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Inference Rules for FOL

• Inference rules for PL apply to FOL as well (Modus 
Ponens, And-Introduction, And-Elimination, etc.) 

• New (sound) inference rules for use with quantifiers: 
– Universal Elimination

– Existential Introduction

– Existential Elimination

– Generalized Modus Ponens (GMP)

• Resolution
– Clause form (CNF in FOL)

– Unification (consistent variable substitution)

– Refutation resolution (proof by contradiction)
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Universal Elimination (∀∀x) P(x) |-- P(c).
• If (∀x) P(x) is true, then P(c) is true for any constant c in the 

domain of x, i.e.,, (∀x) P(x) |= P(c).
• Replace all occurrences of x in the scope of ∀x by the same ground 

term (a constant or a ground function).
• Example: (∀x) eats(Ziggy, x) |-- eats(Ziggy, IceCream)

Existential Introduction P(c) |-- (∃∃x) P(x)
• If P(c) is true, so is (∃∃x) P(x), i.e., P(c) |= (∃∃x) P(x)
• Replace all instances of the given constant symbol by the same new

variable symbol. 
• Example eats(Ziggy, IceCream) |-- (∃∃x) eats(Ziggy, x)

Existential Elimination
• From (∃∃x) P(x) infer P(c), i.e., (∃∃x) P(x) |= P(c), where c is a new 

constant symbol, 

– All we know is there must be some constant that makes this true, so 
we can introduce a brand new one to stand in for that constant, even 
though we don’t know exactly what that constant refer to.

– Example: (∃∃x) eats(Ziggy, x) |= eats(Ziggy, Stuff) 
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• Things become more complicated when there are universal quantifiers

(∀x)(∃∃y) eats(x, y) |= (∀x)eats(x, Stuff) ???

(∀x)(∃∃y) eats(x, y) |=  eats(Ziggy, Stuff) ???    

– Introduce a new function food_sk(x) to stand for ∃∃y because that y 
depends on x 

(∀x)(∃∃y) eats(x, y) |-- (∀x)eats(x, food_sk(x)) 

(∀x)(∃∃y) eats(x, y) |-- eats(Ziggy, food_sk(Ziggy)) 

– What exactly the function food_sk(.) does is unknown, except that it 
takes x as its argument

• The process of existential elimination is called “Skolemization”, and the 
new, unique constants (e.g., Stuff) and functions (e.g., food_sk(.)) are 
called skolem constants and skolem functions



5

Generalized Modus Ponens (GMP)
• Combines And-Introduction, Universal-Elimination, and Modus 

Ponens 

• Ex: P(c), Q(c), (∀x)(P(x) ^ Q(x)) => R(x) |-- R(c)

P(c), Q(c) |-- P(c) ^ Q(c)                               (by and-introduction)

(∀x)(P(x) ^ Q(x)) => R(x) 

|-- (P(c) ^ Q(c)) => R(c)        (by universal-elimination)

P(c) ^ Q(c), (P(c) ^ Q(c)) => R(c) |-- R(c) (by modus ponens)

• All occurrences of a quantified variable must be instantiated to the 
same constant.
P(a), Q(c), (∀x)(P(x) ^ Q(x)) => R(x) |-- R(c)

because all occurrences of x must either instantiated to a or c which 
makes the modus ponens rule not applicable.
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Resolution for FOL
• Resolution rule operates on two clauses

– A clause is a disjunction of literals (without explicit quantifiers)

– Relationship between clauses in KB is conjunction

• Resolution Rule for FOL:
– clause C1: (l_1, l_2, ... l_i, ... l_n)  and  

clause C2: (l’_1, l’_2, ... l’_j, ... l’_m) 

