
Timing Analysis for Sensor Network Nodes of the Atmega Processor Family ∗

Sibin Mohan1, Frank Mueller1, David Whalley2 and Christopher Healy3

1 Dept. of Computer Science, Center for Embedded Systems Research,
North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

2 Dept. of Computer Science, Florida State University, Tallahassee, FL 32306, whalley@cs.fsu.edu
3 Dept. of Computer Science, Furman University, Greenville, SC 29613, chris.healy@furman.edu

Abstract

Low-end embedded architectures, such as sensor nodes,
have become popular in diverse fields, many of which im-
pose real-time constraints. Currently, the Atmel Atmega
processor family used by Berkeley Motes lacks support for
deriving safe bounds on the WCET, which is a prerequi-
site for performing real-time schedulability analysis. Our
work fills this gap by providing an analytical method to ob-
tain WCET bounds for this processor architecture.

Our first contribution is to analyze both C and NesC
code, the latter of which is unprecedented. The second con-
tribution is to model control hazards and variable-cycle in-
structions, both handled more efficiently by our approach
than by previous ones and results in up to 77% improve-
ment in bounding the WCET. The results demonstrate that
our timing analysis framework is able to tightly and safely
estimate the WCET of the benchmarks while simulator re-
sults are shown to not always provide safe WCET bounds.
While motivated by the Atmel Atmega series of processors,
results are equally applicable to low-end embedded proces-
sors.

This work is, to the best of our knowledge, the first set of
experiments where timing results are contrasted from exe-
cution on an actual processor, from a cycle-accurate simu-
lator and from a static timing analyzer. Furthermore, mak-
ing our timing analysis toolset available to the Atmel At-
mega processor family is a significant contribution towards
addressing a documented need for tool support for sensor
node architectures commonly used in networked systems of
embedded computers, or so-called EmNets.

1. Introduction
Networked systems of embedded computers, referred to

as EmNets [10], usually consist of one or several compu-
tationally powerful nodes called base stations and a large
number of inexpensive, low capacity nodes called sensors
(or sensor nodes). The nodes in a wireless sensor network

∗ This work was supported in part by NSF grants CCR-0208581,
CCR-0310860, CCR-0312695, EIA-0072043, CCR-0208892, CCR-
0312493 and CCR-0312531.

communicate through wireless links, typically with rather
limited bandwidth. Such EmNets have extensive applica-
tions ranging from civilian to military operations, many of
which are subject to timing constraints: On the one hand,
applications themselves generally pose requirements on the
frequency of sensing; on the other hand, constraints on en-
ergy consumption and effective communication are also
subject to timing constraints and clock synchronization as-
sumptions. In recent years, low-end sensor nodes, espe-
cially the ones from Berkeley [16], have become popular
and they find applications in diverse fields. These sensor
nodes use the Atmel Atmega series of processors [2]. Such
sensor nodes and networks composed of these nodes find
applications in real-time environments.

Research on timing constraints for sensor node architec-
tures is still preliminary; except for ad-hoc solutions spe-
cific to applications, there is a lack of software support for
handling timing constraints. This paper addresses this is-
sue by providing automated tool support for determining
bounds on the worst-case execution time (WCET) of pro-
grams, tasks and even smaller program scopes for applica-
tions on Atmel architectures. These WCET bounds are par-
ticularly useful in real-time applications for EmNets.

In real-time systems, particularly hard real-time systems,
violations of temporal constraints may have irreparable ef-
fects on the system, its environment, or both. Real-time sys-
tems theory reasons about the schedulability of task sets,
i.e., by performing offline schedulability tests, which can
determine if all deadlines of a set of tasks can be met. Task
parameters have to be known beforehand, i.e., parameters
such as period of each task, the worst-case execution time
(WCET), and so on. Periods of tasks are determined from
the operating environment, such as temporal constraints on
sensors, actuators and other parts of the system. Determin-
ing the WCET for tasks is a non-trivial effort due to soft-
ware complexity, non-determinism of inputs and hardware
complexity with unpredictable execution behavior.

Various approaches to determine the WCET of tasks ex-
ist, such as experimental methods, which are considered un-
safe or constrained to probabilistic analysis [30, 4]. Static
analysis methods have also been developed to derive safe

WCET bounds, and they model hardware components, e.g.,
the processor pipeline, caches, etc. They model the flow of
code through various hardware components and use inter-
procedural program representation and longest control-flow
paths to obtain an upper bound on the number of cycles for
any execution.

