|nferencein
First Order Logic

Chapter 9

Some material adopted from notes
by Tim Finin,

Andreas Geyer-Schulz,

and Chuck Dyer

| nference Rulesfor FOL

 Inferencerulesfor PL apply to FOL aswell (Modus
Ponens, And-Introduction, And-Elimination, etc.)

* New (sound) inference rules for use with quantifiers:
— Universal Elimination
— Existential Introduction
— Existential Elimination
— Generalized Modus Ponens (GMP)

e Resolution
— Clause form (CNF in FOL)

— Unification (consistent variable substitution)
— Refutation resolution (proof by contradiction)

Universal Elimination (" x) P(x) |-- P(c).
o If (" X) P(X) istrue, then P(c) istrue for any constant ¢ in the
domain of x, i.e.,, (" X) P(x) |= P(c).
* Replace all occurrences of x in the scope of " X by the same ground
term (a constant or a ground function).
 Example: (" X) eats(Ziggy, X) |-- eats(Ziggy, |ceCream)

Existential Introduction P(c) |-- ($x) P(x)
« If P(c) istrue, sois ($X) P(x), i.e., P(c) |= ($X) P(x)
» Replace al instances of the given constant symbol by the same new
variable symboal.
« Example eats(Ziggy, |ceCream) |-- ($X) eats(Ziggy, X)
Existential Elimination
« From ($x) P(x) infer P(c), i.e., ($x) P(X) |= P(c), wherecisanew
constant symboal,

— All we know isthere must be some constant that makes this true, so
we can introduce a brand new oneto stand in for that constant, even
though we don’t know exactly what that constant refer to.

— Example: ($x) eats(Ziggy, X) |- eats(Ziggy, Stuff)

» Things become more complicated when there are universal quantifiers
(" x)($y) eats(x, y) |- (* x)eats(x, Stuff) 772
(" X)($y) eats(x, y) |- eats(Ziggy, Stuff) 7??

— Introduce a new function food sk(x) to stand for $y because that y
depends on x

(" x)(By) eats(x, y) |- (* x)eats(x, food_sk(x))

(" X)(Py) eats(x, y) |-- eats(Ziggy, food_sk(Ziggy))
— What exactly the function food sk(.) does is unknown, except that it
takes x as its argument

» The process of existential elimination is called “ Skolemization” , and the
new, unique constants (e.g., Stuff) and functions (e.g., food sk(.)) are
called skolem constants and skolem functions

Generalized M odus Ponens (GMP)
e Combines And-Introduction, Universal-Elimination, and M odus

Ponens
* Ex: P(c), Q(c), (" X)(P(x) * QX)) => R(x) |-- R(c)
P(c), Q(c) |-- P(c) ™ Q(c) (by and-introduction)

(" x)(P(x) * Q(x)) => R(x)
l-- (P(c) * Q(c)) => R(c) (by universal-elimination)
P(c) " Q(c), (P(c) * Q(c)) => R(c) |-- R(c) (by modus ponens)
 All occurrences of a quantified variable must be instantiated to the
same constant.

P(a), Q(c), (" X)(P(x) * Q(x)) => R(X) |- R(c)
because all occurrences of x must elther instantiated to a or ¢ which
makes the modus ponens rule not applicable.

Resolution for FOL

» Resolution rule operates on two clauses
— A clauseisadigunction of literals (without explicit quantifiers)
— Relationship between clausesin KB is conjunction

» Resolution Rule for FOL.:
—clauseC1L: (I 1,1 2,...11,...1 n) and
clauseC2: (I' 1,I" 2,...1I" j,...I'_m)
—ifl_1andl’_j aretwo opposite literals (e.g., P and ~P) and their
argument lists can be be made the same (unified) by a set of variable

bindings q = {x1/y1, ... Xk/yk} wherex1, ... Xk are variablesand y1,
... YK are terms, then derive a new clause (called resolvent)

subst((I_1,1 2,...1. n,I"_1,I" 2,..1"_m), q)

where function subst(expression, g) returns a new expression by
applying all variable bindingsin q to the original expression

We need answer sto the following questions

* How to convert FOL sentences to clause form (especially how
to remove quantifiers)

e How to unify two argument lists, i.e., how to find their most
general unifier (mgu) g
e How to determine which two clauses in KB should be resolved

next (among all resolvable pairs of clauses) and how to
determine a proof is completed

