
3/29/2005 CMSC 691S Real-Time Systems 1

Achieving Real-Time 
Communication over Ethernet 
with Adaptive Traffic Smoothing

By Seok-Kyu Kweon, Kang G. Shin 
and Gary Workman



3/29/2005 CMSC 691S Real-Time Systems 2

Outline

Introduction
Problem Statement and Approach
Experiment Evaluation on Linux
Experiment Evaluation on Windows NT
Conclusion



3/29/2005 CMSC 691S Real-Time Systems 3

Introduction

Ethernet becomes the preferable 
technology for real-time control network
Unpredictable delay characteristic due to 1-
persistent CSMA/CD protocol

Contention with non-RT packets in local node
Collision with packets from other nodes

Solution: Traffic smoother
RT packets receives higher priority
Smooth non-RT streams to reduce collision



3/29/2005 CMSC 691S Real-Time Systems 4

Problem Statement and Approach

Scenario: automated manufacturing 
facility
Traffic Pattern: event-driven RT 
message generation in pseudo 
periodic manner & bursty non-RT 
traffic



3/29/2005 CMSC 691S Real-Time Systems 5

Fixed Rate Traffic Smoothing

Regulate bursty packet streams
Provide statistical bound of deadline-miss 
ratio by modeling CMSA/CD with 
Exponential Binary Backoff as semi-Markov 
process

Derive relation between delay and network 
utilization

Enforce fixed station input limit to keep 
network utilization low to provide soft real-
time communication



3/29/2005 CMSC 691S Real-Time Systems 6

Smoother algorithm

Introduce traffic smoother between 
TCP/IP layer and MAC layer

Distorted traffic pattern if implemented 
over TCP/IP layer (slow start….)

Regulate packet stream using credit 
bucket (more like token bucket)

CBD: Credit Bucket Depth
RP: Refresh period



3/29/2005 CMSC 691S Real-Time Systems 7

Smoother Architecture

Application

TCP/IP

Traffic Smoother

Ethernet



3/29/2005 CMSC 691S Real-Time Systems 8

Smoother algorithm(Cont’)
Up to CBD credits are added to bucket every RP 
seconds
Overflow credits are discarded
Smoother forwards the packets to MAC if at least one 
credit is available
Decrement credit number as the size of packet
Allow negative credit balance
Example: Avg. throughput fixed at 312.5 KB/sec

(CBD, RP) = (1500, 0.0048)
(CBD, RP) = (150000, 0.48) → burstier output



3/29/2005 CMSC 691S Real-Time Systems 9

Smoother algorithm (Cont’)

Assign higher priority to RT packets
Delay non-RT packets to abide station 
input limit
Extra RT packets can further delay non-
RT packets
RT traffic arrives pseudo-periodically and 
is already smoothed.



3/29/2005 CMSC 691S Real-Time Systems 10

Problems

Inflexible and unscalable
Station input limit is reduced as number of 
nodes increases in order to maintain fixed global 
input limit
Introduce large delays to non-RT packets

Solution: Adaptive-Rate traffic smoothing
Allowing varying max traffic generation rate 
depend on network load
Non-RT traffic generation is allowed to increase
Modification to current protocol is minimal



3/29/2005 CMSC 691S Real-Time Systems 11

Adaptive rate traffic smoothing

Fixed-Rate 
Traffic Smoother

Adaptive-Rate 
Traffic Smoother

Original Traffic 
Arrival



3/29/2005 CMSC 691S Real-Time Systems 12

Issues

How to detect network utilization
Indirect methods

packet collision or buffer clearing rate
Measure network utilization in promiscuous 
mode

How to adapt to the change
Tuning throughput by changing CBD and 
RP

Changing CBD → fluctuated burst size
Changing RP → better choice



3/29/2005 CMSC 691S Real-Time Systems 13

Harmonic Increase & Multiplicative 
Decrease Adaptation

Similar to slow-start increase and 
multiplicative decrease concept
Increase: “Harmonically” increase 
station input limit by decreasing RP 
by ∆ (every τ time)
Decrease: Detect Packet Collision

Clear all credits in bucket
Delay non-RT packets
Doubles RP



3/29/2005 CMSC 691S Real-Time Systems 14

Procedure smoothing
If (Packet.TypeOfService = RealTime) then {

send_to_NIC;

CurrentNetworkShare:= CurrentNetworkShare – Packet.Size;}

Else if (LastCollisionTime ≥ CurrentTime - α) then {

send_back_to_queue;

CurrentNetworkShare := 0;

RP = min (RPmax, 2 × RP);}

Else if (CurrentNetworkShare > 0) then {

send_to_NIC;