In this paper, we present a timing analysis framework
that analyzes programs, such as EmNets applications, for
the Atmel architecture to obtain worst-case execution times.
We present a unique approach in that a three-tiered sys-
tem of experiments is carried out to verify the correctness
of the WCET numbers obtained using our timing analyzer.
First, we obtain execution times from the actual Atmel
hardware itself. Second, we obtain execution times from a
cycle-accurate simulator from the processor manufacturer.
Finally, we run our benchmarks through our timing analysis
framework to obtain WCET estimates. Our timing analysis
framework is able to tightly and safely estimate the WCET
for the various benchmarks. We also show that the meth-
ods used are scalable. When the input set sizes are scaled,
the WCET estimates closely follow the actual execution cy-
cles of the processor.

We have also adapted our framework to provide WCET
estimates for NesC [11], the preferred language for pro-
gramming sensor network applications. We are able to ob-
tain accurate WCET estimates for both – NesC code as well
as C code. We have also created an abstract NesC interface,
which makes timing analysis of any piece of synchronous
NesC code very straightforward. To the best of our knowl-
edge, the interoperability of our timing analysis framework
with NesC is unique.

The timing analysis framework we use was initially de-
veloped for the Micro SPARC I [29] architecture. It pro-
vides accurate and tight WCET estimates comparable to
other WCET methods and tools available. Since the Atmel
architecture is simpler than the SPARC in that it does not
have caches and that it has only two pipeline stages, we be-
lieved that a simple one-to-one port was all that was neces-
sary to adapt it for the Atmel architecture. Contrary to our
intuition, we found that important enhancements were re-
quired even for a simple architecture as the Atmel Atmega
to obtain tight WCET bounds as is demonstrated in the fol-
lowing. Each singular contribution resulted in 5% to 40%
improvement in accuracy of bounding the WCET.

One significant problem faced by WCET tools is to cope
with instructions that take a variable number of cycles to
execute. Certain instructions may take a different number
of cycles, depending on the the state of the system, such
as status of a condition code register, or whether a branch
is taken or not, and so on. Traditionally, such instructions
cause WCET tools to over-estimate the WCET numbers, as
they always assume the largest possible number of cycles
for such instructions. This typically results in large overes-

timations for any applications when variable-cycle instruc-
tions are found in loops. We solve this problem by enhanc-
ing the path analysis to accurately account for the overhead
of variable-cycle instructions depending on the actual exe-
cution context. Hence, we are able to obtain 30-40% tighter
bounds on the WCET for Atmel processors.

While motivated by the Atmel architecture, these im-
provements transfer equally to other low-end embedded
architectures that commonly have control hazards and
variable-cycle instructions.

One of the lessons learned is that the design of static tim-
ing analysis tools should be accompanied by verifications of
correctness for a set of benchmarks before applying these
techniques to larger applications. Verification can be real-
ized by comparing to a cycle-accurate simulator or actual
embedded hardware, as demonstrated by our experiments.

2. Static Timing Analysis
Real-time schedulability analysis for any hard real-time

system requires the WCET to be known beforehand and
safely bounded. This is so that the feasibility of scheduling
a task set can be determined given a scheduling policy, such
as rate-monotone or earliest-deadline-first scheduling [19].
If dynamic timing analysis methods were used based on
experimental or trace-driven approaches, the safety of the
WCET values obtained cannot be guaranteed [30]. Also, it
is difficult to determine worst-case input sets for even mod-
erately complex tasks such that the WCET may be obtained,
and performing exhaustive testing over wide ranges of the
input space is infeasible, except for trivial cases. Even if the
worst-case input set is known, interactions between hard-
ware and software might inhibit programs from exhibiting
their worst-case behavior. Architectural complexity is the
main reason for such unpredictability, in particular complex
pipelines and caching mechanisms.

The alternative to dynamic timing analysis, of course, is
Static Timing analysis. While various approaches have been
studied and proposed, we constrain ourselves to the toolset
we use, without loss of generality [13, 22, 32]. WCET
bounds obtained by static timing analysis guarantees the up-
per bounds on computation times of tasks. To achieve this,
static timing analysis models the traversal of all possible
execution paths in the code and determines timing indepen-
dent of program traces or values of program variables. Loop
bodies require only few traversals,and the worst-case be-
havior of the loop is obtained by an efficient fixed-point ap-
proach. The behavior of architectural components along ex-
ecution paths are captured as the execution paths are tra-
versed. Paths are composed to form functions, loops, etc.
Finally, the entire application is covered to derive a bound
on the worst-case execution cycles (WCEC) and the WCET.

