Non-Blocking Write Protocol NBW.

A Solution to a Real-Time Synchronization Problem

By:
Hermann Kopetz and
Johannes Reisinger

Presented By:
Jonathan Labin

March 8t 2005

Classic Mutual Exclusion Scenario
« 007

e Reader and Writer processes share some
piece of memory.

e Critical sections and semaphores used

e Scheduling difficult
- Task can be blocked at critical section
- Task can be preempted by high priority task

e Both readers and writers can be blocked at
critical sections

Problem Architecture: System
S

e Distributed real-time system

e Each node contains
- CPU
- Memory
— Communication Controller
— A dual-ported RAM (DPR)
- Some nodes also have I/O interfaces

Problem Architecture: System

\ ‘ / Input/Output

< >
1 Real-Time Bus
Node
Fig. 1: Distributed Computer System
< > Real-Time Bus

1/0 Controlier

Dual Ported RAM

—_— 1

Problem Architecture: Messages
S

e Communication Controller serves messages
to CPU through DPR

e State Messages
- new version of message overwrites the previous

- Similar to programming language concept of a
variable

e Minimal interval between message instances
IS kKnown

Problem Architecture: CPU Tasks
«__ 0

e {T} — set of concurrent tasks

e Task T,

—- C;= maximum execution time
- d;=relative deadline
- [, = laxity (=d;- c))

e Tasks are preemptable

Synchronization
-

e Each message type Is allocated a structure in
DPR

e Communication Controller writes messages
to allocated DPR structure each time they
are received

e Real-time tasks running on CPU read
messages from structure

e One writer. Many readers

e Readers can not simply block since
messages are time sensitive

Desired Properties in Solution

e Safety — “If a read operation completes
successfully, it must be guaranteed that it
has read an uncorrupted version of the data

structure.”

- Reader does not interfere with other readers
-~ Reader does not invalidate a write

— Write corrupts a read

— We check after a read to ensure that it was not
corrupted by a write

Desired Properties in Solution
S

e Timeliness — “The tasks containing the read
operations must complete their execution
before their deadlines.”

- This Is hard real-time system.

- Upper bounds must be known to ensure
deadlines are not missed

Desired Properties in Solution
S

e Non-Blocking — “The writer can not be
blocked by the readers.”
- Information flow: Writer => Reader

- Readers can be added or removed without effect
on the writer

-~ Communication Controller simplified: no need for
buffer space

The Protocol: The Basics
«__ 0

e \Writer free to write at any time

e Readers check after a read operation
— If no write has occurred during the read:
—- Otherwise, fail and try again

e To satisfy timeliness, number of read re-tries
must have a known upper bound

The Protocol: Define
« /0007

e Concurrency Control Field (CCF) for each
message structure.
— Size =1 word
— Init: CCF =0;
- Reading or changing CCF is atomic
- R = max word
— Incrementing beyond R wraps to O

The Protocol

«]
e \Writer
— Increment CCF

- Perform message structure write
- Increment CCF again.

e Reader
- Read CCF

- Perform message structure read
— Check CCF for indication of writer interference

The Protocol: Pseudo-Code
«__ 0

Imitialization:
CCF; := 0;
Write message i:

start: CCF_old := CCFy;
CCF; := CCF_old + 1;
<write buf;>
CCF{ := CCF_old + 2;

Read message i:

start: CCF_begin := CCF;;
<read bufi>
CCF_end := CCF;i;
If CCF_end # CCF_begin or
CCF_begin = odd then goto start:

Correctness of Safety Property
-

(1) Write after read:

(4) Write start before read finish:

Read | | Read |
| write | Write |
(2) Read after write: I (5) Read within write:
Read I | Read |
Write I. Write
(3) Read start before write finish: (6) Write within read:
| Read | I Read |

| write |

Schedulability Analysis:
Definitions

Attributes of messages:

dr = max time of a read without retry
dv = max time of a write

mint = minimum arrival interval of messages
Attributes of tasks:

C, = max execution without read-retries

C, = max execution with read-retries

d = deadline

|, = min latency without read-retries (d - c,)

|, = min latency with read-retries

N, = max number of interferences of read by write operations

Schedulability Analysis:
Single Interference

e Assume read and write about equal:
_(d=8)<dv<(d+8) ford«d

- Worst case: Interference by one write => max: 3
read-retries

- Increase execution of reading task by 3d’

L Read | Read | Read | Read |

L Write |

Schedulability Analysis:
Multiple Interferences

A task with a read operation shares the CPU
— Tasks with higher priority can preempt read
- Can cause more than one write to interfere
- Each write that interferes extends task by 3d"
- c,=c,+ 3N
-1, =1, —3Nd

Schedulability Analysis:
Multiple Interferences

e Assume that chosen task scheduling

algorithm guarantees all tasks complete
before deadline.

e With mint known we can bound worst case
number of interferences: N,

e For a read operation to be interfered by a
second write:

- Preempted by an interval of: mint — d¥ — 2d"

Schedulability Analysis:
Multiple Interferences

> mint — d¥ — 2d' > mint — d¥ — 2df
Preemption "—l '—-—-'
4 .