– if l_i and l’_j are two opposite literals (e.g., P and ~P) and their 
argument lists can be be made the same (unified) by a set of variable 
bindings θ = {x1/y1, ... Xk/yk} where x1, ... Xk are variables and y1, 
... Yk are terms, then derive a new clause (called resolvent) 

subst((l_1, l_2, ... l_n, l’_1, l’_2, ... l’_m), θ)
where function subst(expression, θ) returns a new expression by 
applying all variable bindings in θ to the original expression
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We need answers to the following questions

• How to convert FOL sentences to clause form (especially how 
to remove quantifiers)

• How to unify two argument lists, i.e., how to find their most 
general unifier (mgu) θ

• How to determine which two clauses in KB should be resolved 
next (among all resolvable pairs of clauses) and how to 
determine a proof is completed
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Converting FOL sentences to clause form

• Clauses are quantifier free CNF of FOL sentences

• Basic ideas

– How to handle quantifiers
• Careful on quantifiers with preceding negations (explicit or 

implicit)

~∀x P(x) is really ∃∃x ~P(x)

(∀x P(x)) => (∀y Q(y))     ~(∀x P(x)) v (∀y Q(y))

∃∃x ~P(x) v ∀y Q(y) 

• Eliminate true existential quantifier by Skolemization

• For true universally quantified variables,  treat them as such 
without quantifiers

– How to convert to CNF (similar to PL but need to work with 
quantifiers)

≡
≡
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Conversion procedure

step 1: remove all “=>” and “<=>” operators

(using P => Q    ~P v Q and P <=> Q  P => Q ^ Q => P)

step 2: move all negation signs to individual predicates 

(using de Morgan’s law)
step 3: remove all existential quantifiers ∃∃y

case 1: y is not in the scope of any universally quantified variable, 
then replace all occurrences of y by a skolem constant 

case 2: if y is in scope of universally quantified variables x1, ... xi,
then replace all occurrences of y by a skolem function

step 4: remove all universal quantifiers ∀x (with the understanding that  
all remaining variables are universally quantified)

step 5: convert the sentence into CNF (using distribution law, etc) 
step 6: use parenthesis to separate all disjunctions, then drop all v’s and 

^’s

≡ ≡
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Conversion examples

∀∀x (P(x) ^ Q(x) => R(x)) ∃∃y rose(y) ^ yellow(y)
∀x ~(P(x) ^ Q(x)) v R(x) (by step 1)                    rose(c) ^ yellow(c) 

∀x ~P(x) v ~Q(x) v R(x) (by step 2) (where c is a skolem constant)

~P(x) v ~Q(x) v R(x) (by step 4)                    (rose(c)), (yellow(c))
(~P(x),  ~Q(x), R(x)) (by step 6)

∀∀x [person(x) => ∃∃y (person(y) ^ father(y, x))]
∀x [~person(x) v ∃y (person(y) ^ father(y, x))]                               (by step 1)

∀x [~person(x) v (person(f_sk(x)) ^ father(f_sk(x), x))]                 (by step 3) 

~person(x) v (person(f_sk(x)) ^ father(f_sk(x), x)) (by step 4)

(~person(x) v person(f_sk(x)) ^ (~person(x) v father(f_sk(x), x))   (by step 5)

(~person(x), person(f_sk(x)),  (~person(x), father(f_sk(x), x)) (by step 6)

(where f_sk(.) is a skolem function)
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Unification of two clauses

• Basic idea: ∀∀x P(x) => Q(x), P(a) |-- Q(a)
(~P(x), Q(x)),      (P(a))

{x/a} a substitution in which variable x is bound to a
Q(a)

– The goal is to find a set of variable bindings so that the 
argument lists of two opposite literals (in two clauses) can be 
made the same. 