An overview of the organization of this timing analysis
framework is illustrated in Figure 1. Modifications to an op-
timizing compiler result in the production of control-flow

Estimate
WCET

Dependent
Machine

Information

Source and Constraint
Files

C Control Flow

Information

Timing
Analyzer

Compiler

Figure 1. Static Timing Analysis Framework

and branch constraint information as a side effect of the the
compilation process. The GCC compiler for the AVR in-
struction set architecture (ISA) is used to compile real-time
applications into assembly code. Control-flow graphs and
instruction and data references are extracted from this as-
sembly code. A prerequisite for performing static timing
analysis is that upper bounds on the number of iterations
performed by various loops in the program be provided, ei-
ther through program analysis or provided by the user.

The timing analyzer uses the control flow, the con-
straint information, and architecture-specific information
(e.g., pipeline characteristics) to calculate bounds on the
WCET. While the analysis framework also supports static
analysis of caches and modeling of static branch prediction
[13, 1], these components are omitted here since the Atmel
AVR processor family does not support them.

The control-flow information, the loop-bounds, optional
caching categorizations, and the pipeline descriptions are
used by the timing analyzer, to derive WCET bounds. The
effects of structural hazards (instructions dependencies due
to constraints on functional units resulting in stalls), data
hazards (load-dependant instruction stalls if a use imme-
diately follows a load instruction), branch prediction and
cache misses (derived from caching categorizations) are
considered by the pipeline simulator for each execution path
through a loop or a function. Static branch prediction can be
easily accommodated by WCET analysis - the mispredic-
tion penalty is added to the non-predicted path. Path anal-
ysis, explained below, selects the longest execution path.
Once timing results for alternate paths in a loop are avail-
able, a fixed-point algorithm that quickly converges in prac-
tice is employed to safely bound the time for all iterations
of the loop based on the loop body’s cycle counts.

Path analysis for only a few iterations provides the nec-
essary data for the fixed-point algorithm. If the longest path
for the first iteration has been determined, the next-longest
path for the next iteration can be determined, and this differ-
ence may occur only due to caching effects, if any. Lengths
of these paths monotonically decrease due to the above-
mentioned cache effects, and once a fixed-point is reached,
subsequent loop iterations can be safely approximated by
this fixed-point timing value, as shown in [13]. While com-
bining the longest paths of consecutive iterations, care must
be taken to account for overlap between the tail of the pre-
ceding path and the head of the succeeding path. Not con-
sidering this overlap is tantamount to draining the pipeline
between iterations.

The timing analyzer ultimately derives WCET bounds
using this fixed-point approach, first for each path, then for
each loop, and finally for each function. A timing anal-
ysis tree is constructed, such that each loop or functions
corresponds to a node of the tree. The tree is processed
in a bottom-up manner, i.e., the WCET for an outer loop
nest/caller function in the tree is not calculated until the
times for all of it’s inner loop nests/callees are known.
Hence, the timing analyzer predicts the WCET for tasks
by first analyzing lower-level loops and functions before
proceeding to higher-level loops and functions, eventually
reaching the root of the tree (e.g., main()). The timing anal-
ysis tree provides a convenient mechanism for obtaining the
WCET for specific scopes, in particular for sub-tasks. The
material in this section shows that static timing analysis is a
non-trivial task, even for a simple architecture such as that
of the Atmel processors.

3. Adapting to Architectural Features
While the timing analysis framework was being adapted

to the Atmel Atmega architecture, several enhancements to
the existing framework were deemed necessary. While the
original framework provided safe WCET bounds, they were
not necessarily tight bounds. A number of important en-
hancements resulted in significant improvements in terms
of obtaining tight WCET bounds:

Variable-cycle instructions: Certain instructions take a
variable number of cycles depending on the context of their
execution. We adopted our framework, specifically the path-
merging logic, to account for these instructions as explained
in Subsection 3.1.

Pipeline overlap handling for adjacent loop itera-
tions: The pipeline structure of adjacent loop iterations
must be matched so to reflect the processor pipelines with-
out unnecessary stalls. During path analysis, pipeline in-
formation is calculated for traces of straight-line code, i.e.,
sequences of basic blocks, so-called paths. When consid-
ering paths of consecutive loop iterations, timings of each
pipeline stage for the first and last instruction in a path need
to be considered. The objective is to compose the trailing
pipeline step-curve of a path with the leading step-curve
of the next path. This composition was being handled in-
correctly for the Atmel Atmega architecture. We performed
modifications to eliminate unnecessary stalls that were af-
fecting the tightness, albeit not the correctness of the WCET
bounds, as explained in Subsection 3.2.