CurrentNetworkShare := CurrentNetworkShare – Packet.Size;}

Else

send_back_to_queue;



3/29/2005 CMSC 691S Real-Time Systems 15

Flowchart for smoothing

If RT pk Send_to_NIC Update 
Net. Share

Collision
within α

CBD > 0

If non-RT pk

Send_to_NIC Update 
Net. Share

Send pk
Back to q

Clear
credit RP = RPx2Y

Y

N

N Send pk
Back to q



3/29/2005 CMSC 691S Real-Time Systems 16

Procedure refresh
RP := max (RPmin, RP - ∆);

If (CurrentTime = NextRefreshTime) then {

CurrentNetworkShare := min(CurrentNetworkShare + CBD, CBD);

NextRefreshTime := CurrentTime + RP;

}



3/29/2005 CMSC 691S Real-Time Systems 17

Experiment Evaluation on Linux



3/29/2005 CMSC 691S Real-Time Systems 18

Environment Setup
1 Monitor Station, 10 PCs
PC are arranged into a logical ring topology, 
exchanging RT control messages with neighbors

100 byte in size
0.3 sec inter-arrival time, exp. distributed
2×100×8×10/0.3 = 53.3Kbps

PC generates non-RT traffic when probed by monitor 
station

1M byte in size
Non-greedy mode: 25 sec inter-arrival time, exp. 
distributed =>320Kbps/PC
Greedy mode: send non-RT traffic continuously



3/29/2005 CMSC 691S Real-Time Systems 19

Experiment result: RT message 
loss ratio

No traffic 
smoothing

Fixed-rate traffic 
smoothing

Adaptive-rate 
traffic smoothing



3/29/2005 CMSC 691S Real-Time Systems 20

Experiment Result: mean delay for 
non-RT messages

No traffic 
smoothing

Fixed-rate traffic 
smoothing

Adaptive-rate 
traffic smoothing



3/29/2005 CMSC 691S Real-Time Systems 21

Experiment Result: delay for RT 
messages

No traffic smoothing Adaptive-rate traffic 
smoothing



3/29/2005 CMSC 691S Real-Time Systems 22

Experiment Result: loss ratio of RT 
traffic in greedy mode

Adaptive-rate 
traffic smoothing

No traffic 
smoothing



3/29/2005 CMSC 691S Real-Time Systems 23

Experiment Result: Throughput for 
non-RT traffic in greedy mode

Adaptive-rate 
traffic smoothing

No traffic 
smoothing



3/29/2005 CMSC 691S Real-Time Systems 24

Experiment Evaluation on Windows 
NT

Windows NT is widely deployed
Implemented using NDIS
Acquire packet collision through NT 
system call

Frequent call can freeze the system
Result in less responsiveness compared 
with Linux version
Can change both CBD and RP



3/29/2005 CMSC 691S Real-Time Systems 25

Experiment Result: RT message 
loss ratio (greedy mode)

Adaptive-rate 
traffic smoothing

No traffic 
smoothing



3/29/2005 CMSC 691S Real-Time Systems 26

Experiment Result: non-RT traffic 
throughput

Adaptive-rate 
traffic smoothing

No traffic 
smoothing



3/29/2005 CMSC 691S Real-Time Systems 27

Conclusion
Traffic Smoother provides soft real-time 
communication service
Regulate bursty TCP/IP traffic to be smooth 
stream
Adapt traffic generation rate to current 
network condition
Provide good throughput to non-RT traffic 
while meeting RT traffic requirements
Further extension for other applications 
such as real-time video


	Achieving Real-Time Communication over Ethernet with Adaptive Traffic Smoothing
	Outline
	Introduction
	Problem Statement and Approach
	Fixed Rate Traffic Smoothing
	Smoother algorithm
	Smoother Architecture
	Smoother algorithm(Cont’)
	Smoother algorithm (Cont’)
	Problems
	Adaptive rate traffic smoothing
	Issues
	Harmonic Increase & Multiplicative Decrease Adaptation
	Procedure smoothing
	Flowchart for smoothing
	Procedure refresh
	Experiment Evaluation on Linux
	Environment Setup
	Experiment result: RT message loss ratio
	Experiment Result: mean delay for non-RT messages
	Experiment Result: delay for RT messages
	Experiment Result: loss ratio of RT traffic in greedy mode
	Experiment Result: Throughput for non-RT traffic in greedy mode
	Experiment Evaluation on Windows NT
	Experiment Result: RT message loss ratio (greedy mode)
	Experiment Result: non-RT traffic throughput
	Conclusion

