmp to old θ then insert it into θ */

return unify(subst(rest(p), tmp), subst(rest(q), tmp), θ);
end{unify}
procedure unify-var(x, y)

if x appears anywhere in y then return “failure”;
else return (x/y)

end{unify-var}

U

17

Resolution in FOL

• Convert all sentences in KB (axioms, definitions, and known facts)
and the goal sentence (the theorem to be proved) to clause form

• Two clauses C1 and C2 can be resolved if and only if r in C1 and s
in C2 are two opposite literals, and their argument list arglist_r and
arglist_s are unifiable with mgu = θ.

• Then derive the resolvent sentence: subst((C1 – {r}, C2 – {s}), θ)

(substitution is applied to all literals in C1 and C2, but not to any
other clauses)

• Example
(P(x, f(a)), P(x, f(y)), Q(y)) (~P(z, f(a)), ~Q(z))

θ = {x/z}

(P(z, f(y)), Q(y), ~Q(z))

18

Resolution example
• Prove that
∀w P(w) => Q(w), ∀y Q(y) => S(y), ∀z R(z) => S(z), ∀x P(x) v R(x) |= ∃u S(u)

• Convert these sentences to clauses (∃u S(u) skolemized to S(a))

• Apply resolution

(~P(w), Q(w)) (~Q(y), S(y)) (~R(z), S(z)) (P(x), R(x))

(~P(y), S(y)) {w/y}

(S(x), R(x)) {y/x}

(S(a)) {x/a, z/a}

• Problems
– The theorem S(a) does not actively participate in the proof

– Hard to determine if a proof (with consistent variable bindings) is
completed if the theorem consists of more than one clause

a resolution
proof tree

19

Resolution Refutation: a better proof strategy

• Given a consistent set of axioms KB and goal sentence Q, show
that KB |= Q.

• Proof by contradiction: Add ~Q to KB and try to prove false.
because (KB |= Q) <=> (KB ^ ~Q |= False, or KB ^ ~Q is inconsistent)

• How to represent “false” in clause form
– P(x) ^ ~P(y) is inconsistent

– Convert them to clause form then apply resolution

(P(x)) (~P(y))

{x/y}

() a null clause

– A null clause represents false (inconsistence/contradiction)

– KB |= Q if we can derive a null clause from KB ^ ~Q by resolution

20

• Prove by resolution refutation that
∀w P(w) => Q(w), ∀y Q(y) => S(y), ∀z R(z) => S(z), ∀x P(x) v R(x) |= ∃u S(u)
• Convert these sentences to clauses (~ ∃u S(u) becomes ~S(u))

(~P(w), Q(w)) (~Q(y), S(y)) (~R(z), S(z)) (P(x), R(x)) (~S(u))

(~R(z)) {u/z}

(~Q(y)) {u/y}

(~P(w)) {y/w} (P(x)) {z/x}

() {x/w}

21

Refutation Resolution Procedure

procedure resolution(KB, Q)

/* KB is a set of consistent, true FOL sentences, Q is a goal sentence.

It returns success if KB |-- Q, and failure otherwise */

KB = clause(union(KB, {~Q})) /* convert KB and ~Q to clause form */

while null clause is not in KB do
pick 2 sentences, S1 and S2, in KB that contain a pair of opposite

literals whose argument lists are unifiable

if none can be found then return "failure"

resolvent = resolution-rule(S1, S2)

KB = union(KB, {resolvent})

return "success "

end{resolution}

22

Control Strategies
• At any given time, there are multiple pairs of clauses that are resolvable.

Therefore, we need a systematic way to select one such pair at each step
of proof
– May lead to a null clause

– Without losing potentially good threads (of inference)

• There are a number of general (domain independent) strategies that are
useful in controlling a resolution theorem prover.

• We’ll briefly look at the following

– Breadth first

– Set of support

– Unit resolution

– Input Resolution

– Ordered resolution

– Subsumption

23

Breadth first
• Level 0 clauses are those from the original KB and the negation of the

goal.

