
1

Energy-Aware Task Allocation for Rate
Monotonic Scheduling

Tarek A. AlEnawy and Hakan Aydin

Prepared by:
Samuel Bushra

Introduction to Real-Time Systems

2

Outline

Main idea

Introduction

System model and assumptions
Power and energy consumption model
Task and scheduling model

Energy minimization procedure

Framework
RMS Admission Control Algorithm
Partitioning Heuristics
Speed Assignment Schemes

Experimental Results

Conclusion

3

Main idea

Problem of energy minimization
Periodic preemptive hard real-time tasks
Identical multiprocessor platform with dynamic voltage scaling capability

Adopt partitioned scheduling and assume tasks are assigned rate-monotonic priorities.

Propose integrated approach to the problem
RMS admission control test
The partitioning heuristic
The speed assignment algorithm

Investigate impact of heuristics
Feasibility
Energy
Feasibility/Energy

4

Introduction

Multiprocessor platform with DVS (Dynamic Voltage Scaling) capability. DVS reduces the system
energy consumption by reducing the CPU supply voltage and the clock frequency simultaneously.

2 main approaches for multiprocessor RT scheduling:

Partitioned scheduling: admission control module permanently assigns each task to a processor.
Each processor has its own ready queue and scheduler.
Global scheduling: scheduler selects from a single ready queue for executing the highest-
priority ‘n’ tasks on ‘m’ processors. Tasks are allowed to migrate between processors.

Partitioned and global scheduling are incomparable, in the sense that there are task sets that can be
scheduled in a feasible manner by only one approach.

Task allocation can have a significant impact on the overall energy consumption of the system.

5

Introduction

Main contributions of this paper:

Problem of energy minimization in multiprocessor periodic RT scheduling with partitioning,
and show that problem remains NP-Hard in the strong sense.
Evaluate well-known partitioning heuristics, RMS admission control algorithms, and speed
assignment schemes in terms of feasibility performance and overall energy consumption.
Evaluate the effects of off-line partitioning and on-line partitioning.

6

System model and assumption
Power and Energy Consumption Model

Multiprocessor platform M with m processors M1, M2, M3, …., Mm.

Number of processors m is fixed during the operation.

All processors are identical in terms of processing power and speed-energy characteristics.

Denote the maximum speed level available in system by Smax. Speed values are normalized with
respect to Smax. (Smax = 1.0)

Each processor has dynamic voltage scaling (DVS) capability to adjust its operating speed S.

g(S) denotes CPU power dissipation function when running at speed S. g(S) is strictly convex and
increasing function.

Total energy consumption of processor: E(t1, t2) = ∫
t2

t1

dt) S(t) g(

7

System model and assumptions
Task and Scheduling Model

Set of n independent periodic hard real-time tasks T = {T1, T2, …. , Tn}

Each task Ti = (Ci, Pi) characterized by two parameters:
Ci: worst-case number of processor cycles required by Ti and a period Pi.
Pi: the period, which is equal to the relative deadline Di.

Worst-case execution time of task Ti when running at speed S is given by ci = Ci / S.

Preemptive scheduling model

Utilization of task Ti under CPU speed S is given by ui(S) = Ci / (PiS)

Aggregate utilization of the task set (under maximum speed) is given by Utot =

Partitioning-based approach to multiprocessor scheduling. Tasks are assigned permanently to
processors.

∑
i

ii PC /

8

System model and assumptions
Task and Scheduling Model

On each processor, Rate Monotonic Scheduling policy is adopted: tasks are assigned static priorities
that are inversely proportional to their periods.

Utilization factor, denoted by α, determines the largest utilization among all the tasks in the set.
Formally, α = max(ui), for all Ti ε T.

A necessary (but not sufficient) condition for feasibility on system of m identical multiprocessors is
to have a task set whose total utilization does not exceed the computing capacity. (Utot <= m)

Review
Necessary condition: a condition which must hold for a result to be true, but which does not
guarantee it to be true.
Sufficient condition: a condition, which if true, guarantees that a result is also true.

9

Energy-minimization procedure

Objective: Under energy-constrained settings, allocate tasks and compute CPU speed assignments
while minimizing the total energy consumption and preserving the feasibility.

