
Non-Blocking Write Protocol NBW:
A Solution to a Real-Time Synchronization Problem

By:
Hermann Kopetz and
Johannes Reisinger

Presented By:
Jonathan Labin

March 8th 2005

Classic Mutual Exclusion Scenario

Reader and Writer processes share some
piece of memory.
Critical sections and semaphores used
Scheduling difficult
– Task can be blocked at critical section
– Task can be preempted by high priority task

Both readers and writers can be blocked at
critical sections

Problem Architecture: System

Distributed real-time system
Each node contains
– CPU
– Memory
– Communication Controller
– A dual-ported RAM (DPR)
– Some nodes also have I/O interfaces

Problem Architecture: System

Problem Architecture: Messages

Communication Controller serves messages
to CPU through DPR
State Messages
– new version of message overwrites the previous
– Similar to programming language concept of a

variable
Minimal interval between message instances
is known

Problem Architecture: CPU Tasks

{T} – set of concurrent tasks
Task Ti
– ci = maximum execution time
– di = relative deadline
– li = laxity (=di - ci)

Tasks are preemptable

Synchronization

Each message type is allocated a structure in
DPR
Communication Controller writes messages
to allocated DPR structure each time they
are received
Real-time tasks running on CPU read
messages from structure
One writer. Many readers
Readers can not simply block since
messages are time sensitive

Desired Properties in Solution

Safety – “If a read operation completes
successfully, it must be guaranteed that it
has read an uncorrupted version of the data
structure.”
– Reader does not interfere with other readers
– Reader does not invalidate a write
– Write corrupts a read
– We check after a read to ensure that it was not

corrupted by a write

Desired Properties in Solution

Timeliness – “The tasks containing the read
operations must complete their execution
before their deadlines.”
– This is hard real-time system.
– Upper bounds must be known to ensure

deadlines are not missed

Desired Properties in Solution

Non-Blocking – “The writer can not be
blocked by the readers.”
– Information flow: Writer => Reader
– Readers can be added or removed without effect

on the writer
– Communication Controller simplified: no need for

buffer space

The Protocol: The Basics

Writer free to write at any time
Readers check after a read operation
– If no write has occurred during the read: success
– Otherwise, fail and try again

To satisfy timeliness, number of read re-tries
must have a known upper bound

The Protocol: Define

Concurrency Control Field (CCF) for each
message structure.
– Size = 1 word
– Init: CCF = 0;
– Reading or changing CCF is atomic
– R = max word
– Incrementing beyond R wraps to 0

The Protocol

Writer
– Increment CCF
– Perform message structure write
– Increment CCF again.

Reader
– Read CCF
– Perform message structure read
– Check CCF for indication of writer interference

The Protocol: Pseudo-Code

Correctness of Safety Property

Schedulability Analysis:
Definitions

Attributes of messages:
dr = max time of a read without retry
dw = max time of a write
mint = minimum arrival interval of messages

Attributes of tasks:
co = max execution without read-retries
cn = max execution with read-retries
d = deadline
lo = min latency without read-retries (d - co)
ln = min latency with read-retries
Ni = max number of interferences of read by write operations

Schedulability Analysis:
Single Interference

Assume read and write about equal:
– (dr – δ) < dw < (dr + δ) for δ « dr

– Worst case: Interference by one write => max: 3
read-retries

– Increase execution of reading task by 3dr

Schedulability Analysis:
Multiple Interferences

A task with a read operation shares the CPU
– Tasks with higher priority can preempt read
– Can cause more than one write to interfere
– Each write that interferes extends task by 3dr

– cn = co + 3Nidr

– ln = lo – 3Nidr

Schedulability Analysis:
Multiple Interferences

Assume that chosen task scheduling
algorithm guarantees all tasks complete
before deadline.
With mint known we can bound worst case
number of interferences: Ni

For a read operation to be interfered by a
second write:
– Preempted by an interval of: mint – dw – 2dr