3.1. Variable-Cycle Instructions
Consider a simple conditional branch instruction where a

branch is either taken or not taken. Let us assume that if the
branch is taken, it completes in two cycles; if it is not taken,
the branch completes in one cycle. The reason for the dif-
ference is given by the overhead imposed on resolving the
target of the branch. Traditional static timing analysis meth-

ods would assume worst-case behavior and estimate that the
branch would execute in two cycles, irrespective of the be-
havior of the instruction. This would lead to the WCET not
being tight enough and could lead to gross over-estimation,
especially if branches are embedded within loops, which
is inevitable for the Atmel Atmega architecture. Such be-
havior is typically observed for instructions that modify the
control flow of the program.

We have enhanced the timing analysis framework to take
this into account and estimate the number of execution cy-
cles required by the branch instruction correctly. As ex-
plained before, once the timing of alternate paths is com-
plete, the fixed-point algorithm takes over and works to-
wards convergence. At this stage, alternate paths created
by instructions that modify the control flow of the program
are analyzed. By analyzing alternate paths created as the re-
sult of a single instruction’s modification of the control flow,
we can accurately determine the number of cycles taken by
that instruction. For example, the above branch instruction
would take one cycle to execute in the path that the execu-
tion falls through (branch not taken) and two cycles in the
path that does not fall through (branch taken). Hence, an ad-
justment can be made to one of the alternate paths so that
it reflects the true nature of execution. Suppose it had been
decided that we always assign two cycles to the branch in-
struction. We would then reduce the WCEC of the path in
which the branch is not taken by one so that it is equiva-
lent to the branch instruction taking one cycle to execute.
This is shown in Figure 2. The fixed-point algorithm would
now analyze the two paths and accurately obtain WCET
information. This enhancement to the static timing analy-
sis framework results in tighter, more accurate WCET esti-
mates for the tasks being examined.

 Red cycles
by 1 on
this path

Not Taken Path (A, B, D)

Taken Path (A, C, D)
D

B C

branch instruction

with variable execution

cycles

br

 A

Figure 2. Modeling Instructions with Variable
Execution Times

3.2. Pipeline Modeling across Loops Iterations
When timing analysis is performed for loop bodies, care

must be taken to ensure that the pipeline structure of adja-
cent loop iterations is being correctly composed, as shown
in Figure 3(b). Suppose the two pipeline structures were
matched incorrectly, as shown in Figure 3(c). The WCET
estimates obtained would be inaccurate and not representa-
tive of the execution on the real architecture. In most cases,
the errors would accumulate over all loop iterations, and the

WCET estimate obtained would be a gross overestimation.
This is the case for the example shown in Figure 3(c)(i).
Even more seriously, an unsafe underestimation may occur
if only the leading edge (IF stage) of the pipeline is consid-
ered for composition, as shown in Figure 3(c) (ii). While we
did not observe the latter case, the former case was encoun-
tered as a result of the initial porting efforts of our analysis
framework. Our timing analysis framework was composing
by overlapping stages, but only to a limited extent. We ob-
served that an extra cycle was being introduced at the end of
every iteration for certain loops. The composition was en-
hanced by improving the logic that performs the analysis
for adjacent loop iterations to remove the extra cycle.

instr1

instr2

instr3

1

2 1

2

23

3

3

Instructions IF EX

(a) Single Iteration of Loop

IF of instr1
overlaps
with EX
of instr3
of previous
iter

instr1

instr2

instr3

instr1

instr2

instr3

1

23

3

3

2 1

2

1

2

3 2

3

3

(b) Correct Handling of Loop Iterations

2

instr1

instr2

instr3

instr1

instr2

instr3

1

23

3

31

2

23

3

3

2 1

instr1

instr2

instr3

instr1

instr2

instr3

1

2

23

3

3

2 1

1

2

23

3

3

Overlap is
NOT
Correct

IF and EX
NOT
Overlapped
Extra Cycle
Introduced

instr1

instr2

instr3

instr1

instr2

instr3

(i) Over−estimation of WCET

1

2

23

3

3

1

2

23

3

3

2 1

instr1

instr2

instr3

instr1

instr2

instr3

3

3

1

2

23

3

3

1

2

23

2 1

(ii) Under−estimation of WCET

OR

(c) Incorrect Handling of Loop Iterations

 2 1

2 1

2 1
2 1

2 1

Figure 3. Composing Pipeline Behavior of
Adjacent Loop Iterations

4. Features of the Atmega Architecture
We shall limit our discussion to the Atmega128 / At-

mega103 processors, two low-power CMOS 8-bit micro
controllers based on the AVR enhanced RISC processors.