• Level k clauses are the resolvents computed from two clauses, one of
which must be from level k-1 and the other from any earlier level.

• Compute all level 1 clauses possible, then all possible level 2 clauses,
etc.

• Complete, but very inefficient.

Set of Support
• At least one parent clause must be from the negation of the goal or one

of the "descendents" of such a goal clause (i.e., derived from a goal
clause).

• Complete (assuming all possible set-of-support clauses are derived)

• Gives a goal directed character to the search

24

Unit Resolution
• At least one parent clause must be a "unit clause," i.e., a

clause containing a single literal.
• Not complete in general, but complete for Horn clause KBs

Input Resolution
• At least one parent from the set of original clauses (from the

axioms and the negation of the goal)
• Not complete in general, but complete for Horn clause KBs

Linear Resolution
• Is an extension of Input Resolution
• use P and Q if P is in its initial KB (and query) or P is an

ancestor of Q.
• Complete.

25

Ordered Resolution
• Do them in order (Left to right)

• This is how Prolog operates

• Do the first element in the sentence first.

• This forces the user to define what is important in generating the
"code."

• The way the sentences are written controls the resolution.

Subsumption
• Eliminate all clauses that are subsumed (more specific than) by an

existing clause to keep the KB small.

• Like factoring, this is just removing things that merely clutter up the
space and will not affect the final result.

• I.e. if P(x) is already in the KB, adding P(A) makes no sense -- P(x) is a
superset of P(A).

• Likewise adding P(A) v Q(B) would add nothing to the KB either.

26

Example of Automatic Theorem Proof:
Did Curiosity kill the cat

• Jack owns a dog. Every dog owner is an animal lover. No
animal lover kills an animal. Either Jack or Curiosity killed
the cat, who is named Tuna. Did Curiosity kill the cat?

• These can be represented as follows:
A. (∃x) Dog(x) ^ Owns(Jack,x)

B. (∀x) ((∃y) Dog(y) ^ Owns(x, y)) => AnimalLover(x)

C. (∀x) AnimalLover(x) => (∀y) Animal(y) => ~Kills(x,y)

D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. (∀x) Cat(x) => Animal(x)
Q. Kills(Curiosity, Tuna)

27

• Convert to clause form
A1. (Dog(D)) /* D is a skolem constant */

A2. (Owns(Jack,D))

B. (~Dog(y), ~Owns(x, y), AnimalLover(x))

C. (~AnimalLover(x), ~Animal(y), ~Kills(x,y))

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

E. Cat(Tuna)

F. (~Cat(x), Animal(x))

• Add the negation of query:
Q: (~Kills(Curiosity, Tuna))

28

• The resolution refutation proof
R1: Q, D, {}, (Kills(Jack, Tuna))

R2: R1, C, {x/Jack, y/Tuna}, (~AnimalLover(Jack), ~Animal(Tuna))

R3: R2, B, {x/Jack}, (~Dog(y), ~Owns(Jack, y), ~Animal(Tuna))

R4: R3, A1, {y/D}, (~Owns(Jack, D), ~Animal(Tuna))

R5: R4, A2, {}, (~Animal(Tuna))

R6: R5, F, {x/Tuna}, (~Cat(Tuna))

R7: R6, E, {} ()

29

Horn Clauses

• A Horn clause is a clause with at most one positive literal:

(~P1(x), ~P2(x), ..., ~Pn(x) v Q(x)), equivalent to

∀x P1(x) ^ P2(x) ... ^ Pn(x) => Q(x) or

Q(x) <= P1(x), P2(x), ... , Pn(x) (in prolog format)

– if contains no negated literals (i.e., Q(a) <=): facts

– if contains no positive literals (<= P1(x), P2(x), ... , Pn(x)): query

– if contain no literal at all (<=): null clause

• Most knowledge can be represented by Horn clauses

• Easier to understand (keeps the implication form)

• Easier to process than FOL

• Horn clauses represent a subset of the set of sentences representable
in FOL (e.g., it cannot represent uncertain conclusions, e.g.,

Q(x) v R(x) <= P(x)).