– Only variables can be bound to other things. 
• a and b cannot be unified (different constants in general refer to 

different objects) 
• a and f(x) cannot be unified (unless the inverse function of f is 

known, which is not the case for general functions in FOL) 
• f(x) and g(y) cannot be unified (function symbols f and g in 

general refer to different functions and their exact definitions are 
different in different interpretations)
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– Cannot bind variable x to y if x appears anywhere in y
• Try to unify x and f(x). If we bind x to f(x) and apply the binding 

to both x and f(x), we get f(x) and f(f(x)) which are still not the 
same (and will never be made the same no matter how many times 
the binding is applied)

– Otherwise, bind variable x to y, written as x/y (this 
guarantees to find the most general unifier, or mgu)
• Suppose both x and y are variables, then they can be made the 

same by binding both of them to any constant c or any function f(.). 
Such bindings are less general and impose unnecessary restriction 
on x and y.

– To unify two terms of the same function symbol, unify 
their argument lists (unification is recursive)
Ex: to unify f(x) and f(g(b)), we need to unify x and g(b)
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– When the argument lists contain multiple terms, unify each 
pair of terms

Ex. To unify (x, f(x), ...) (a, y, ...)
1. unify x and a (θ = {x/a})

2. apply θ to the remaining terms in both lists, resulting 

(f(a), ...) and (y, ...)

1. unify f(a) and y with binding y/f(a)

2. apply the new binding y/f(a) to θ
3. add y/f(a) to new θ
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Unification Examples
• parents(x, father(x), mother(Bill)) and parents(Bill, father(Bill), y)

– unify x and Bill: θ = {x/Bill}

– unify father(Bill) and father(Bill): θ = {x/Bill}

– unify mother(Bill) and y: θ = {x/Bill}, /mother(Bill)}

• parents(x, father(x), mother(Bill)) and parents(Bill, father(y), z) 
– unify x and Bill: θ = {x/Bill}

– unify father(Bill) and father(y): θ = {x/Bill, y/Bill}

– unify mother(Bill) and z: θ = {x/Bill, y/Bill, z/mother(Bill)}

• parents(x, father(x), mother(Jane)) and parents(Bill, father(y), mother(y))
– unify x and Bill: θ = {x/Bill}

– unify father(Bill) and father(y): θ = {x/Bill, y/Bill}

– unify mother(Jane) and mother(Bill): Failure because Jane and Bill are 
different constants
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More Unification Examples

• P(x, g(x), h(b)) and P(f(u, a), v, u))
– unify x and f(u, a): θ = {x/ f(u, a)}; 

remaining lists: (g(f(u, a)), h(b)) and (v, u)

– unify g(f(u, a)) and v: θ = {x/f(u, a), v/g(f(u, a))};

remaining lists: (h(b)) and (u)

– unify h(b) and u: θ = {x/f(h(b), a), v/g(f(h(b), a)), u/h(b)};

• P(f(x, a), g(x, b)) and P(y, g(y, b))
– unify f(x, a) and y: θ = {y/f(x, a)}

remaining lists: (g(x, b)) and (g(f(x, a), b))

– unify x and f(x, a): failure because x is in f(x, a)
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Unification Algorithm (pp. 302-303, Chapter 10)

procedure unify(p, q, θ)         /* p and q are two lists of terms and |p| = |q| */
if p = empty then return θ;  /* success */
let r = first(p) and s = first(q);
if r = s then return unify(rest(p), rest(q), θ);
if r is a variable then temp = unify-var(r, s);
else if s is a variable then temp = unify-var(s, r);

else if both r and s are functions of the same function name then
temp = unify(arglist(r), arglist(s), empty);
else return “failure”;

if temp = “failure” then return “failure”;  /* p and q are not unifiable */
else θ = subst(θ, temp) temp;   /* apply tmp to old θ then insert it into θ */

return unify(subst(rest(p), tmp), subst(rest(q), tmp), θ);
end{unify}
procedure unify-var(x, y)

if x appears anywhere in y then return “failure”;
else return (x/y)

end{unify-var}

U
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Resolution in FOL

• Convert all sentences in KB (axioms, definitions, and known facts) 
and the goal sentence (the theorem to be proved) to clause form 

• Two clauses C1 and C2 can be resolved if and only if r in C1 and s
in C2 are two opposite literals, and their argument list arglist_r and 
arglist_s are unifiable with mgu = θ.