Architectural Model: The AVR uses a Harvard archi-
tecture with separate memories and buses for program and
data. Instructions located in the program memory are exe-
cuted with a single level of pipelining. As one instruction is
being executed, the next instruction is fetched, i.e., instruc-
tions execute every clock cycle. Thus, the pipeline has just
two stages – Instruction Fetch (IF) and Execute (EX).

The AVR processors have two main memory spaces, the
Data memory and the Program memory space. It also fea-
tures an EEPROM memory for data storage. All three mem-
ory spaces are linear and regular. The Atmega128 chip has
128kB of on-chip in-system programmable flash memory
for program storage, and is organized as 64K x 16 bits. AVR
processors do not have a cache memory.

Instruction Set: All AVR instructions are either 16 bits
or 32 bits wide. This is the reason why the flash is orga-

nized as 64K x 16. The AVR instruction set supports a va-
riety of addressing schemes for a total of thirteen different
addressing modes.

All operations are integer-based. The AVR instruction
set does not support floating-point operations but requires
their emulation in software. All instructions take either one
or two cycles to execute, except certain types of instruc-
tions, and their timing is listed in Table 1.

Instructions Function Exec. Cycles

rcall, icall, call Subroutine calls 3/4 *
eicall Extended indirect call 4

ret, reti subroutine returns 4/5 *
cpse compare, skip if equal 1/2/3 *

sbrc, sbrs, sbic, sbis skip if bit is set/clear 1/2/3 *
brxy conditional branches 1/2 *

lpm, elpm load program memory 3

Table 1. Timing of AVR Instructions: (* de-
notes variable execution times)

The instruction set also has a rich set of conditional
branch instructions. All conditional branch instructions ei-
ther take two registers as operands or operate based on the
status of flag bits. It also has certain skip instructions, which
decide whether to skip the next instruction or not based on
whether certain flags are set or clear. All load/store instruc-
tions directly access memory. Hence, they take a fixed num-
ber of cycles. We assume that every memory reference is for
a reference in the internal memory and, hence, takes two cy-
cles to complete. This assumption is consistent with the pro-
gramming environment for the Atmel Atmega family. Thus,
the memory latency is bounded and constant as opposed to
other conventional processors. This makes the task of Tim-
ing Analysis easier.

We see in Table 1 that certain instructions take a variable
number of cycles.

• The call instructions take four or five cycles based on
the PC size used. For a 16 bit PC, these instructions
take 4 cycles; for a 22 bit PC, they take 5 cycles.

• The same overhead accounting applies to the ret in-
struction.

• The cpse, sbrc, etc. instructions use a varying num-
ber of cycles based on two factors: Result of evalua-
tion of the condition (true/false) and the size of the in-
struction to be skipped. For example, if the condition is
false, then they take one cycle. If it is false and the in-
struction to be skipped is one word in size, then they
take two cycles. And if it is false and the instruction to
be skipped is two words long, then they take 3 cycles.
All branch instructions take either one or two cycles,
based on whether the branch is not taken, or taken, re-
spectively.

The AVR instruction set also includes many logical as
well as bit-operational instructions.

Timing Analysis for AVR Processors: Table 1 illus-
trates that only certain instruction types exhibit timing char-
acteristics that are different from the majority. Most other
instructions either take one or two cycles to execute. For
these instructions, we can divide them into instructions that
take one cycle and instructions that take two cycles. Once
we determine which of these two categories an instruction
falls into, instructions of the same category can be treated
identically and the timing added up. For the instructions in
Table 1, special handling is required, particularly for those
that have variable execution times. These instructions are
handled after path analysis, during the path-merging stage,
as explained in Section 2.

Since the AVR processors do not have a cache, all in-
structions are treated as if they were hits in terms of their
timing behavior. Since the memory latency is fixed, we see
that this simplification captures the behavior of the system
accurately. Loop bounds for the various loops, if any, in the
programs are provided as input to the timing analysis frame-
work. A description of the simple pipeline of the AVR pro-
cessors was also provided as input to the framework to port
the pipeline simulator of the timing analyzer to the AVR
processor family.

5. Experimental Setup
We have used a three-tiered experimental setup to per-

form and validate our results. To our knowledge, this is the
first time that such an approach has been utilized. The first
set of experiments was carried out on the MICA Berkeley
Sensor nodes [16], which utilize the Atmel Atmega 128L
micro-processor. The experiments were conducted by pro-
viding worst-case inputs to the programs. The second set of
experiments was carried out on a cycle-accurate simulator,
AVR Studio, supplied by the processor manufacturer. The fi-
nal set of experiments was based on static analysis with the
timing analysis framework.

