UV

Semantics-Based Compiler
Transformations for Enhanced

Schedulability

Richard Gerber & Seongsoo Hong

Presented by Li Deng

(1.
N

N

Main Idea

@ Using TCEL, a real-time programming
language, the unobservable code can be
automatically moved, so, an unschedulable

task set can be convert into a schedulable
one

N

Outline

@ Introduction
@ Overview of TCEL
@ Scheduling with Compiler Transformations

@ Automatic Task Decomposition by program
Slicing
@ Conclusion

Introduction—the TCEL language

N

TCEL — Time-Constrained Event Language

Compare with other languages:

s Other languages establish constraints between blocks of
code

m TCEL semantics establishes constraints between the
observable events within the code

N

from
Sensor

| state—nextState(...);

start of
iod = E w)s
penie receive(Sensor, data) ¢md-nextCmd(..);

Introduction—the TCEL language

to
Actuator

send(Actuator, cmd)
|

Figure 1: Structure of Controller Subsystem.

TCEL program fragment:

Al:

A2:
A3:
A4:
Ab:

every 25ms

{

receive(Sensor, data);
cmd = nextCmd(state, data};
state = nextState(state, data);
send(Actuator, cmd);

}

Al:

every 25ms

{

A2: receive(Sensor, data);

A3: cmd = nextCmd(state, data);
A5: send(Actuator, cmd);

A4: state = nextState(state, data);

}

N

Introduction
transforming tasks for enhanced schedulability

@® The event-based semantics provides a
foundation to automatically tune a real-time
system

= A compiler decomposition technique can be
used to automatically decompose A4

m A task transformation algorithm can relocate
code to tolerate single-period overloads

N

Introduction

transforming tasks for enhanced schedulability

#® The task transformation technique is developed to

support control-domain programs under rate-
monotonic scheduling.

The framework consists:

m An algorithm, to find unschedulable tasks, and determine
the amount that they must be transformed.

n A program slicer, to decomposes a task and isolates the
component that can have its deadline postponed.

m An online, dynamic adaptation to modify the rate-
monotonic scheduler, to enforce precedence constrains
between task iterations. (adaptation priority exchange)

Overview of TCEL

N

sporadic program :

do

(reference block)
[start after i,,:,] [start before 1,,,:1]
[finish within ¢,,,.2 |

(constraint block)

The ‘do’ construct induces the e start after t,,;,: There is a minimum delay of
following timing constrains: tmin between the last event executed in the RB,
and the first event executed in the CB.

e start before t,,,,1: There is a maximum delay

RB S | CB | of t,,421 between the last event executed in the
| | | RB, and the first event executed in the CB.
Y trimin - itrtraxd BMAX2 o finish within tmazco: There 1s a maximum delay

of t,,422 between the last event executed 1n the
RB, and the last event executed in the CB.

Overview of TCEL

periodic program

N

every p [while (condition)]
[start after t,,;, | [start before ¢,,4.1]
[finish within #,,422]

(constraint block)

TR s s (N i i

t+tmin t+tmaxl tHtmax2 tHpttmin tHp+tmax]l tHp+tmax2

f observable event occurrence

e start after t,,;,: The first event executed 1n the
CB occurs after ¢t + ip + tin.

e start before ¢,,,.1: The first event executed 1in
the CB occurs before ¢t + ip + tmazx1.

e finish within ¢,,,.2: The last event executed in
the CB occurs before ¢t + ip + {1,422

N

Scheduling with Compiler Transformations

L

To motivate the transformation, the paper gave an
example set of GN&C tasks (guidance, navigation and control),
which is shown to be unschedulable with Rate-
Monotonic scheduler.