• Then derive the resolvent sentence: subst((C1 – {r}, C2 – {s}), θ)

(substitution is applied to all literals in C1 and C2, but not to any 
other clauses)

• Example
(P(x, f(a)), P(x, f(y)), Q(y))   (~P(z, f(a)), ~Q(z))

θ = {x/z}

(P(z, f(y)), Q(y), ~Q(z))
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Resolution example
• Prove that 
∀w P(w) => Q(w), ∀y Q(y) => S(y), ∀z R(z) => S(z), ∀x P(x) v R(x) |= ∃u S(u)

• Convert these sentences to clauses (∃u S(u) skolemized to S(a))

• Apply resolution

(~P(w), Q(w))     (~Q(y), S(y))    (~R(z), S(z)) (P(x), R(x))     

(~P(y), S(y)) {w/y}

(S(x), R(x)) {y/x}

(S(a)) {x/a, z/a}

• Problems
– The theorem S(a) does not actively participate in the proof

– Hard to determine if a proof (with consistent variable bindings) is 
completed if the theorem consists of more than one clause

a resolution 
proof tree
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Resolution Refutation: a better proof strategy

• Given a consistent set of axioms KB and goal sentence Q, show 
that KB |= Q. 

• Proof by contradiction:  Add ~Q to KB and try to prove false.
because (KB |= Q) <=> (KB ^ ~Q |= False, or KB ^ ~Q is inconsistent) 

• How to represent “false” in clause form
– P(x) ^ ~P(y) is inconsistent

– Convert them to clause form then apply resolution

(P(x))          (~P(y))

{x/y}

()   a null clause

– A null clause represents false (inconsistence/contradiction)

– KB |= Q if we can derive a null clause from KB ^ ~Q by resolution
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• Prove by resolution refutation that 
∀w P(w) => Q(w), ∀y Q(y) => S(y), ∀z R(z) => S(z), ∀x P(x) v R(x) |= ∃u S(u)
• Convert these sentences to clauses (~ ∃u S(u) becomes ~S(u))

(~P(w), Q(w))     (~Q(y), S(y))    (~R(z), S(z)) (P(x), R(x))     (~S(u))

(~R(z)) {u/z}

(~Q(y)) {u/y}

(~P(w)) {y/w} (P(x)) {z/x}

() {x/w}
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Refutation Resolution Procedure

procedure resolution(KB, Q)

/* KB is a set of consistent, true FOL sentences, Q is a goal sentence.

It  returns success if KB |-- Q, and failure otherwise */

KB = clause(union(KB, {~Q}))   /* convert KB and ~Q to clause form */

while null clause is not in KB do
pick 2 sentences, S1 and S2, in KB that contain a pair of opposite

literals whose argument lists are unifiable

if none can be found then return "failure"

resolvent = resolution-rule(S1, S2)

KB = union(KB, {resolvent})

return "success "

end{resolution}
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Control Strategies
• At any given time, there are multiple pairs of clauses that are resolvable. 

Therefore, we need a systematic way to select one such pair at each step 
of proof
– May lead to a null clause

– Without losing potentially good threads (of inference)

• There are a number of general (domain independent) strategies that are 
useful in controlling a resolution theorem prover.

• We’ll briefly look at the following

– Breadth first

– Set of support

– Unit resolution

– Input Resolution

– Ordered resolution

– Subsumption
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Breadth first
• Level 0 clauses are those from the original KB and the negation of the 

goal. 

• Level k clauses are the resolvents computed from two clauses, one of 
which must be from level k-1 and the other from any earlier level.  

• Compute all level 1 clauses possible, then all possible level 2 clauses, 
etc. 

• Complete, but very inefficient. 

Set of Support
• At least one parent clause must be from the negation of the goal or one 

of the "descendents" of such a goal clause (i.e., derived from a goal 
clause). 