We chose five benchmarks from the C-Lab embedded
WCET suite for the experiments [5], which is widely used
for assessing the capability of timing analysis tools. We fur-
ther analyzed three NesC programs, one synthetic bench-
mark and two commands from the TinyOS security layer,
as depicted in Table 2.

The ”ArraySum” benchmark (NesC) is a synthetic
benchmark that calculates the sum of the elements of an in-
teger array. ”RC5.encrypt” and ”RC5.decrypt” are the RC5
encryption and decryption functions, respectively, part of
the SPINS security layer of TinyOS [24]. Section 6 pro-
vides details on timing analysis for NesC.

All worst-case measurements are expressed in terms of
processor cycles. To obtain accurate timing results on the
hardware, we used interrupt-driven routines activated by
hardware counter overflows. At the start of the execution

C Benchmark Function

sum array Sum and count of positive and negative
numbers in an array.

fibcall Generate the nth Fibonacci number.
insertsort Implementation of Insertion Sort.

matrix mult Matrix Multiplication.
bubble sort Implementation of Bubble Sort.

NesC Benchmark Function

ArraySum Sum of numbers in an array.
RC5.encrypt RC5 encryption
RC5.decrypt RC5 decryption

Table 2. Benchmarks used in Experiments

of the benchmark, we initialize a pair of 16-bit counters to
zero and allow one of them to increment by one on every
cycle (cycle counter). If this counter overflows, we incre-
ment the second counter (overflow counter) and reset the
first counter. Thus, when execution of the benchmark com-
pletes, the combination of the two counters gives us the to-
tal time for the benchmark. Of course, considerations have
to be made for the overheads of the timing code itself. We
explain this in some detail below: Let

O1 = overhead for starting and stopping timers [cycles]

O2 = overhead per invocation of overflow handler [cycles]
x = value of cycle counter

y = value of overflow counter

We note that an overflow occurs once every 65,536 cy-
cles, because we use a 16 bit counter as the cycle counter.

Then, the total execution time for the benchmark is ob-
tained as follows:

total time = y ∗ 216 + x

Accounting for the start and stop overhead, we get:

wcet′ = total time − O1

Now, accounting for the overflow handling overhead, we
obtain our final WCET estimate:

wcet = wcet′ − (y ∗ O2)

We account for the overhead of timing code in results for
the hardware experiments. Once this has been taken care of,
the code used on all three platforms is identical.

The cycle-accurate simulator has its own interactive
GUI, which provides various processor statistics, such as
execution cycles and execution time. To obtain timing in-
formation from the simulator, we first feed it the code iden-
tical to that used for the hardware experiments. We then set
breakpoints before and after significant points in the code
and calculate the difference in the execution time, as shown
on the GUI, to obtain the WCET (or, more precisely, the
WCEC in this case). For both of the above, worst-case in-
put sets were manually determined for the execution so that
the programs may exhibit worst-case behavior.

Our final set of experiments was to run the benchmarks
through the timing analysis framework. The same assem-
bly files that were executed on the hardware and the simu-
lator was provided to the timing analysis framework along
with the loop bounds for the various loops in the code. The
instruction categorizations were hardwired as always hits.
The control-flow information was extracted by a prepro-
cessing tool, similar to a compiler back-end, which is part
of the framework. The results, along with pipeline informa-
tion, were fed into the timing analyzer, which decomposed
the program into paths and performed WCET analysis as
explained in Section 2.

Results from all three sets of experiments were tabulated.
The results themselves and related analysis are provided in
the next section. We also conducted experiments to study
the effects of varying input sets and loop bounds on the
WCET estimates produced by the timing analysis frame-
work.

Instructions Extraneous to Loop Bodies: The timing
analysis framework calculates the WCET for loops, func-
tions and the main program. It does not provide WCET es-
timates for single instructions or arbitrary regions of code.
The timing obtained from the hardware and the simulator
can be for any arbitrary piece of code. Hence, there can be a
mismatch between the results obtained from the timing an-
alyzer and the hardware and/or the cycle-accurate simula-
tor. Even with careful placement of the timing code for the
hardware and breakpoints for the simulator, differences can
occur. The main reason for the mismatch is code that is ex-
traneous to the loops but still integral to the execution, such
as loop initialization code, code inserted to pass arguments
to functions, and so on, as shown in Figure 4. Care must
be taken to adjust for the timing of these extra instructions
in the final results obtained from the hardware/simulator.
A similar problem is given by the overhead of reading the
timer and handling counter overflow exceptions on the ac-
tual hardware, which incurs overhead. The former poses
only a small, constant overhead while the latter overhead
aggregates over longer executions. We explicitly compen-
sate for both of these effects when comparing timings from
the actual hardware with the cycle-accurate simulator or the
timing analyzer.