Reader |LI|_L----I_| |Lr|_dL----l_‘

Writer ﬂ .tdw_| —J_fﬂ*
l mint | mint l

Schedulability Analysis:
Multiple Interferences

e With this we can bound N;:

l [, + mint — 3d™
N: = I_mim‘ - dv - 2d’_| T1l= mint J

e And therefore execution time bounded:
I, + mint — 3d_ﬂ:J

¢, = C,+ 3d™ :
mint

e Use this execution time for each task when
testing Schedulabllity

Example
-

Message size: 12 bytes (6 words with a size of 16 bits)
read/write time d™; 10 psec
Execution time ¢,: 3 msec

Deadline 4. 10 msec
Laxity /,: 7 msec
mint; 2 msecC

Execution time extension:

ele = 3gr | Lot mint = 3d""J _
nunt

- 3x10x |100042000-30] _

= 30 X 4 = 120 psec
Execution time extended by .12 msec (4% more than original execution time)

Poor performance
-

e Same example
e Change d"™ from 10 usec to 200 usec

e EXxecution extension grows
from 7120 usec (4% Increase)

to 2400 usec (80% Iincrease)

e Not so good...

Problems with current Protocol
«__ 7

e Not possible to handle tasks with low laxity

e Protocol becomes inefficient when read
times become non-negligible compared to
total execution time.

Extension to Protocol: Define
«__ 7

e Allocate more than one buffer per message
e Buffers written to cyclically

e Guarantees that reader reads most recent
version of message (as of start of read)

e CCF;used to determine which buffer to use
e Define bcnt;to be # buffers for message /
e Range of CCF;must be a multiple of 2*bcnt,

Extension to Protocol: Read/Write
«__ 7

e \Write — write to buffers cyclically

- Each write increments CCF, by 2
— Buffer to write to = floor(CCF;/ 2) mod bcnt;

e Read — use latest available message

— Floor(CCF;/ 2) mod bcnt;gives current/next write

- [Floor(CCF;/ 2)-1] mod bcnt; gives last write
(that is not currently being written)

Extension to Protocol: Idea

e Cyclic buffer writing => message not
overwritten for bent; more messages

e Interference will be much more rare
e Each write causes CCF + 2

e |If CCF has been incremented bcnt; *2 times
since this message has been written

Extension to the Protocol: Code
«__ 7

Initialization:
CCFi := 0;

Write message i:

start: CCF_old := CCFj;
CCF; := CCF_old + 1;

<write buf; [[CCF_old/2] mod becnti 1>
CCF; := CCF old + 2;

Read message i:

start: CCF_begin := CCF;;
<read buf; [(lCCF_begin/2] - 1)
mod bcnty 1>
CCF_end:= CCFj;
* 1f CCF _end < CCF_begin
then CCF end = CCF _end + Ry;:
If CCF_end - |CCF_begin/2} * 2 >
bcnty * 2 - 2
then goto start;

The line marked with a * is needed because of the limited
range of R;.

Extension to the Protocol:
Schedulability Analysis

e Aslong as bnct > 1.
- ¢c,=c,*+* T1Nd"
- L =1, —1Nd"
e Interference: (bcnt = 2)
1. Write almost finished to buffer 2
Read starts from buffer 1 (most recent to read)
Write completes to buffer 2
Read is delayed
Write to buffer 1 begins (wrapping to beginning)
Read attempt of buffer 1 ends (corrupted)

bent > 2 then bent-2 extra writes at #4

= o U~ w N

Extension to the Protocol:
Schedulability Analysis: read delay

e To cause Interference, read:
- Must last: (bent — 1) * mint — ¥
— Preemption must last: (bcnt— 1) * mint - d% — d'
— retry must be preempted by: (bcnt — 1)*mint - d"
mint - d%¥ — d' mint — d*

Preemption A p———— bont=2
dl'
Reader —-cemm e ep—e e e - - -

Writer i E _J-—-|
mint mint

Schedulability Analysis:
Multiple Interferences

e \With this we can bound:
I, + av
W S S
(bent — 1) munt
e And therefore execution time bounded:

e d I+ a~ J
€ = Co (bcnt — 1)mint
e Use this execution time for each task when
testing Schedulabillity

e Also check 2*bcnt N; < R (range of CCF)

Example
S

e Same example except dw = 200

— First protocol: process extension = 2400 usec
(80% increase Iin execution time)

o I, + d» 3 7000 + 200
But now ete = d |_(bcnr _ 1)mint_| = 200 x \. 1 x 2000 J

= 200 X 3 = 600 psec
for bent = 2 and to

_ [, +a* _ 7000 + 200
ete = d (bmr—l)mint_l =200 x | BOS50

= 200 X 0 = 0 psec
for bent = 5.

Questions?

i’ <

////

4

	Non-Blocking Write Protocol NBW: A Solution to a Real-Time Synchronization Problem
	Classic Mutual Exclusion Scenario
	Problem Architecture: System
	Problem Architecture: System
	Problem Architecture: Messages
	Problem Architecture: CPU Tasks
	Synchronization
	Desired Properties in Solution
	Desired Properties in Solution
	Desired Properties in Solution
	The Protocol: The Basics
	The Protocol: Define
	The Protocol
	The Protocol: Pseudo-Code
	Correctness of Safety Property
	Schedulability Analysis: Definitions
	Schedulability Analysis: Single Interference
	Schedulability Analysis: Multiple Interferences
	Schedulability Analysis: Multiple Interferences
	Schedulability Analysis: Multiple Interferences
	Schedulability Analysis: Multiple Interferences
	Example
	Poor performance
	Problems with current Protocol
	Extension to Protocol: Define
	Extension to Protocol: Read/Write
	Extension to Protocol: Idea
	Extension to the Protocol: Code
	Extension to the Protocol: Schedulability Analysis
	Extension to the Protocol: Schedulability Analysis: read delay
	Schedulability Analysis: Multiple Interferences
	Example
	Questions?