10

Scheduling with Compiler Transformations
--characterization of control software

N

One major property: control algorithms are executed repetitively
with fixed periods

During each period:
= the physical world measurement data is sampled,
= then, actuator commands are computed,
= meanwhile, a set of states is updated,

#® Dynamic behavior of GN&C can be expressed:

O = g(Xk, Ir) (1)
X1 = h(Xk, Ii) (2)

I: input of the kth period Ok output of the kith period Xk: current state of the kih period

11

Scheduling with Compiler Transformations

--characterization of control software

N

One possible ordering of Eql 10
and 2: | ""_""_S;t:_"jl
. Transformer T
= Common computational part | = j— (ST) | e
. | | Cede
is factored out Xk === _(Com) Output |
I —|_. Genoegtor I
n O = g’(}i’k’ Ik:) - Com,OG L(l}
m Xpy1 = h(Xk;Ik) — COI’T];ST

Figure 4: Task Decomposition in the k' Period.

Inter-task precedence is represented by the arrows

eIntra-task precedence : (1) Com(k);ST(k) < Com(k + 1); ST(k + 1)
(2) Com(k);ST(k) < Com(k + 1);0G(k+ 1)

12

Scheduling with Compiler Transformations

--Rate-Monotonic Schedulability Analysis

N
\J

A set of tasks 11 ,12,...
Ti(Ti, Ci), Ti<T2<Ts...

® scheduling points are those points which are multiples of the
periods of the tasks.

® @

0 T To 2T1 2T>2

#® To determine If task Tk can meet its deadline under the worst
case, we need to check those scheduling points in the interval

[0, Tk] il

> Ti*]<1
—— <

i=1

13

N

Scheduling with Compiler Transformations

--Rate-monotonic Schedulability Analysis

Example 1: Consider the case of three periodic tasks,
where U; = C;/T;.
Task(r) : C; =4.0;Ty =10;U; =04
Task(m) : Co = 4.0, T, = 16; U, = 0.25
Task(ms) : C3 =6.41;T5 = 25; U = 0.2612
- r,and 7, are schedulable, because U, +U, <n(2"" -1) =2(2"* -1) =0.83
 But the entire task set is not schedulable.
scheduling points within [0, T3]:
N4+ Cr +Cy < T 4+4+6.41>10)
207 + O + Oy < T35 8+4+641>16)

(

(
207 + 2C5 + O3 < 2T, (8 + 8 +6.41 > 20)
3Ch +2C; +Cx < T3 (124 8+ 6.41 > 25)

let some of 7;'S code ‘slide’ into the next period, to achieve schedulability.

This is called deadline postponement.

14

N

Scheduling with Compiler Transformations

--Task Transformation Algorithm

%
#® The application of deadline postponement can be described :

Step 1 Task 7 i1s duplicated into two tasks 7,
and 7,.

Step 2 Both 7, and 7, are given 27" as their pe-
riod, where T is 7’s original period.

Step 3 7: is initiated at times 0,27, ..., while 7,
1s initiated at times 7,37,

0 T 2T 3T 4T ST 6T
| | | | | | |

X y X y X y X

Some observable events may miss their deadlines.
s Use a compiler-driven task decomposition technique

#® How to preserve the original precedence?
= An online, dynamic adaptation

15

Scheduling with Compiler Transformations

--Task Transformation Algorithm

N

L

L 4
&

L1:
L2:

L3:
L4:
L5:
Lé6:
L7:
L8&:
L9:

L10:

Task decomposition. We use the task set in Exp 1.

Decompose 7,'S code into two parts: z,, and z,,
1, Code that computes the output command --- 73, , correspond to ‘Com, OG’
2. Code that computes the state update --- Z3p, correspond to ‘ST’

/# Subtask 12, %/
every 2ims

every 25ms {
{ receive(Sensor, data); [0.2ms,0.5ms]
receive(Sensor, data); [0.2ms,0.5ms] ¢ = 'null(data); [0.05ms,0.06ms]
if ('null(data)) [0.05ms,0.06ms] if ({C) [0.01ms,0.02ms]
{
t1 = Fl{state); 0.3ms,1.05ms
t1 = Fl(state); [0.8ms,1.05ms] 3 — FBgdata]); {0.9m5,1.35ms}
t2 = F2(state); [0.9ms,1.35ms] t4 = F4(data); [0.9ms,1.35ms]
t3 = F3(data); [0.9ms,1.35ms] emd = t1 % (t3 + t4); [0.09,0.1ms]
t4 = F4(data); [0.9ms,1.35ms] send(Actuator, cmd); [0.2ms,0.5ms]
cmd = t1 = (t3 +t4); [0.09ms,0.1ms] j }
send(Actuator, cmd); [0.2ms,0.5ms] }