6. Timing Analysis for NesC
Typical NesC programs include a variety of constructs

such as commands, events, tasks, etc. Even though our fol-
lowing description for statically deriving WCET bounds fo-
cuses on commands, the methodology is equally applicable
to the timing of the body of events once these events have
been triggered, as is required by schedulability analysis of
synchronous and asynchronous activities in real-time sys-
tems [20]. NesC commands are analogous to C functions in
that they execute code synchronously. Typically, the NesC
compiler converts given NesC code to intermediate C code

StopTimer()

label:
Loop Initialisation Code

StartTimer()

Check Condition
Retun to label if Condition

for this
Estimated

Region

WCET

of Code

Figure 4. Timing Adjustment for Extra Cycles
(Bold: Code only Present when Timing Exe-
cutions on Hardware)

and then builds an executable for the AVR motes. Since we
deal only with synchronous commands, the C code gener-
ated can be examined and information, such as loop bounds,
can easily be obtained. The resulting intermediate AVR as-
sembly code and loop bounds information obtained from
the C file provide the inputs to the static timing analysis
framework (see Section 2).

For actual execution on the hardware, we again add calls
to our hardware timer routines in the NesC code so that we
obtain accurate execution times on the hardware. Adjust-
ments are made for the overhead of calling the timing rou-
tines.

To facilitate the timing NesC code, we have created a
simple interface in NesC, which provides an abstraction for
executing the actual benchmark. We time the call to the ex-
ecute() method of the interface. Any code that executes
within this method or is called from this method is timed,
both in hardware and by the timing analyzer. Since we ab-
stract from the actual benchmark, we can time various NesC
modules as long as they implement a facility similar to the
execute() interface and contain commands.

7. Results
The results from the three sets of experiments are sum-

marized in Table 3. The execution times for these bench-
marks range from a few hundred cycles to several million
cycles. Results for the Mica Motes show execution cycles
for the benchmarks before handling of the loop-extraneous
instructions and after the extra cycles have been accounted
for in columns titled ”Before Adjustment” and ”After ad-
justment” under the ”Mica Motes” results, respectively.

The upper part of Table 3 shows the results for the C
benchmarks whereas the lower part of the table shows re-
sults from the execution and analysis of NesC benchmarks
as explained in Section 6.

The column titled ”Before Adjustment” under ”Simula-
tor”, depicts the raw results from the simulator whereas the
column titled ”After Adjustment” takes the same overheads
as before into account to adjust the raw numbers. The col-
umn ”Ratio” under ”Simulator” depicts the ratio between
adjusted simulator and adjusted Mica results. The remain-
ing columns depict the results of the timing analyzer. They
demonstrate increasingly tight WCET estimates as various
special cases were handled (see Section 3). The initial re-
sults in columns titled ”Initial Results” and ”Ratio” under
”Timing Analyzer” indicate the WCET estimates obtained
from the timing analyzer before any of the special cases
were handled, both in cycles and as a ratio relative to the
adjusted Mica numbers. The column titled ”After Pipeline
Fix” and the following ”Ratio” column show the results af-
ter adjacent loop iteration were adjusted to remove pipeline
stalls between paths (see Subsection 3.2). Finally, the col-
umn ”After Variable Instruction Fix” and the succeeding
”Ratio” column report the WCET estimate obtained from
the timing analysis framework obtained after the timing an-
alyzer’s path-merging logic was enhanced to account for in-
structions that have variable execution times (see Subsec-
tion 3.1). All “Ratios” indicate the ratio of the execution cy-
cles in the preceding column to the corresponding entries of
execution cycles “After Adjustment” for ”Mica Motes”.

Let us first focus on the results regarding the timing an-
alyzer. The original timing analyzer framework reported
WCET estimates for the AVR architecture. However, these
results were not tight. By studying the architecture and the
instruction set, we were able to identify a number of cases
(see Section 3) that required enhancements of the timing
analyzer. After adding the logic to ensure proper overlap-
ping of adjacent loop iterations, WCET estimates became
much tighter (Column ”After Pipeline Fix” Table 3). How-
ever, the WCET estimates were still being over-estimated.
After addressing shortcomings in the handling of instruc-
tions with variable execution times, the final results (Col-
umn ”After Variable Instruction Fix” of Table 3) show very
tight and close estimates of the WCET compared to the exe-
cution numbers obtained from the hardware. Not only were
we able to obtain tight WCET estimates for the AVR archi-
tecture, we also enhanced the capabilities and the value of
our timing analysis framework in the process.