Converting FOL sentencesto clause form

e Clauses are quantifier free CNF of FOL sentences
e Basicideas
— How to handle quantifiers
» Careful on quantifiers with preceding negations (explicit or
implicit)
~" X P(x) isreally $x ~P(x)
(" xP(x)) =>("y Q(y)) ° ~(" xP(x)) v (" y Q(y))
> IX~PXx)v"yQly)
» Eliminate true existential quantifier by Skolemization

 For true universally quantified variables, treat them as such
without quantifiers

— How to convert to CNF (ssmilar to PL but need to work with
guantifiers)

step 1.

step 2

step 3:

step 4.

step 5:
step 6:

Conversion procedure

remove al “=>" and “<=>" operators

(usingP=>Q° ~PvQandP<=>Q° P=>Q"Q=>P)

move all negation signsto individual predicates

(using de Morgan’s law)

remove all existential quantifiers $y

case 1. y is nhot in the scope of any universally quantified variable,
then replace all occurrences of y by a skolem constant

case 2: if y isin scope of universally quantified variables x1, ... xi,
then replace all occurrences of y by a skolem function

remove all universal quantifiers"” x (with the understanding that

all remaining variables are universally quantified)

convert the sentence into CNF (using distribution law, etc)

use parenthesis to separate all disunctions, then drop all v’'sand

N S

Conversion examples

" X (P(X) * Q(X) => R(x)) Sy rose(y) * yellow(y)

" x~(P(x) " Q(x)) v R(x) (by step 1) rose(c) * yellow(c)

" X ~P(x) v ~Q(X) v R(x) (by step 2) (where c is a skolem constant)
~P(Xx) v ~Q(x) vR(x) (by step4) (rose(c)), (yellow(c))

(~P(x), ~Q(x), R(x)) (by step 6)

" X [person(x) => $y (person(y) * father (v, x))1

" X [~person(x) v By (person(y) " father(y, x))] (by step 1)
" X [~person(x) v (person(f_sk(x)) ™ father(f_sk(x), x))] (by step 3)
~person(x) v (person(f_sk(x)) ~ father(f_sk(x), x)) (by step 4)

(~person(x) v person(f _sk(x)) * (~person(x) v father(f_sk(x), x)) (by step 5)
(~person(x), person(f _sk(x)), (~person(x), father(f sk(x), x)) (by step 6)
(wheref sk(.) isaskolem function)

10

Unification of two clauses

e Basicidea: " x P(x) => Q(x), P(a) |-- Q(a)

(=P(x), Q(x)), (P(a)
\ {x/a} asubstitution in which variable x isbound to a

Q(a)

— The goal isto find a set of variable bindings so that the
argument lists of two opposite literals (in two clauses) can be
made the same.

— Only variables can be bound to other things.

« aand b cannot be unified (different constants in general refer to
different objects)

« aand f(x) cannot be unified (unless the inverse function of f is
known, which is not the case for general functionsin FOL)

 f(x) and g(y) cannot be unified (function symbolsf and gin
general refer to different functions and their exact definitions are
different in different interpretations)

11

— Cannot bind variable x to y if X appears anywhereiny

e Trytounify x and f(x). If we bind x to f(x) and apply the binding
to both x and f(x), we get f(x) and f(f(x)) which are still not the
same (and will never be made the same no matter how many times
the binding is applied)

— Otherwise, bind variable x to y, written as x/y (this
guarantees to find the most genera unifier, or mgu)

» Suppose both x and y are variables, then they can be made the
same by binding both of them to any constant ¢ or any function f(.).
Such bindings are less general and impose unnecessary restriction
onx andy.
— To unify two terms of the same function symbol, unify
their argument lists (unification isrecursive)

Ex: to unify f(x) and f(g(b)), we need to unify x and g(b)

12

— When the argument lists contain multiple terms, unify each
pair of terms
Ex. Tounify (x, f(x),..) @Y, ...)
1. unify x and a (g = {x/a})
2. apply g to the remaining terms in both lists, resulting
(f(a), ...) and (y, ...)
1. unify f(a) and y with binding y/f(a)
2. apply the new binding y/f(a) to g
3. add y/f(a) to new q

13

Unification Examples

 parents(x, father(x), mother(Bill)) and parents(Bill, father(Bill), y)
— unify x and Bill: g = {x/Bill}
— unify father(Bill) and father(Bill): q = { x/Bill}
— unify mother(Bill) and y: g = {x/Bill}, /mother(Bill)}
o parents(x, father(x), mother(Bill)) and parents(Bill, father(y), z)
— unify x and Bill: g = {x/Bill}
— unify father(Bill) and father(y): g = {x/Bill, y/Bill}
— unify mother(Bill) and z: g = {x/Bill, y/Bill, zZ/mother(Bill)}
o parents(x, father(x), mother(Jane)) and parents(Bill, father(y), mother(y))
— unify x and Bill: g = {x/Bill}
— unify father(Bill) and father(y): g = {x/Bill, y/Bill}

