
1

Efficient Microarchitecture
Modeling and Path Analysis for
Real-Time Software

Yau-Tsun Steven Li
Sharad Malik
Andrew Wolfe

2

Introduction

Paper examines the problem of determining the bound on the worst case
execution time (WCET) of a given program on a given processor.

Two important issues in solving this problem:
Program path analysis
Microarchitecture modelling

Method which address both issues is proposed

3

Two issues involved in solving this problem.

Program path analysis.

This determines what sequence
of instructions will be executed in
the worst case scenario.
Infeasible program paths removed
from the solution search space
done by a data flow analysis of the
program
analysis should provide a
mechanism for program path
annotations.

Microarchitecture modeling

Models the hardware system and
computes the WCET of a given
sequence of instructions
becoming difficult to model
most modern processors have
pipelined instruction execution
units and cached memory
systems.

4

Proposed Solution
Address both issues

determine a tight bound on a program’s worst case execution time.

Explicit path enumeration not necessity to obtain tight estimated WCET

Method determine worst case execution count of instruction and from these
counts computes the estimated WCET

includes a direct-mapped instruction cache analysis

uses an integer linear programming formulation to solve the problem.

allows the user to provide program path annotations so that a tighter bound
may be obtained.

5

Program path analysis problem handling

Pessimistic approach:
Used simple microarchitecture model that assumes the execution time of an
instruction to be a constant, i.e., every instruction fetch is assumed to result
in a cache miss.

method uses the counting approach to compute the estimated WCET.

method converts the problem of solving the estimated WCET
into a set of integer linear programming (ILP) problems

6

ILP Formulation
Assumption: Each instruction takes a constant time to execute

Instructions within a basic block are always executed together,
their execution counts are always the same.

let xi be the execution count of a basic block Bi, and Ci be the execution
time of the basic block,
given that there are N basic blocks in the program,

possible values of xi are constrained by the program structure and the
possible values of the program variables.

If these constraints represented as linear inequalities, the problem of
finding the estimated WCET of a program is reduced to an integer linear
programming (ILP) problem

7

Linear Constraints

Divided into two parts:
Program structural constraints,

Derived automatically from the program’s control flow graph (CFG)
program functionality constraints,
-provided by the user to specify loop bounds and other path information
-or extracted from the program semantics.

total time required to solve the estimated WCET depends on the number of
functionality constraint sets and the time to solve each constraint set.

the complexity of solving each ILP problem, an NP-hard problem.

8

Example of Construction of these constraints
A conditional statement is nested inside a while loop

di = a count of the the
number of times that the
program control passes
through that edge.

/* k>=0 */
S=k;

While (k < 10) {if (ok)
J++;

Else {
J =0; ok=true;}

K++;
} r=j;

Each node in the CFG represents a basic block Bi.
basic block execution count, xi, is associated with each node.

9

Structural constraints
Structural constraints can be derived from the CFG
Fact: for each node Bi, its execution count is equal to the number of times
that the control enters the node (inflow), and is also equal to the number of
times that the control exits the node (outflow).
structural constraints of this example

Code fragment executed once, so d1=1

structural constraints do not provide any loop bound information

10

Functional constraints
Loop bound information can be provided by the user as a functionality
constraint.

Example: since k is positive before it enters the loop, the loop body will be
executed between 0 and 10 times each time the loop is entered.
The constraints to specify this information are:

The functionality constraints can also be used to specify other path information.
Example: the else statement (B5) can be executed at most once inside the loop.
This information can be specified as:

11

To solve the estimated WCET, each set of the functionality constraint sets is
combined (the conjunction taken) with the set of structural constraints.

The combined set is passed to the ILP solver with cost function to be
maximized.

12

Microarchitecture Modeling

Previously, the modeling was simple because the execution time of an
instruction was largely independent of others

goal is to model the CPU pipeline and the cache memory
systems and find out the execution times (Ci) of the basic
Blocks

Method limited to model a direct-mapped instruction cache.

can be extended to handle set associative instruction cache memory.

13

Direct-mapped Instruction Cache Analysis

To incorporate cache memory analysis in ILP model
need to modify the cost function
add a list of linear constraints, denoted as cache constraints,
representing the cache memory behavior

Modified Cost Function
With cache memory execution time of an instruction will be different
depending on whether it results in a cache hit or cache miss.
need to subdivide the original instruction counts into counts of cache
hits and misses.

If cache hit and miss count and hit and miss execution time of instruction
determined then tighter bound on execution time of program is established

14

New type of atomic structure line-block (l-block)
for analysis

Adjacent instructions can be grouped together
l-block is defined as a contiguous sequence of instructions within the same
basic block that are mapped to the same line in the instruction cache.
a basic block Bi is partitioned into ni l-blocks. We denote these l-blocks as
Bi.1, Bi.2, . . . , Bi.ni .
All instructions within an l-block will always have the same cache hit/miss
counts, and the same total execution counts
The cache hit and the cache miss counts of l-block Bi. j are denoted as
Xhit i. j and xmiss i.j

the cache behavior can now be specified in terms of the new variables
xhit i. j and xmiss i. j

New total execution time (Cost Function)

15

Example showing how the l-blocks are constructed.
Each rectangle in the cache table represents a l-block.
CFG with 3 basic blocks and instruction has 4 cache line

B1.1

B1.2

B1.3

B2.1

B2.2

B3.1

B3.2

•any two l-blocks that map to the same cache line, they conflict with each
other if the execution of one l-block will displace the cache content of the
other.
• Otherwise, they are called non-conflicting l-blocks e.g. B1.3 and B2.1

16

Cache Constraints

used to constrain the hit/miss counts of the l-blocks.
simple case : For each line only one l-block mapping.
First execution of this l-block may cause a cache miss and all subsequent
executions will result in cache hits.

case : Two or more non-conflicting l-blocks map to the same cache line(
and

The execution of any of them will load all the l-blocks into the cache line. sum of
their cache miss counts is at most one.