/* Subtask 73 #/

:;ta,te =tl* (124 t3); [0.11ms,0.15ms] every 25ms
{
} if (¢) [0.01ms,0.02ms]
{
Figure 5: TCEL Program for Task 73. t2 = F2(state); [0.9ms,1.35ms]
state = t1 = (12 4+ t3); [0.11ms,0.15ms]
}

}
Figure 6: Two Decomposed Subtasks. 16

Scheduling with Compiler Transformations

--Task Transformation Algorithm
)

¢V

Subtask 75, consists of only local computations, we can subject it
to deadline postponement,

= Two duplicated task: T3y, Tgy,

= With period : Tap =Tap, =215

= 7,, IS initiated after a delay of Ts from the initiation of 7,
Original Task
Ik) Ok} : . .
|_Ei l—i l—. 1 This transformation is unsafe,
el — 73 unless we ensure that the
=Tt 1 - period {} exDst 1" (*nd precedence constraints
ey Constructed Tasks between the tasks are
‘ﬂﬁ QT alz_T 1—1 maintained.
| | | l TBa
ey 7 1) e =]
I 51!1; : STik+1) stl
.I . I : .
STk STik=2) 3b2

Figure 7: Scheduling of Newly Constructed Tasks.

17

N

Scheduling with Compiler Transformations

--Task Transformation Algorithm

L

#® Assume the original precedence is maintained.
® Consider the schedulability of task set {1, 72, T34, 7351, T352 }

@ For the sake of schedulability analysis, the paper coalesces z,,,
and Tapo INtoT3 B (T3p = 215 and Csp = Csp1 + Capa)

3CT + 205 4+ Cs, <15

(12 + 8 + 4.93 < 25)
5CT + 305 4+ 2C5, + Cip < 315

(20 + 12 4 9.86 + 3.04 < 48)

as long as the precedence constrains are maintained, the above

transformation guarantees that observable operations meet their
deadlines.

18

Scheduling with Compiler Transformations

--Modifying the scheduler: Priority Exchange

N

®
®

Scheduler: rate-monotonic scheduler
The precedence constraints of {7a, To1, Tha}

(C1) Tzfc1 = T;E and (02) T;E = lekl-}_l
(C3) 72F < Tfl and (C4) r2F+1 < Té’“z

(C5) Tfl < T§k+1 and (C6) TfQ < TC?UH_U

This scheduler can keep the constraints C1 and C2 (give the
two task same priority); also can keep C3 and C4.

But this scheduler cannot guarantee C5 and C6.

The paper introduced a dynamic modification for the scheduler
called priority exchange.

19

Scheduling with Compiler Transformations
--Modifying the scheduler: Priority Exchange

N

L
@® Priority exchange :
n p.and P, denote the priority of 7o and Tp1 (P2 > Pu)

¢ When a period of 7, starts in the middle of 73,
and if 7,7 has not yet finished its execution, then
Ty1 exchanges its priority with 7,. Also, a count-
down timer gets set to Ch.

e The timer is only decremented (1) if it has been
set, and (2) if 7y or 7, are running with priority
po. That is, if either 131 or 7, get preempted by
a higher priority task, the timer is temporarily

stopped. r2k+1

e If 7, finishes before the timer expires, then 7, 1s

restored to its original priority p,. k
b1

20

Automatic Task Decomposition by
program Slicing

N

ldea of task decomposition:
= Accept a task, then generate its two code components (z, »z,, +7,,)

= One component contains observable events (z,,); the other
includes the next-state update (7).
#® Program slicing:

= Assumption: function calls are inlined; loops are unrolled; the
intermediate code of programs is translated into static single
assignment form.

s Computation of slices is based on data dependence and control
dependence. We can use program dependence graph.