RMS-ENERGY-PARTITION: Given a set T of periodic hard real-time tasks and a set M of identical
processors, find a task-to-processor assignment (partition) and compute task level speeds on each
processor such that:

Workload can be scheduled by RMS in a feasible manner.
The total energy consumption on all processors M1, M2, M3, …., Mm is minimum.

Optimization problem where objective function is total energy consumption of M, subject to the
constraint that the workload on each processor will be feasible when scheduled by rate-monotonic
priorities.

10

Energy-minimization procedure

Motivational example

Set of six periodic hard real-time tasks T = {T1, T2, …. , T6} to be scheduled using partitioning on
two identical processors.
Individual task utilizations u1= 0.32, u2 = 0.2, u3 = 0.1, u4 = 0.04, u5 = 0.01 and u6 = 0.01.
Example depicts 3 different partitions and the energy consumption patterns under RMS and EDF
policies.
Total utilization Utot = 0.68 is less than the asymptotic Liu-Layland bound ln 2 (0.693), any
partitioning of these tasks is feasible with both EDF and RMS.

11

Energy-minimization procedure

12

Energy-minimization procedure

Analysis

Partitioning shown in figure 1 corresponds to the schedule, where as many tasks as possible are
packed on one processor while keeping other processors idle to accommodate tasks yet to be
assigned.
Figure 2 shows a perfectly balanced partition.
Figure 3 shows the case where first processor is exclusively dedicated to task with largest utilization,
while all other tasks are assigned to the second processor.

E(Mi) = P * Ui * g(Si) / Si
Ui is total utilization of tasks assigned to Mi under CPU speed Si = 1.0.
P = lcm(P1, P2, …. , P6). Take P = 10000 for illustration purposes.
g(Si) denotes CPU power dissipation function. g(S) = S3.
E(Mi) is energy consumption of processor when running at constant speed Si during the interval
[0,P].

For EDF, speed assignment scheme is optimal: Si = Ui.
For RMS, uniform slow-down approach: speed of processor with ni tasks is Ui / Ubound(ni).
Ubound(k) = k * (21/k – 1) (Liu-Layland schedulability bound)

13

Energy-minimization procedure

Observations

Partition 1 has maximum energy among all three partitions considered for both EDF and RMS.
Under EDF, Partition 2 has minimum energy consumption among all three partitions.
Partition 3 has about 10% lower energy consumption than Partition 2.

Although there is minor difference in processor utilizations, there is significant difference in number
of tasks for each processor.

Feasible partitions can have significantly different energy characteristics.

Load balancing helps to reduce energy consumption, but is not necessarily the most energy-efficient
option.

Proposition: RMS-ENERGY-PARTITION is NP-Hard in the strong sense even when the feasibility
is guaranteed a priori.

14

Framework

What RMS admission control algorithm to use on each processor?
Uniprocessor RMS admission control algorithm adopted.
Two classes of algorithms:

Those using utilization and period information when making a decision.
Those based on Time Demand Analysis.

What partitioning heuristic to use?
An efficient partitioning heuristic determines the processor to which the task will be assigned.

What speed assignment scheme to adopt?
This step involves the computation of the CPU speed. The schedule must remain feasible even
with the reduced speed.

Provide a computational cost and performance benefit analysis of different schemes in terms of both
feasibility and overall energy consumption.

15

Framework
RMS Admission Control Algorithms

Selection of algorithm affects the feasibility performance of system.

Utilization-based feasibility tests

Polynomial-time, yet approximate tests using information about utilization of task set.
Sufficient condition: a task set is deemed feasible if the condition is not violated.

Basic utilization-based tests: require only information about task utilizations.
Exact Liu-Layland test (ELL): a task set with n tasks is schedulable on one processor if Ubound(n) = n * (21/n – 1)
Hyperbolic test (HYP): provides tighter bounds than ELL by considering individual task utilizations:

Utilization-based tests exploiting period information: Liu and Layland observed that schedulability
bound of RMS was 100% for harmonic task sets.

Burchard test: utilization bound is function of number of tasks and how close tasks are to being harmonic.
R-bound test: transforms given task set into one where ratio r of maximum period to minimum period does not
exceed 2. Ubound(n,r) = (n – 1)(r1/(n-1) - 1) + 2/r - 1

2)1(
1

<=+∏
=

i

n

i

u

16

Framework
RMS Admission Control Algorithms

Time-demand-analysis-based tests

Computationally more complex, but more accurate tests using information about worst-case task
execution times and periods.