Case: a cache line contains two or more conflicting l-blocks, the hit/miss
counts of all the l-blocks mapped to this line will be affected by the sequence in
which these l-blocks are executed.

lkB .

3.1B 1.2B

17

Cache Conflict Graph (Network flow graph)
cache conflict graph (CCG) is constructed for every cache line containing two or
more conflicting l-blocks. Example :Cache line contains 2 conflicting graph
start node ‘s’, an end node ‘e’, and a node Bk.l for every l-block Bk.l mapped to the
same cache line.
if there exists a path in the CFG from basic block Bk to basic block Bm without
passing through the basic blocks of any other l-blocks of the same cache line

p(i. j,u.v) to count the number of times that the control passes through that
edge

Program begins at S node. i)After
executing other L-block from other
cache line eventually reaches to
one of conflicting graph

ii) After executing Bk.l may pass
other l-block and reaches to Bm.n
or directly passes to Bm.n

18

continued

At each node Bi. j , the sum of control flow going into the node must be
equal to the sum of control flow leaving the node, and it must also be equal
to the execution count of l-block Bi. j .
two constraints are constructed at each node Bi. j:

This set of constraints is linked to structural and functionality constraints via
the x-variables.
•Program executed once at start node

variable p(i. j,i. j) represents the number of times that the control flows into l-
block Bi. j after executing l-block Bi. j

19

If both edges (Bi.j, e) and (s, Bi.j) exists then
the program variable p (s,i. j) may also be counted as a cache hit.

if any of edges (s,Bi. j) and (Bi. j ,e) does not exist, then

20

Bounds on p-variables

some path sequencing information can be expressed in terms of p-variables
as extra functionality constraints
Without the correct bounds, the solver may return an infeasible

l-block count and an overly pessimistic estimated WCET.

example showing two conflicting l-blocks (B4.1 and B7.1) from two different
loops.

21

The italicized numbers shown on the left of the variables are the pessimistic
worst case solution returned from ILP solver.

For any variable p(i. j,u.v), its bounds are:

A loop preheader is the basic block just before entering the loop. For instance, in
the example shown in Fig. 4, basic block B1 is the loop preheader of the outer
loop and basic block B5 is the loop preheader of the inner loop.

a constraint at loop preheader B5 is needed

22

Interprocedural call

function may be called many times from different locations of the program.

Every function call is treated as if it is inlined.

a function call is represented by an f - edge pointing to an instance of the
callee function’s CFG.

edge has a variable ‘fk ‘ which represents the number of times that the
particular instance of the callee function is called

23

Function inc is called twice in the main function

last equation above links the total
execution counts of basic block B3 with its
counts from two instances of the function

24

CCG
CCG is constructed as before by treating each instance of l-block Bi. j . fk as
different from other instances of the same l-block.
In the example, if l-block B1.1 conflicts with l-block B3.1, then since l-block
B3.1 has two instances (and), there will be 5 nodes in the
CCG

.11.3 . fB .21.3 . fB

25

Cache constraints
cache constraints and the bounds on p variables are constructed as before,
the hit constraints are modified slightly. Edge going from to

counted as cache hit of block Bi.j
The complete cache constraints derived from the example’s CCG are

.. . kji fB .1. . fB ji

26

CPU Pipeline
The CPU pipeline is considered to be relatively easy to model because it is only
effected by adjacent instructions.
As and must be constants

Assumption: the time required to execute a sequence of instructions in the CPU
pipeline is always a constant throughout the execution of the program.

hit cost of a l-block Bi. j is determined by adding up the effective
execution times of the instructions in the l-block
the effective execution times of some instructions, especially the the floating
point instructions, are data dependent, a conservative approach is taken by
assuming the worst case effective execution time
Additional time is also added to the last l-block of each basic block so as to
ensure that all the buffered load/store instructions are completed when the
control reaches the end of the basic block.

miss cost of the l-block is equal to the time needed to load the
instructions of the l-block into the cache memory and to execute them in the
CPU.

hit
jic .

miss
jic .

hit
jic .

miss
jic .

27

Implementation

cache analysis method has been implemented in a tool called cinderella4,
which estimates the WCET of programs running
The tool reads the subject program’s executable code and constructs the
CFGs and the CCG
outputs the annotation files in which the ‘x ‘and ‘f ‘ are labeled along with

the program’s source code
user is then asked to provide loop bounds
estimated WCET can thus be computed
user can provide additional path information, if available, to tighten this
bound.

28

Experiment

29

Conclusion

tight bound on a program’s WCET is estimated.
small amount of pessimism due to

(i) insufficient path information from the user
so that some infeasible program paths are considered,=>can be
reduced by providing more path information
(i) inaccuracy in microarchitecture modeling
affects the accuracy of the values of Chiti. j and Cmissi. j =>reduced
by a more sophisticated hardware model

	Efficient Microarchitecture Modeling and Path Analysis for Real-Time Software
	Introduction
	Two issues involved in solving this problem.
	Proposed Solution
	Program path analysis problem handling
	ILP Formulation
	Linear Constraints
	Structural constraints
	Functional constraints
	
	Microarchitecture Modeling
	Direct-mapped Instruction Cache Analysis
	New type of atomic structure line-block (l-block)for analysis
	Cache Constraints
	Cache Conflict Graph (Network flow graph)
	continued
	
	Bounds on p-variables
	Interprocedural call
	Function inc is called twice in the main function
	CCG
	Cache constraints
	CPU Pipeline
	Implementation
	Experiment
	Conclusion

