Handling Sporadic Tasks in Off-Line Scheduled Distributed Real Time Systems

Damir Isović & Gerhard Fohler

Department of Computer Engineering Mälardalen University, Sweden

Presented by: Aseem Lalani

Outline

- Introduction
- Paper Contribution
- System Description & Task Model
- Slot Shifting Method for integration of Online & Offline Scheduling
- Offline Guarantee Acceptance Test
- Offline Feasibility Test for Sporadic Tasks
- Example
- Conclusion

Introduction

- Acquisition of temporal aspects of application is either difficult or impossible to gather due to high costs or unavailability.
- Knowledge of only partial information (such as minimum inter-arrival time between tasks) of the controlled environment.
- Online Systems provide no countermeasures for sporadic task sets which are rejected.

Paper Contribution

- Method for off-line feasibility test for sporadic tasks on top of off-line scheduled distributed periodic set.
- □ Ability to re-schedule or re-design upon test failure.

System Description

- System is distributed viz. consists of several processing and comm. nodes
- Discrete Time Model with task periods and deadlines defined in terms of slot-length.

Task Model

- Number of slots defined by LCM of involved periods.
- Periodic Task T_P characterized by Max. Execution Time (MAXT), Period (P), and relative deadline (DI).
- □ Hard Aperiodic tasks characterized by arrival time (a), maximum execution time and relative deadline.
- No deadline constraints for soft aperiodic jobs.

Task Model (cont'd)

- Sporadic tasks arrive at random points in time with defined minimum inter-arrival times between two consecutive invocations.
- Arrival order pattern not known but Max. Frequency of arrival of sporadic tasks is known.
- Sporadic Task T_s characterized by relative deadline, minimum inter-arrival time (λ) and Max. Execution Time.
- Additional On-line information available about sporadic tasks include arrival time of kth invocation is its arrival time and its absolute deadline.

Slot Shifting for Integrated off-line and on-line scheduling

- Efficient method to provide on-line guarantee of scheduling aperiodic tasks on top of a distributed schedule with task constraints.
- □ Re-claims unused resources from off-line schedule to schedule other feasible tasks.
- Off-line preparations include
 - -> Allocation of tasks to nodes, resolving precedence constraints by ordering task execution.
 - -> Creating schedule tables listing start and end times of task executions.

Slot Shifting for Integrated off-line and on-line scheduling (cont'd)

- -> Creating disjoint intervals for each node with tasks having the same deadline constituting one interval.
- -> Calculating spare capacity for interval I_i as:

$$sc(I_i) = |I_i| - \sum_{T \in I_i} MAX(T) - min(sc(I_{i+1}),0)$$

Guarantee Algorithm for Aperiodic Tasks

- At each slot, guarantee algorithm is performed on arriving aperiodic tasks.
- \square For each aperiodic task T_A , find
 - -> A = $sc(I_c)_t$: Spare remaining capacity of current interval.
 - -> B = Positive Spare capacities of full intervals between t and $dl(T_A)$.
 - -> C = Min(sc of last interval, execution need of T_A before its deadline in this interval).
- \square (A + B + C) > MAXT(T_A) guarantees acceptance of T_A

On-line Scheduling

- \square sc(I_C) > 0 => Apply EDF to set of Ready Tasks.
- \square sc(I_C) = 0 => Guaranteed task has to execute else task deadline violation will occur.
- □ Soft Aperiodic Tasks execute immediately when $sc(I_c) > 0$
- After each scheduling decision, update spare capacities of affected intervals.

Acceptance Test for Sporadic Tasks

- ☐ Feasible set is defined to schedule all tasks in the sporadic set such that no periodic task misses its deadline.
- ☐ The test includes:
 - Creating an off-line schedule for periodic tasks analyzed analyzed for slot-shifting.
 - -> Fitting sporadic tasks by investigating critical time slots.
 - Re-design the system upon failure of test to manage the sporadic tasks.

More on Sporadic Tasks

- □ Sporadic tasks have been proven to behave like periodic tasks for worst case analysis when successive tasks arrive at minimum inter-arrival time.
- Guaranteeing this worst case load pattern at critical time slots guarantees acceptance of all sporadic tasks with greater inter-arrival times.