• Complete (assuming all possible set-of-support clauses are derived) 

• Gives a goal directed character to the search
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Unit Resolution
• At least one parent clause must be a "unit clause," i.e., a 

clause containing a single literal. 
• Not complete in general, but complete for Horn clause KBs 

Input Resolution
• At least one parent from the set of original clauses (from the 

axioms and the negation of the goal) 
• Not complete in general, but complete for Horn clause KBs

Linear Resolution
• Is an extension of Input Resolution
• use P and Q if P is in its initial KB (and query) or P is an 

ancestor of Q. 
• Complete. 



25

Ordered Resolution
• Do them in order (Left to right)

• This is how Prolog operates

• Do the first element in the sentence first. 

• This forces the user to define what is important in generating the 
"code." 

• The way the sentences are written controls the resolution.

Subsumption
• Eliminate all clauses that are subsumed (more specific than) by an 

existing clause to keep the KB small.

• Like factoring, this is just removing things that merely clutter up the 
space and will not affect the final result. 

• I.e. if P(x) is already in the KB, adding P(A) makes no sense -- P(x) is a 
superset of P(A). 

• Likewise adding P(A) v Q(B) would add nothing to the KB either. 
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Example of Automatic Theorem Proof:
Did Curiosity kill the cat

• Jack owns a dog. Every dog owner is an animal lover. No 
animal lover kills an animal. Either Jack or Curiosity killed 
the cat, who is named Tuna. Did Curiosity kill the cat?

• These can be represented as follows:
A. (∃x) Dog(x) ^ Owns(Jack,x)

B. (∀x) ((∃y) Dog(y) ^ Owns(x, y)) => AnimalLover(x)

C. (∀x) AnimalLover(x) => (∀y) Animal(y) => ~Kills(x,y)

D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. (∀x) Cat(x) => Animal(x)
Q. Kills(Curiosity, Tuna)
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• Convert to clause form
A1. (Dog(D))   /* D is a skolem constant */

A2. (Owns(Jack,D))

B. (~Dog(y), ~Owns(x, y), AnimalLover(x))

C. (~AnimalLover(x), ~Animal(y), ~Kills(x,y))

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

E. Cat(Tuna)

F. (~Cat(x), Animal(x))

• Add the negation of query:
Q: (~Kills(Curiosity, Tuna))



28

• The resolution refutation proof
R1: Q, D, {}, (Kills(Jack, Tuna))

R2: R1, C, {x/Jack, y/Tuna}, (~AnimalLover(Jack), ~Animal(Tuna))

R3: R2, B, {x/Jack}, (~Dog(y), ~Owns(Jack, y), ~Animal(Tuna))

R4: R3, A1, {y/D}, (~Owns(Jack, D), ~Animal(Tuna))

R5: R4, A2, {}, (~Animal(Tuna))

R6: R5, F, {x/Tuna}, (~Cat(Tuna))

R7: R6, E, {} ()



29

Horn Clauses

• A Horn clause is a clause with at most one positive literal:

(~P1(x), ~P2(x), ..., ~Pn(x) v Q(x)), equivalent to

∀x P1(x) ^ P2(x)  ...  ^ Pn(x) => Q(x)    or

Q(x) <= P1(x), P2(x),  ... , Pn(x)          (in prolog format)

– if contains no negated literals (i.e., Q(a) <=): facts

– if contains no positive literals (<= P1(x), P2(x),  ... , Pn(x)): query

– if contain no literal at all (<=): null clause

• Most knowledge can be represented by Horn clauses

• Easier to understand (keeps the implication form)

• Easier to process than FOL

• Horn clauses represent a subset of the set of sentences representable  
in FOL (e.g., it cannot represent uncertain conclusions, e.g., 

Q(x) v R(x) <= P(x)).
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Logic Programming

• Resolution with Horn clause is like a function all:

Q(x) <= P1(x), P2(x),  ... , Pn(x)

Function  
name

Function  
body

Q(x) <= P1(x), P2(x),  ... , Pn(x)       <= Q(a)

θ
<= P1(a), P2(a),  ... , Pn(a)

To solve Q(a), we solve P1(a), P2(a),  ... , and Pn(a). This is called 
problem reduction (P1(a), ... Pn(a) are subgoals).

