
1

Semantics-Based Compiler
Transformations for Enhanced

Schedulability
Richard Gerber & Seongsoo Hong

Presented by Li Deng

2

Main idea

Using TCEL, a real-time programming
language, the unobservable code can be
automatically moved, so, an unschedulable
task set can be convert into a schedulable
one

3

Outline

Introduction
Overview of TCEL
Scheduling with Compiler Transformations
Automatic Task Decomposition by program
Slicing
Conclusion

4

Introduction—the TCEL language

TCEL — Time-Constrained Event Language
Compare with other languages:

Other languages establish constraints between blocks of
code
TCEL semantics establishes constraints between the
observable events within the code

5

Introduction—the TCEL language

TCEL program fragment:

6

Introduction
—transforming tasks for enhanced schedulability

The event-based semantics provides a
foundation to automatically tune a real-time
system

A compiler decomposition technique can be
used to automatically decompose A4
A task transformation algorithm can relocate
code to tolerate single-period overloads

7

Introduction
—transforming tasks for enhanced schedulability

The task transformation technique is developed to
support control-domain programs under rate-
monotonic scheduling.

The framework consists:
An algorithm, to find unschedulable tasks, and determine
the amount that they must be transformed.
A program slicer, to decomposes a task and isolates the
component that can have its deadline postponed.
An online, dynamic adaptation to modify the rate-
monotonic scheduler, to enforce precedence constrains
between task iterations. (adaptation priority exchange)

8

Overview of TCEL
sporadic program :

The ‘do’ construct induces the
following timing constrains:

RB CB

t t+tmin t+tmax1 t+tmax2

9

Overview of TCEL
periodic program

10

Scheduling with Compiler Transformations

To motivate the transformation, the paper gave an
example set of GN&C tasks (guidance, navigation and control),
which is shown to be unschedulable with Rate-
Monotonic scheduler.

11

Scheduling with Compiler Transformations
--characterization of control software

One major property: control algorithms are executed repetitively
with fixed periods
During each period:

the physical world measurement data is sampled,
then, actuator commands are computed,
meanwhile, a set of states is updated,

Dynamic behavior of GN&C can be expressed:

Ik: input of the kth period Ok: output of the kth period Xk: current state of the kth period

12

Scheduling with Compiler Transformations
--characterization of control software

One possible ordering of Eq1

and 2:
Common computational part
is factored out

Com;OG
Com;ST

•Inter-task precedence is represented by the arrows

•Intra-task precedence :

13

Scheduling with Compiler Transformations
--Rate-Monotonic Schedulability Analysis

A set of tasks τ1 ,τ2 ,…
τi(Ti, Ci), T1<T2<T3...

scheduling points are those points which are multiples of the
periods of the tasks.

To determine if task τk can meet its deadline under the worst
case, we need to check those scheduling points in the interval
[0, Tk]

0 T1 T2 2T1 2T2

14

Scheduling with Compiler Transformations
--Rate-monotonic Schedulability Analysis

• and are schedulable, because

• But the entire task set is not schedulable.

scheduling points within [0,T3]:

83.0)12(2)12(2/1/1
21 =−=−<+ nnUU1τ 2τ

let some of code ‘slide’ into the next period, to achieve schedulability.

This is called deadline postponement.

s'3τ

15

Scheduling with Compiler Transformations
--Task Transformation Algorithm

The application of deadline postponement can be described :

Some observable events may miss their deadlines.
Use a compiler-driven task decomposition technique

How to preserve the original precedence?
An online, dynamic adaptation

0 T 2T 3T 4T 5T 6T

x y x y x y x

16

Scheduling with Compiler Transformations
--Task Transformation Algorithm

Task decomposition. We use the task set in Exp 1.
Decompose code into two parts: and

1. Code that computes the output command --- , correspond to ‘Com, OG’
2. Code that computes the state update --- , correspond to ‘ST’

s'3τ a3τ b3τ
a3τ

b3τ

17

Scheduling with Compiler Transformations
--Task Transformation Algorithm

Subtask consists of only local computations, we can subject it
to deadline postponement,

Two duplicated task: ,
With period :

is initiated after a delay of T3 from the initiation of

b3τ

13bτ 23bτ
32313 2TTT bb ==

23bτ 13bτ

3τ

13bτ

23bτ

a3τ

This transformation is unsafe,
unless we ensure that the
precedence constraints
between the tasks are
maintained.