Time demand analysis (TDA): provides necessary and sufficient condition, runs in pseudo-polynomial time.
The time demand function of task Ti :

Task set is feasible if all tasks meet their deadlines under critical-instant phasing: for each task Ti, it is possible
to find a time instant t where wi(t) <= t <= Di.

Pillai-Shin test: provides sufficient but not necessary condition for feasibility by checking whether time
demand function wi(t) does not exceed relative deadline Di at the task’s period boundary t = Di = Pi for each
task:

ik

i

k k
ii Ptc

P
tctw <=<⎥⎥
⎤

⎢⎢
⎡+= ∑

−

=

0 ,*)(
1

1

TTPc
P
PPtw iik

i

k k

i
ii ∈∀<=⎥⎥

⎤
⎢⎢
⎡== ∑

=

 ,*)(
1

17

Framework
RMS Admission Control Algorithms

All RMS feasibility tests, except for TDA, are inexact in the sense that they provide a sufficient but
not necessary condition for feasibility.

18

Framework
Partitioning heuristics

Second part involves the selection of the partitioning scheme.

Worst-Fit (WF) and Next-Fit (NF) tend to distribute the workload evenly among the available
processors.

First-Fit (FF) and Best-Fit (BF) attempt to greedily pack as many tasks as possible on one processor
while keeping the other processors idle for tasks yet to be assigned.

It is known that FF and BF tend to outperform NF and WF from the feasibility point of view.

19

Framework
Speed Assignment schemes

Once feasible partition obtained with partitioning heuristic and admission control algorithm,
perform speed assignment to minimize energy consumption on each processor.

Uniform slow-down technique

Technique that computes unique speed across all tasks such that new effective utilization
does not exceed utilization bound suggested by admission control algorithm.
Example: Ui / Ubound(ni), where Ubound(k) = k * (21/k – 1) (Liu-Layland schedulability bound)

Time-demand-analysis-based speed assignment techniques

Pillai-Shin: single speed chosen for all tasks running on a given processor. A tentative
target speed αi is determined using the following equality:

TTPc
P
P

iiik

i

k k

i
∈∀=⎥⎥

⎤
⎢⎢
⎡∑

=

 ,* *

1

α

20

Framework
Speed Assignment schemes

Sys-Clock (SysC): chooses a single speed for all tasks running on same processor, and is
optimal for fixed priority preemptive scheduling policies that use single speed.
PM-Clock (PMC): allows different tasks running on same processor to have different speeds.

Both schemes use the idle time in a given schedule to reduce execution speed, and hence decrease
the energy consumption, while maintaining the feasibility.

21

Experimental Results

Performance metrics

Given task set to be scheduled on multiprocessor platform, goal of algorithm selection:
high feasibility performance
low energy consumption
low computational cost

Feasibility metric (FH): percentage of task sets that are feasibly scheduled by heuristic H out of the
total number of task sets generated during experiments.
Energy consumption metric (ECH): average energy consumption for each task set scheduled by H in
a feasible manner.
Feasibility/energy metric (FEH): favors heuristics with high feasibility and low energy consumption.

22

Experimental Results

Simulation settings

Function of two task set parameters: Utot (total task set utilization) and α (task utilization factor)
For a fixed number of processors m, Utot is varied between m / 10 and m.
Utot / n <= α <= 1.0
Case of α = 1.0 corresponds to having no constraint on upper bounds on individual task utilization.
For each data point, 1000 task sets generated by varying task periods Pi and utilizations ui.
Each task has a uniform probability of having short (1-10ms), medium (10-100ms), or long (100-
1000ms) period.
Task periods are uniformly distributed in each range.
Task utilizations ui are generated uniformly in the interval [0.001,α].
A task’s worst-case execution time at maximum speed is then determined as ci = Pi * ui.
8 processors and 80 tasks are used.

23

Experimental Results
Results for off-line partitioning

Off-line partitioning: all task characteristics are known in advance.

Greedy behavior of FF and BF improves the feasibility, a result from the study of bin-packing
problem.
In balanced partition, load balancing tends to reduce energy consumption in general, but does not
lead to minimum energy when RMS is used.
In un-balanced partition, heavily loaded processors have to run at speed close to maximum to
guarantee feasibility of task set, which increases total energy of system.