21

Automatic Task Decomposition by

N

program Slicing

Definition:

= A slice of program P consists of P’s statements and control
predicates that may affect the value of v at point p. we call a
pair <p, v> a slicing criterion, and denote its associated slice by
P/<p, v>.

s Example:

the following fragment is the slice P,/ <eot,state >

where eot is a pseudo-location at the end of the loop body.
every 25ms

{

L1: receive(Sensor, data);
L2: if ('null(data})
{

L.3: t1 = Fl(state);
L4: t2 = F2(state);
L5: t3 = F3(data);
L9: state = t1 * { 12 + t3);

}

22

Automatic Task Decomposition by

program Slicing

N

#® Definition of program dependence graph G=(V, E):

m The vertexes V represent the task’s operations. In addition
there is a distinguished vertex ‘entry’ , which represents the
root of the task.

= The edges E are of two sorts:

- between entry and vertex that is not nested

within any loop or conditional
n,——n, |
between control predicate and vertex that is immediately
" nested within the loop or conditional
g loop independent
n——n, .
loop carried

23

Automatic Task Decomposition by
program Slicing

p
N
every 25ms
{
L1: receive(Sensor, data);
L2: if ({Tnull(d&ta)) <___|§””_Y__> ———» control dependence
_— data dependence

LS: tl = Fl(btatE) o ~ __7_?———.- loop carried dependence

L4: t2 = F2(state); Creceivel-, data) >——————=_ fftnuil(data)) >

L5: t3 = F3(data); -

L6: t4 = F4(data);

L7: cmd = t1 % (t3 4 t4); B N T md =

L8: send(ActuanL ;nd);) EFi{sj@ @Ff(fte} N 3> Q‘d(”*ty @d" Cmd’ ‘

L.9: state = t1 * (t2 4+ t3);

}
L10: }

Figure 9: Program Dependence Graph.

24

Automatic Task Decomposition by
program Slicing

N

#® A simple method to compute the slice A/<p, v>:
(the program point p corresponds to a vertex of the graph.)
s Compute slicing criterion.
s Compute the slice by a backward traversal of the graph

The most important part of program slicing is to pick the right
slicing criteria so that the resulting slices of a task ‘cover’ all
behaviors of the original task.

25

Automatic Task Decomposition by

N

program Slicing

we use the two following sets of slicing criteria

1. C,(z) includes all slicing criteria <o, var(o)> where ois an
observable operation which occurs in task z's code, and var(o) is
a variable appearing in o.

2. C,(z) includes slicing criteria <eot, s> where sis a state variable
in the task.

26

Automatic Task Decomposition by

program Slicing

N

#® This decomposition is safe , because the two sets of slices
Co(7) and () can preserve the task’s original behavior:

- variables that affect observable operations
(by data / control dependence)

variables <

. variables that do not affect

(can be deleted, because they do not change the original
observable behaviors)

27

Automatic Task Decomposition by

program Slicing

N

Using the two criterion sets, the task decomposition
algorithm is given below:

Algorithm 4.2 Decompose task T into 7, and 13:

Step 1 Compute C,(7) and slice task 7 with re-
spect to Cy(7). Then the generated slice
7/C,(7) becomes 7,.

Step 2 Compute C (1) and slice task 7 with re-
spect and C, (7).
Step 3 Delete from 7/C(7) non-conditional

statements common to both of the slices.
The remaining code becomes 7.

28

Conclusion

N

#®The paper presented

= A new real time programming language,
TCEL

= A compilation technique which automates
task tuning operations for enhanced
schedulability

29

	Semantics-Based Compiler Transformations for Enhanced Schedulability
	Main idea
	Outline
	Introduction—the TCEL language
	Introduction—the TCEL language
	Introduction—transforming tasks for enhanced schedulability
	Introduction—transforming tasks for enhanced schedulability
	Overview of TCEL
	Overview of TCEL
	Scheduling with Compiler Transformations
	Scheduling with Compiler Transformations--characterization of control software
	Scheduling with Compiler Transformations--characterization of control software
	Scheduling with Compiler Transformations--Rate-Monotonic Schedulability Analysis
	Scheduling with Compiler Transformations--Rate-monotonic Schedulability Analysis
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Modifying the scheduler: Priority Exchange
	Scheduling with Compiler Transformations--Modifying the scheduler: Priority Exchange
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Conclusion