We then continue to call functions to solve P1(a), ..., by resolving

<= P1(a), P2(a),  ... , Pn(a) with clauses P(y) <= R1(y), ... Rm(y), etc.

Unification is like 
parameter passing
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Example of Logic Programming
Computing factorials

A1: fact(0, 1) <=                                  /* base case: 0! = 1 */

A2: fact(x, x*y) <= fact(x-1, y)           /* recursion: x! = x*(x-1)! */

<= fact(3, z)             A2

{x/3, z/3*y}

<= fact(2, y)        A2 (x and y renamed to x1 and y1)

{x1/2, y/2*y1}

<= fact(1, y1)       A2 (x and y renamed to x2 and y2) 

{x2/1, y1/1*y2}

<= fact(0, y2)       A1

{y2/1}

()

Extract answer from the variable bindings: 

z = 3*y = 3*2*y1 = 3*2*1*y2 = 3*2*1*1 = 6
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Prolog

• A logic programming language based on Horn clauses
– Resolution refutation

– Control strategy: goal directed and depth-first

• always start from the goal clause, 

• always use the new resolvant as one of the parent clauses for resolution

• backtracking when the current thread fails

• complete for Horn clause KB

– Support answer extraction (can request single or all answers)

– Orders the clauses and literals with a clause to resolve non-determinism
• Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)

• A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

– Use “closed world” assumption (negation as failure)
• If it fails to derive P(a), then assume ~P(a)
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Other issues
• FOL is semi-decidable

– We want to answer the question if KB |= S

– If actually KB |= S (or KB |= ~S), then a complete proof procedure will 
terminate with a positive (or negative) answer within finite steps of 
inference

– If neither S nor ~S logically follows KB, then there is no proof procedure 
will terminate within finite steps of inference for arbitrary KB and S.

– The semi-decidability is caused by
• infinite domain and incomplete axiom set (knowledge base)

• Ex: KB contains only one clause fact(x, x*y) <= fact(x-1, y). To prove fact(3, z) 
will run forever

– By Godel's Incomplete Theorem, no logical system can be complete (e.g., 
no matter how many pieces of knowledge you include in KB, there is 
always a legal sentence S such that neither S nor ~S logically follow KB).

– Closed world assumption is a practical way to circumvent this problem, but 
it make the logical system non-monotonic, therefore non-FOL 



34

• Forward chaning
– Proof starts with the new fact P(a) <=, (often case specific data) 

– Resolve it with rules Q(x) <= P(x) to derived new fact Q(a) <=

– Additional inference is then triggered by Q(a) <=, etc. The 
process stops when the theorem intended to proof (if there is 
one) has been generated or no new sentenced can be generated.

– Implication rules are always used in the way of modus ponens 
(from premises to conclusions), i.e., in the direction of 
implication arrows 

– This defines a forward chaining inference procedure because it 
moves "forward" from fact oward the goal (also called data 
driven).
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• Backward chanining
– Proof starts with the goal query (theorem to be proven) <= Q(a)

– Resolve it with rules Q(x) <= P(x) to derived new query <= P(a)

– Additional inference is then triggered by <= P(a), etc. The process 
stops when a null clause is derived.

– Implication rules are always used in the way of modus tollens
(from conclusions to premises), i.e., in the reverse direction of 
implication arrows

– This defines a backward chaining inference procedure because it 
moves “backward" from the goal (also called goal driven). 

– Backward chaining is more efficient than forward chaining as it 
is more focused. However, it requires that the goal (theorem to be 
proven) be known prior to the inference