FF and BF are identical in terms of feasibility and energy performance. Since BF has higher
computational complexity than FF, it is not included in discussion.

24

Experimental Results
Results for off-line partitioning

Effect of partitioning schemes

Figures 4-5 use Exact Liu-Layland test (ELL) schedulability bound and uniform slow-down
technique.
There is trade-off between feasibility and energy performances. It is not possible to determine best
performing scheme just by considering feasibility and energy separately.
For off-line partitioning, the best partitioning heuristic is Worst-Fit, followed by Next-Fit, then First-
Fit.

25

Experimental Results
Results for off-line partitioning

Effect of admission control and speed assignment schemes

ELL, HYP, BURC, and R-BOUND use uniform-slowdown speed assignment technique.
TDA uses the Sys-Clock speed assignment algorithm.
The Worst-Fit partitioning heuristic is assumed to be used since it outperforms the other heuristics in
terms of feasibility and energy consumption combined.

26

Experimental Results
Results for on-line partitioning

On-line partitioning: the task parameters are not known in advance.

FF, BF and NF have good feasibility performance, but have poor energy and feasibility/energy
performance, particularly at low utilization values.
WF has good energy performance, but it has very low feasibility and feasibility/energy performance,
especially at medium to high utilization. WF has poor performance since tasks with small utilization
are distributed to multiple processors, preventing allocation of subsequent task with large utilization
to separate processor.

RESERVATION: algorithm reserves a pool of k processors (k <= m) for light tasks and the
remaining m – k processors for heavy tasks. (light task means that its utilization does not exceed
average utilization per processor)

RESERVATION(k) maintains balance between good feasibility performance of FF/BF and the good
energy performance of WF.

27

Experimental Results
Results for on-line partitioning

Effect of partitioning schemes

ELL schedulability bound assumed for the results.
RSVR2 has consistently good overall performance and is comparable to best scheme under each
condition.
For α = 0.5, RSVR4 provides best overall performance.

28

Experimental Results
Results for on-line partitioning

Effect of admission control and speed assignment scheme

RESERVATION(k=2) scheme used based on consistently good performance at different load
conditions.
R-BOUND not included since it mandates knowledge of the periods and task pre-ordering.
In terms of hybrid performance metric, TDA-SYSC, with its sophisticated mechanism is the clear
winner throughout the utilization.

29

Experimental Results
Effect of discrete speed levels

In presence of finite number of discrete speeds, one selects a higher CPU speed level, leading to an
increase in total energy consumption. This results in overall decrease of feasibility/energy
performance.
Relative performance of different feasibility tests unchanged compared to continuous speed case.

30

Conclusion

First research effort addressing energy-aware scheduling of static-priority periodic RT task sets on
multiprocessors with partitioned approach.

Time Demand Analysis combined with Sys-Clock speed assignment has best overall performance in
off-line and on-line settings.

In off-line settings, Worst-Fit has best overall performance among partitioning heuristics.

Hyperbolic test combined with uniform slow-down approach has best overall performance among
polynomial-time schemes.

In on-line settings, performance of Worst-Fit deteriorates significantly. However,
RESERVATION(k) scheme exhibits a competitive overall performance.

	Energy-Aware Task Allocation for Rate Monotonic Scheduling
	Outline
	Main idea
	Introduction
	Introduction
	System model and assumptionPower and Energy Consumption Model
	System model and assumptionsTask and Scheduling Model
	System model and assumptionsTask and Scheduling Model
	Energy-minimization procedure
	Energy-minimization procedure
	Energy-minimization procedure
	Energy-minimization procedure
	Energy-minimization procedure
	Framework
	FrameworkRMS Admission Control Algorithms
	FrameworkRMS Admission Control Algorithms
	FrameworkRMS Admission Control Algorithms
	FrameworkPartitioning heuristics
	FrameworkSpeed Assignment schemes
	FrameworkSpeed Assignment schemes
	Experimental Results
	Experimental Results
	Experimental ResultsResults for off-line partitioning
	Experimental ResultsResults for off-line partitioning
	Experimental ResultsResults for off-line partitioning
	Experimental ResultsResults for on-line partitioning
	Experimental ResultsResults for on-line partitioning
	Experimental ResultsResults for on-line partitioning
	Experimental ResultsEffect of discrete speed levels
	Conclusion