— unify mother(Jane) and mother(Bill): Failure because Jane and Bill are
different constants

14

More Unification Examples

* P(X, g(x), h(b)) and P(f(u, @), v, u))
— unify x and f(u, a): q = {x/ f(u, a)};
remaining lists: (g(f(u, a)), h(b)) and (v, u)
— unify g(f(u, 8)) and v: g = {x/f(u, a), v/g(f(u, a))};
remaining lists. (h(b)) and (u)

— unify h(b) and u: g = {x/f(h(b), &), v/g(f(h(b), &), u/h(b)};

* P(f(x, &), g(x, b)) and P(y, g(y, b))
— unify f(x, @ and y: q = {y/f(x, a)}
remaining lists: (g(x, b)) and (g(f(x, a), b))
— unify x and f(x, a): failure because x isin f(x, a)

15

Unification Algorithm (pp. 302-303, Chapter 10)

procedure unify(p, g, Q) [* pand g aretwo listsof termsand |p| = |q| */
If p=empty then return q; /* success*/
let r = first(p) and s = first(q);
If r = sthen return unify(rest(p), rest(q), 9);
If risavariable then temp = unify-var(r, s);
elseif sisavariable then temp = unify-var(s, r);
else if both r and s are functions of the same function name then
temp = unify(arglist(r), arglist(s), empty);
elsereturn “falure’;
If temp = “failure” then return “faillure”; /* p and g are not unifiable */
else g = subst(q, temp) |y temp; /* apply tmptoold gtheninsertitintoq */
retur n unify(subst(rest(p), tmp), subst(rest(qg), tmp), 9);
end{ unify}
procedur e unify-var(x, y)
If X appears anywhereiny then return “failure’;
elsereturn (x/y)
end{ unify-var}

16

Resolution in FOL

o Convert all sentencesin KB (axioms, definitions, and known facts)
and the goal sentence (the theorem to be proved) to clause form

e Two clauses C1 and C2 can beresolved if andonly if r inCl and s
In C2 are two opposite literals, and their argument list arglist_r and
arglist_s are unifiable with mgu = g.

* Then derive the resolvent sentence: subst((C1—{r}, C2—-{s}), q)

(substitution isapplied to all literalsin C1 and C2, but not to any
other clauses)

« Example
(P(x.1(a), P(x, f(y)), Q(y)) (=P(z.1(a)), ~Q(2))

\ /: {X/Z}

(P(z, 1(y)), Q(y), ~Q(2))

17

Resolution example
* Prove that
" w P(w) =>Q(w), " y Qy) => S(y), " ZR(2) => J(2), " X P(x) v R(x) |- $u S(u)
» Convert these sentences to clauses ($u S(u) skolemized to S(a))
* Apply resolution

(~Pw), Qw)) (=Q(Y), Sy)) (=R(2).2)) (PX), R(X))

(=P(y), S{y)) {wiy} aresolution
\ — proof tree

(S(x), R(x)) 1y/x}

(S(a) {X/a, z/a}
e Problems
— The theorem S(a) does not actively participate in the proof

— Hard to determine if a proof (with consistent variable bindings) is
completed if the theorem consists of more than one clause

18

Resolution Refutation: a better proof strategy

« Glven aconsistent set of axioms KB and goal sentence Q, show
that KB |= Q.
* Proof by contradiction: Add ~Q to KB and try to prove false.
because (KB |= Q) <=> (KB " ~Q |= False, or KB ™ ~Q isinconsistent)
e How to represent “false” in clause form
— P(x) * ~P(y) isinconsistent
— Convert them to clause form then apply resolution
(P(x)) (~P(y))
Dy
() anull clause
— A null clause represents fal se (inconsi stence/contradiction)
— KB |= Q if we can derive anull clause from KB * ~Q by resolution

19

 Prove by resolution refutation that

" w P(w) =>Q(w), " y Q(y) => 3(y), " zR(2) => H(2), " x P(x) v R(X) |= $u S(u)
» Convert these sentences to clauses (~ $u S(u) becomes ~S(u))

(~Pw), Qw)) (~Q(y). Sy)) (-R(2.92) (PX),R(X)) (~Su))