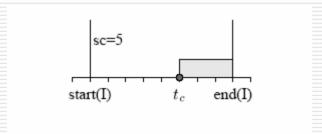


Figure 1. Example of a critical slot.

Critical slot is defined as the time slot when the execution of sporadic tasks can be delayed maximally.

Why Critical Slots are important to investigate?

- If the sporadic set can be fitted within the periodic set upon arrival at critical slot then it can be guaranteed to fit upon arrival at any other slot.
 - Δ = Difference between spare capacities for sporadic task T_S at critical slot t_c and any other slot t.
 - $a = Difference in spare capacity of the arrival caused by shifting arrival time <math>T_S$ from t_c to t.
 - β = Difference in spare capacity of the deadline interval caused by shifting the deadline of $T_{S...}$

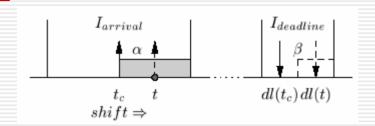
$$\Delta = a + \beta$$

Critical Slot Investigation

 $t > t_c => T_S$ arrives after C.S.

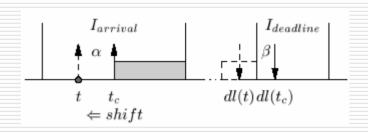
$$a = 0$$

 $\beta >= 0$
 $\Delta = (a + \beta) >= 0$



 $t < t_c => T_S$ arrives before C.S.

$$\beta_{worst} = -a$$
 $|\beta_{opt}| < a$
 $\Delta = (a + \beta) >= 0$

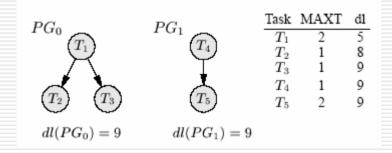


Contradiction!

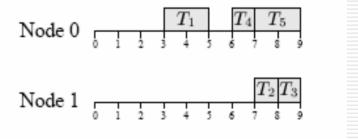
Off-line Feasibility Test for Sporadic Tasks

- 1: Investigate every critical slot.
- 2: No slots reserved yet.
- 3: Guarantee every sporadic task T_S in the set.
- 4: Guarantee every invocation T_s of T_s.
- 5: Calculate sc available for T_S from its arrival until its deadline. It is equal to the sum of sc for all full intervals between $I_{arrival}$ and the $I_{deadline}$ of T_s^n , increased by
- 6: the remaining sc of the $I_{deadline}$ available until $dl(T_s)$, decreased by
- 7: the amount of sc reserved for other, previously guaranteed sporadics that intersect with T_s^n .
- 8: If the available sc is greater or equal to the maximum execution time of $T_{\rm S}$, then
- 9: reserve slots needed for T_s as close to its dl as possible, and continue.
- 10:If not enough spare capacity, abort the guarantee algorithm and report that the guaranteeing failed.

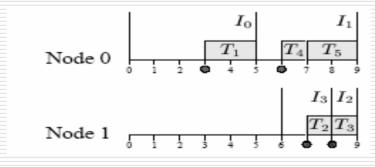
Example



(a) Precedence Graph & Task Description



(b) Task Execution at nodes



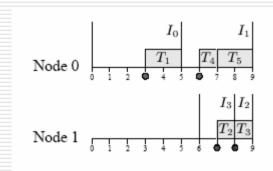
(c) Critical Slots and Intervals

Interval	Node	start	end	sc	t_c
I_0	0	0	5	3	3
I_1	0	5	9	1	6
I_2	1	6	8	1	7
I_3	1	8	9	0	8