Schedulability Analysis:
Multiple Interferences

Schedulability Analysis:
Multiple Interferences

With this we can bound Ni:

And therefore execution time bounded:

Use this execution time for each task when
testing Schedulability

Example

Execution time extended by .12 msec (4% more than original execution time)

Poor performance

Same example
Change drw from 10 µsec to 200 µsec
Execution extension grows

from 120 µsec (4% increase)
to 2400 µsec (80% increase)

Not so good…

Problems with current Protocol

Not possible to handle tasks with low laxity
Protocol becomes inefficient when read
times become non-negligible compared to
total execution time.

Extension to Protocol: Define

Allocate more than one buffer per message
Buffers written to cyclically
Guarantees that reader reads most recent
version of message (as of start of read)
CCFi used to determine which buffer to use
Define bcnti to be # buffers for message i
Range of CCFi must be a multiple of 2*bcnti

Extension to Protocol: Read/Write

Write – write to buffers cyclically
– Each write increments CCFi by 2
– Buffer to write to = floor(CCFi / 2) mod bcnti

Read – use latest available message
– Floor(CCFi / 2) mod bcnti gives current/next write
– [Floor(CCFi / 2)-1] mod bcnti gives last write

(that is not currently being written)

Extension to Protocol: Idea

Cyclic buffer writing => message not
overwritten for bcnti more messages
Interference will be much more rare
Each write causes CCF + 2
If CCF has been incremented bcnti *2 times
since this message has been written

Extension to the Protocol: Code

Extension to the Protocol:
Schedulability Analysis

As long as bnct > 1:
– cn = co + 1Nidr

– ln = lo – 1Nidr

Interference: (bcnt = 2)
1. Write almost finished to buffer 2
2. Read starts from buffer 1 (most recent to read)
3. Write completes to buffer 2
4. Read is delayed
5. Write to buffer 1 begins (wrapping to beginning)
6. Read attempt of buffer 1 ends (corrupted)

If bcnt > 2 then bcnt-2 extra writes at #4

Extension to the Protocol:
Schedulability Analysis: read delay

To cause interference, read:
– Must last: (bcnt – 1) * mint – dw

– Preemption must last: (bcnt – 1) * mint - dw – dr

– retry must be preempted by: (bcnt – 1)*mint - dr

bcnt =2

Schedulability Analysis:
Multiple Interferences

With this we can bound:

And therefore execution time bounded:

Use this execution time for each task when
testing Schedulability
Also check 2*bcnt Ni < R (range of CCF)

Example

Same example except drw = 200
– First protocol: process extension = 2400 µsec

(80% increase in execution time)

But now

Questions?

	Non-Blocking Write Protocol NBW: A Solution to a Real-Time Synchronization Problem
	Classic Mutual Exclusion Scenario
	Problem Architecture: System
	Problem Architecture: System
	Problem Architecture: Messages
	Problem Architecture: CPU Tasks
	Synchronization
	Desired Properties in Solution
	Desired Properties in Solution
	Desired Properties in Solution
	The Protocol: The Basics
	The Protocol: Define
	The Protocol
	The Protocol: Pseudo-Code
	Correctness of Safety Property
	Schedulability Analysis: Definitions
	Schedulability Analysis: Single Interference
	Schedulability Analysis: Multiple Interferences
	Schedulability Analysis: Multiple Interferences
	Schedulability Analysis: Multiple Interferences
	Schedulability Analysis: Multiple Interferences
	Example
	Poor performance
	Problems with current Protocol
	Extension to Protocol: Define
	Extension to Protocol: Read/Write
	Extension to Protocol: Idea
	Extension to the Protocol: Code
	Extension to the Protocol: Schedulability Analysis
	Extension to the Protocol: Schedulability Analysis: read delay
	Schedulability Analysis: Multiple Interferences
	Example
	Questions?