30

Logic Programming

• Resolution with Horn clause is like a function all:

Q(x) <= P1(x), P2(x), ... , Pn(x)

Function
name

Function
body

Q(x) <= P1(x), P2(x), ... , Pn(x) <= Q(a)

θ
<= P1(a), P2(a), ... , Pn(a)

To solve Q(a), we solve P1(a), P2(a), ... , and Pn(a). This is called
problem reduction (P1(a), ... Pn(a) are subgoals).

We then continue to call functions to solve P1(a), ..., by resolving

<= P1(a), P2(a), ... , Pn(a) with clauses P(y) <= R1(y), ... Rm(y), etc.

Unification is like
parameter passing

31

Example of Logic Programming
Computing factorials

A1: fact(0, 1) <= /* base case: 0! = 1 */

A2: fact(x, x*y) <= fact(x-1, y) /* recursion: x! = x*(x-1)! */

<= fact(3, z) A2

{x/3, z/3*y}

<= fact(2, y) A2 (x and y renamed to x1 and y1)

{x1/2, y/2*y1}

<= fact(1, y1) A2 (x and y renamed to x2 and y2)

{x2/1, y1/1*y2}

<= fact(0, y2) A1

{y2/1}

()

Extract answer from the variable bindings:

z = 3*y = 3*2*y1 = 3*2*1*y2 = 3*2*1*1 = 6

32

Prolog

• A logic programming language based on Horn clauses
– Resolution refutation

– Control strategy: goal directed and depth-first

• always start from the goal clause,

• always use the new resolvant as one of the parent clauses for resolution

• backtracking when the current thread fails

• complete for Horn clause KB

– Support answer extraction (can request single or all answers)

– Orders the clauses and literals with a clause to resolve non-determinism
• Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)

• A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

– Use “closed world” assumption (negation as failure)
• If it fails to derive P(a), then assume ~P(a)

33

Other issues
• FOL is semi-decidable

– We want to answer the question if KB |= S

– If actually KB |= S (or KB |= ~S), then a complete proof procedure will
terminate with a positive (or negative) answer within finite steps of
inference

– If neither S nor ~S logically follows KB, then there is no proof procedure
will terminate within finite steps of inference for arbitrary KB and S.

– The semi-decidability is caused by
• infinite domain and incomplete axiom set (knowledge base)

• Ex: KB contains only one clause fact(x, x*y) <= fact(x-1, y). To prove fact(3, z)
will run forever

– By Godel's Incomplete Theorem, no logical system can be complete (e.g.,
no matter how many pieces of knowledge you include in KB, there is
always a legal sentence S such that neither S nor ~S logically follow KB).

– Closed world assumption is a practical way to circumvent this problem, but
it make the logical system non-monotonic, therefore non-FOL

34

• Forward chaning
– Proof starts with the new fact P(a) <=, (often case specific data)

– Resolve it with rules Q(x) <= P(x) to derived new fact Q(a) <=

– Additional inference is then triggered by Q(a) <=, etc. The
process stops when the theorem intended to proof (if there is
one) has been generated or no new sentenced can be generated.

– Implication rules are always used in the way of modus ponens
(from premises to conclusions), i.e., in the direction of
implication arrows

– This defines a forward chaining inference procedure because it
moves "forward" from fact oward the goal (also called data
driven).

35

• Backward chanining
– Proof starts with the goal query (theorem to be proven) <= Q(a)

– Resolve it with rules Q(x) <= P(x) to derived new query <= P(a)

– Additional inference is then triggered by <= P(a), etc. The process
stops when a null clause is derived.

– Implication rules are always used in the way of modus tollens
(from conclusions to premises), i.e., in the reverse direction of
implication arrows

– This defines a backward chaining inference procedure because it
moves “backward" from the goal (also called goal driven).

– Backward chaining is more efficient than forward chaining as it
is more focused. However, it requires that the goal (theorem to be
proven) be known prior to the inference