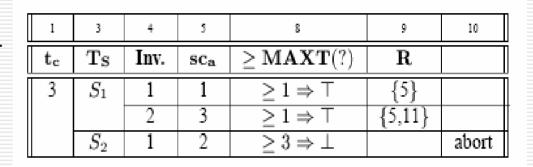
(d) Schedule Table

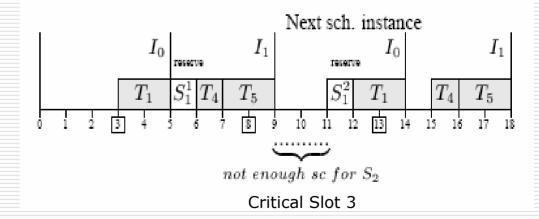
Example (cont'd)

$$S = {S1(1; 5); S2(3; 10)}$$

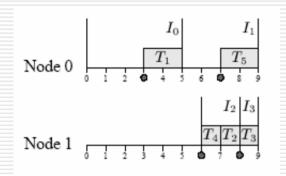


Steps in Guarantee Algorithm

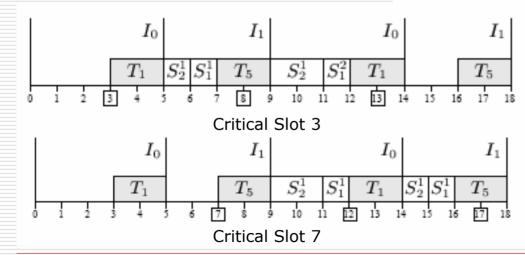




Example (cont'd)



1	3	4	5	8	9
$\mathbf{t_c}$	Task	Inv.	sc_a	≥ (?)	R
3	S_1	1	2	$\geq 1 \Rightarrow \top$	{6}
		2	3	$\geq 1 \Rightarrow \top$	{6,11}
	S_2	1	3	$\geq 3 \Rightarrow \top$	{5,6,9,10,11}
7	S_1	1	3	$\geq 1 \Rightarrow \top$	{11}
		2	2	$\geq 1 \Rightarrow \top$	{11,15}
	S_2	1	3	$\geq 3 \Rightarrow \top$	{9,10,11,14,15}



Guaranteeing after Re-design

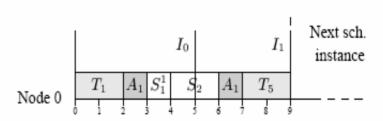
$$S = \{S1(1; 5); S2(3; 10)\}$$

Example (cont'd)

- R(t) = {}: There are no tasks ready to be executed, the CPU remains idle.
- R(t) ≠ {} ∧ ∃T_A, T_A soft aperiodic:
 - (a) sc(I)_t > 0 ∧ ∃T_S ∈ R(t), T_S sporadic ⇒ execute T_S.
 - (b) $sc(I)_t > 0 \land \neg \exists T_S \in \mathcal{R}(t) \Rightarrow \text{ execute } T_A$.
 - (c) sc(I)_t = 0: a periodic task from ready set has to be executed. Zero spare capacities indicate that adding further activities will result in a deadline violation of the guaranteed task set.
- R(t) ≠ {} ∧ ¬∃T_A, T_A soft aperiodic: The task of ready set with the shortest deadline is executed.

On-line Mechanism

t	$\mathcal{R}(\mathbf{t})$	case	exe.	sc
0	$\{T_1, T_5\}$	3	T_1	unchanged
1	$\{T_1, T_5\}$	3	T_1	unchanged
2	$\{T_5, A_1\},\$	2b	A_1	$sc(I_0)$ decreased
3	$\{T_5, S_1^1, S_2, A_1\}$	2a	S_1^1	$sc(I_0)$ decreased
4	$\{T_5, S_2, A_1\}$	2a	S_2	$sc(I_0)$ decreased
5	$\{T_5, S_2, A_1\}$	2a	S_2	$sc(I_1)$ decreased
6	$\{T_5, A_1\}$	2b	A_1	$sc(I_1)$ decreased
7	$\{T_5\}$	3	T_5	unchanged
8	$\{T_5, S_1^2\}$	2c	T_5	unchanged



On-line Execution at Node 0 with Aperiodic task A_1 (2,2)

Conclusion

- Sporadic Tasks are guaranteed during design time allowing re-scheduling or re-design in case of failure.
- Efficient method since major part of preparation is off-line and on-line mechanisms are simple.
- Slot shifting algorithm allows reclaim of unused resources allowing high resource utilization.