(~QWy)) {uy) /
/

(~P(w)) 1y/w} (P(x)) {Z/x}

0 (x'w}

20

Refutation Resolution Procedure

procedur e resolution(KB, Q)
[* KB isaset of consistent, true FOL sentences, Q isagoal sentence.
It returnssuccessif KB |-- Q, and failure otherwise */
KB = clause(union(KB, {~Q})) /* convert KB and ~Q to clause form */
while null clauseisnot in KB do
pick 2 sentences, S1 and S2, in KB that contain a pair of opposite
literals whose argument lists are unifiable
If none can be found then return "failure"
resolvent = resolution-rule(S1, S2)
KB = union(KB, {resolvent})
return "success”
end{ resolution}

21

Control Strategies

» At any given time, there are multiple pairs of clauses that are resolvable.
Therefore, we need a systematic way to select one such pair at each step
of proof

— May lead to anull clause
— Without losing potentially good threads (of inference)

* There are anumber of general (domain independent) strategies that are
useful in controlling a resolution theorem prover.

o We'll briefly look at the following
— Breadth first
— Set of support
— Unit resolution
— Input Resolution
— Ordered resolution
— Subsumption

22

Breadth first

» Level O clauses are those from the original KB and the negation of the
goal.

» Leve Kk clauses are the resolvents computed from two clauses, one of
which must be from level k-1 and the other from any earlier level.

o Compute all level 1 clauses possible, then al possible level 2 clauses,
etc.

o Complete, but very inefficient.

Set of Support

» At least one parent clause must be from the negation of the goal or one
of the "descendents' of such agoal clause (i.e., derived from a goal
clause).

o Complete (assuming all possible set-of-support clauses are derived)
» Givesagoal directed character to the search

23

Unit Resolution

o At least one parent clause must be a"unit clause," i.e., a
clause containing asingle literal.

* Not complete in general, but complete for Horn clause KBs

|nput Resolution

« At least one parent from the set of original clauses (from the
axioms and the negation of the goal)

* Not complete in general, but complete for Horn clause KBs

Linear Resolution

e |san extension of Input Resolution

e usePand Qif Pisinitsinitial KB (and query) or Pisan
ancestor of Q.

o Complete.

24

Ordered Resolution

e Do them in order (Left to right)

e Thisishow Prolog operates

» Do thefirst element in the sentence first.

» Thisforcesthe user to define what isimportant in generating the
"code."

* The way the sentences are written controls the resol ution.

Subsumption

» Eliminate all clauses that are subsumed (more specific than) by an
existing clause to keep the KB small.

» Likefactoring, thisisjust removing things that merely clutter up the
space and will not affect the final result.

* |.e if P(x) isaready inthe KB, adding P(A) makes no sense -- P(X) isa
superset of P(A).

» Likewise adding P(A) v Q(B) would add nothing to the KB either.

25

Example of Automatic Theorem Proof:.
Did Curiosity kill the cat

e Jack ownsadog. Every dog owner isan animal lover. No
animal lover killsan animal. Either Jack or Curiosity killed
the cat, who is named Tuna. Did Curiosity kill the cat?

* These can be represented as follows:
A. ($x) Dog(x) ™ Owns(Jack,x)
B. (" xX) (($y) Dog(y) * Owns(x, y)) => AnimalLover(x)
C. (" x) AnimalLover(x) => (" y) Animal(y) => ~Kills(x,y)
D. Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. (" x) Cat(x) => Animal(x)
Q. Kills(Curiosity, Tuna)

26

e Convert to clauseform
Al. (Dog(D)) /* D isaskolem constant */
A2. (Owns(Jack,D))
B. (~Dog(y), ~Owns(X, y), AnimalLover(x))
C. (FAnimalLover(x), ~Animal(y), ~Kills(x,y))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (~Cat(x), Animal(x))
« Add the negation of query:
Q: (~Kills(Curiosity, Tuna))

27

 Theresolution refutation proof
R1. Q, D, {}, (Kills(Jack, Tuna))
R2: R1, C, {x/Jack, y/Tuna}, (~AnimalLover(Jack), ~Animal(Tuna))
R3: R2, B, {x/Jack}, (~Dog(y), ~Owns(Jack, y), ~Animal(Tuna))
R4: R3, Al, {y/D}, (~Owns(Jack, D), ~Animal(Tuna))
R5: R4, A2, {}, (~Animal(Tuna))
R6: R5, F, {x/Tuna}, (~Cat(Tuna))
R7:R6, E, {} ()

28

Horn Clauses

A Horn clause is a clause with at most one positive literal:
(~P1(x), ~P2(x), ..., ~Pn(x) v Q(x)), equivaent to
"X P1(X) * P2(X) ... *Pn(x) =>Q(x) or
Q(X) <= P1(x), P2(x), ..., Pn(x) (in prolog format)
— 1f contains no negated literals (i.e., Q(a) <=): facts
— 1If contains no positive literals (<= P1(x), P2(x), ..., Pn(x)): query
— if contain no litera at all (<=): null clause
Most knowledge can be represented by Horn clauses
Easier to understand (keeps the implication form)
Easier to process than FOL

Horn clauses represent a subset of the set of sentences representable
In FOL (e.g., it cannot represent uncertain conclusions, e.g.,

Q(X) v R(x) <= P(x)).