18

Scheduling with Compiler Transformations
--Task Transformation Algorithm

Assume the original precedence is maintained.
Consider the schedulability of task set
For the sake of schedulability analysis, the paper coalesces
and into .()

as long as the precedence constrains are maintained, the above
transformation guarantees that observable operations meet their
deadlines.

13bτ
23bτ

19

Scheduling with Compiler Transformations
--Modifying the scheduler: Priority Exchange

Scheduler: rate-monotonic scheduler
The precedence constraints of :

This scheduler can keep the constraints C1 and C2 (give the
two task same priority); also can keep C3 and C4.
But this scheduler cannot guarantee C5 and C6.
The paper introduced a dynamic modification for the scheduler
called priority exchange.

20

Scheduling with Compiler Transformations
--Modifying the scheduler: Priority Exchange

Priority exchange :
and denote the priority of and ()ap 1bp aτ 1bτ 1ba pp >

21

Automatic Task Decomposition by
program Slicing

Idea of task decomposition:
Accept a task, then generate its two code components ()
One component contains observable events (); the other
includes the next-state update ().

Program slicing:
Assumption: function calls are inlined; loops are unrolled; the
intermediate code of programs is translated into static single
assignment form.
Computation of slices is based on data dependence and control
dependence. We can use program dependence graph.

ba 333 τττ +→

a3τ
b3τ

22

Automatic Task Decomposition by
program Slicing

Definition:
A slice of program P consists of P’s statements and control
predicates that may affect the value of v at point p. we call a
pair <p, v> a slicing criterion, and denote its associated slice by
P/<p, v>.
Example:
the following fragment is the slice
where eot is a pseudo-location at the end of the loop body.

>< stateeotPcontrol ,/

23

Automatic Task Decomposition by
program Slicing

Definition of program dependence graph G=(V, E):
The vertexes V represent the task’s operations. In addition
there is a distinguished vertex ‘entry’ , which represents the
root of the task.
The edges E are of two sorts:

between entry and vertex that is not nested
within any loop or conditional

between control predicate and vertex that is immediately
nested within the loop or conditional

loop independent
loop carried

21 nn c⎯→⎯

21 nn d⎯→⎯

24

Automatic Task Decomposition by
program Slicing

25

Automatic Task Decomposition by
program Slicing

A simple method to compute the slice P/<p, v> :
(the program point p corresponds to a vertex of the graph.)

Compute slicing criterion.
Compute the slice by a backward traversal of the graph

The most important part of program slicing is to pick the right
slicing criteria so that the resulting slices of a task ‘cover’ all
behaviors of the original task.

26

Automatic Task Decomposition by
program Slicing

we use the two following sets of slicing criteria
1. includes all slicing criteria <o, var(o)> where o is an

observable operation which occurs in task code, and var(o) is
a variable appearing in o.

2. includes slicing criteria <eot, s> where s is a state variable
in the task.

)(τoC
s'τ

)(τsC

27

Automatic Task Decomposition by
program Slicing

This decomposition is safe , because the two sets of slices
and can preserve the task’s original behavior:

variables that affect observable operations
(by data / control dependence)

variables

variables that do not affect
(can be deleted, because they do not change the original
observable behaviors)

)(0 τC)(τsC

28

Automatic Task Decomposition by
program Slicing

Using the two criterion sets, the task decomposition
algorithm is given below:

29

Conclusion

The paper presented
A new real time programming language,
TCEL
A compilation technique which automates
task tuning operations for enhanced
schedulability

	Semantics-Based Compiler Transformations for Enhanced Schedulability
	Main idea
	Outline
	Introduction—the TCEL language
	Introduction—the TCEL language
	Introduction—transforming tasks for enhanced schedulability
	Introduction—transforming tasks for enhanced schedulability
	Overview of TCEL
	Overview of TCEL
	Scheduling with Compiler Transformations
	Scheduling with Compiler Transformations--characterization of control software
	Scheduling with Compiler Transformations--characterization of control software
	Scheduling with Compiler Transformations--Rate-Monotonic Schedulability Analysis
	Scheduling with Compiler Transformations--Rate-monotonic Schedulability Analysis
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Task Transformation Algorithm
	Scheduling with Compiler Transformations--Modifying the scheduler: Priority Exchange
	Scheduling with Compiler Transformations--Modifying the scheduler: Priority Exchange
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Automatic Task Decomposition by program Slicing
	Conclusion