29

L ogic Programming

 Resolution with Horn clauseis like afunction all:
Q(x) <= P1(x), P2(x), ..., Pn(x)
NG J

.
Function Function
name body

Q(x) <= P1(x), P2(x), ..., Pn(x) <=0(a

q Unification isl_ike
<=P1(a), P2(a), ..., Pn(a) PArAMEEr passing
To solve Q(a), we solve P1(a), P2(a), ..., and Pn(a). Thisiscalled
problem reduction (P1(a), ... Pn(a) are subgoals).

We then continue to call functions to solve P1(a), ..., by resolving
<= P1(a), P2(a), ..., Pn(a) with clauses P(y) <= R1(y), ... Rm(y), etc.

30

Example of L ogic Programming
Computing factorials

Al: fact(0, 1) <= [* basecase: 0! =1*/
A2: fact(x, x*y) <= fact(x-1, y) [* recursion: x! = x*(x-1)! */
<= fact(3, 2) A2
{x/3, ZI3*y}

<=fact(2,y) A2 (x and y renamed to x1 and y1)
\ ﬁxﬂz, y/2*y1}
<=fact(l,yl) A2(xandy renamed tox2 andy?2)
{x2/1, y1/1*y2}
<=fact(0,y2) Al

N, Averny

0

Extract answer from the variable bindings:
z=3y =32yl =3*2*1*y2=3*2*1*1=6

31

Prolog

A logic programming language based on Horn clauses

— Resolution refutation

— Control strategy: goal directed and depth-first
« always start from the goal clause,
 always use the new resolvant as one of the parent clauses for resolution
 backtracking when the current thread fails
« complete for Horn clause KB

— Support answer extraction (can request single or all answers)

— Orders the clauses and literals with a clause to resolve non-determinism
* Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)
* A (sub)goal clause may contain more than oneliterdls, i.e., <= P1(a), P2(a)
— Use “closed world” assumption (negation as failure)
o If it failsto derive P(a), then assume ~P(a)

32

Other 1ssues

 FOL i1s semi-decidable

— We want to answer the question if KB |= S

— If actually KB |= S (or KB |= ~S), then a complete proof procedure will
terminate with a positive (or negative) answer within finite steps of
Inference

— If neither S nor ~Slogically follows KB, then there is no proof procedure
will terminate within finite steps of inference for arbitrary KB and S.
— The semi-decidability is caused by
* infinite domain and incomplete axiom set (knowledge base)

* Ex: KB contains only one clause fact(x, x*y) <= fact(x-1, y). To prove fact(3, z)
will run forever

— By Godédl's Incomplete Theorem, no logical system can be complete (e.g.,
no matter how many pieces of knowledge you include in KB, thereis
aways alegal sentence S such that neither S nor ~Slogically follow KB).

— Closed world assumption is a practical way to circumvent this problem, but
It make the logical system non-monotonic, therefore non-FOL

33

e Forward chaning
— Proof starts with the new fact P(a) <=, (often case specific data)
— Resolveit with rules Q(x) <= P(x) to derived new fact Q(a) <=

— Additional inference isthen triggered by Q(a) <=, etc. The
process stops when the theorem intended to proof (if thereis
one) has been generated or no new sentenced can be generated.

— Implication rules are always used in the way of modus ponens
(from premises to conclusions), i.e., in the direction of
Implication arrows

— This defines aforward chaining inference procedure because it
moves "forward" from fact oward the goal (also called data
driven).

e Backward chanining
— Proof starts with the goal query (theorem to be proven) <= Q(a)
— Resolve it with rules Q(x) <= P(x) to derived new query <= P(a)
— Additional inference isthen triggered by <= P(a), etc. The process
stops when a null clause is derived.

— Implication rules are always used in the way of modus tollens
(from conclusions to premises), i.e., in the reverse direction of
Implication arrows

— This defines a backward chaining inference procedure because it
moves “backward" from the goal (also called goal driven).

— Backward chaining is more efficient than forward chaining as it
IS more focused. However, it requires that the goal (theorem to be
proven) be known prior to the inference

35