The execution on the Mica hardware resulted in nearly
identical results to the cycle-accurate simulator. However,
we see that the simulator may slightly underestimate the
WCET, which, however small, is not safe in a real-time en-
vironment. This differences in timing between the hardware
and the simulator is fully repeatable. Hence, the “cycle-
accurate” simulator is not entirely fit for usage in the con-
text of real-time schedulability analysis as a base to obtain
the WCET of tasks. Hence, we confirm unsafe differences
between simulators and hardware reported in prior work,

C Benchmark Mica Motes Simulator Timing Analyzer
Before After Before After Ratio Initial Ratio After Ratio After Var. Ratio

Adjustment Adjustment Adjustment Adjustment Results Pipeline Fix Instr. Fix

sum array 141,524 141,500 141,521 141,497 0.99 161,498 1.14 141,500 1.00 141,600 1.00
fibcall 151 145 146 140 0.96 258 1.78 202 1.39 146 1.01

insertsort 1,629 1,613 1,622 1,606 0.99 1,978 1.23 1,880 1.17 1861 1.15
matrix mult 1,851 1,845 1,848 1,842 0.99 2,318 1.26 2070 1.12 1,878 1.01
bubble sort 3,628,249 3,628,239 3,628,249 3,628,239 1.00 3,900,998 1.08 3,650,000 1.01 3,776,518 1.04

NesC Benchmark Mica Motes Simulator Timing Analyzer
Before After Before After Ratio Initial Ratio After Ratio After Var. Ratio

Adjustment Adjustment Adjustment Adjustment Results Pipeline Fix Instr. Fix)
ArraySum 86 81 97 92 1.14 105 1.30 87 1.07 88 1.09

RC5.encrypt 15,956 15,951 15,951 15,946 1.00 17,958 1.13 16,088 1.00 16,088 1.00
RC5.decrypt 15,860 15,855 15,855 15,850 1.00 17,982 1.13 16,112 1.01 16,122 1.01

Table 3. Table of Results from all Experiments.

which has been attributed most likely to minor omissions in
the accuracy of architectural model within simulators [21].

The results also demonstrate that the timing analyzer is
able to tightly and safely bound the WCETs for the bench-
marks tested. We see that for most of the benchmarks the
WCET estimates closely match the execution times ob-
tained from the hardware and the simulator. For three of the
five benchmarks, the timing analyzer safely overestimates
by less than 2% relative to the actual execution.

Furthermore, timing analysis for NesC code is accurate.
The results from the timing analyzer match hardware ex-
ecution times very closely. Differences are within 9% for
the synthetic array summation benchmark and nearly iden-
tical (1% or less) for the encryption and decryption algo-
rithms.

For the experiments with varying input sizes, we con-
ducted experiments to assess the scalability of our approach
for the fibcall benchmark. We compare results from the tim-
ing analyzer against results from the hardware, as depicted
in Figure 5.

Figure 5. Scalability of Timing Analyzer for
Varying Input Sizes

The figure shows that the tightness of WCET bounds
does not deteriorate with increasing input sizes. We ob-
serve a constant, small overestimation of the actual execu-

tion times by the WCET estimates. Hence, our framework
is not only reliable and tight for a wide range of programs,
but it is also independent of varying input sizes and the re-
sulting changes in the number of iterations.

The three-pronged approach to performing these exper-
iments underscores the reliability of our framework. This
also shows the need for verifying timing analyzers against
either actual hardware or cycle-accurate simulators, or even
both. In fact, a comparison against only a cycle-accurate
simulator can sometimes lead to slight underestimations, as
seen in the results. Hence, we favor a comparison with the
actual hardware over a cycle-accurate simulator, even if the
latter is supplied by the manufacturer. Overall, the WCET
bounds obtained by our timing analyzer are both safe and
tight as they closely follow actual execution times.

Let us discuss the merits of the three approaches in a
more general sense. While obtaining cycles from the ac-
tual hardware provides the actual data needed, cycle level
simulators can also be useful. First, problems with a tim-
ing analyzer can be compared to diagnostic output from a
simulator to track down problems regarding inaccurate esti-
mations. In contrast, only limited information regarding the
execution can be typically obtained from hardware, such as
the number of cycles. Second, simulators are often easier to
interact with than actual hardware. Tests are typically eas-
ier to setup and devise with a simulator. Finally, sometimes
the actual hardware may not be available. A simulator may
be executed on different general-purpose processors.

Ideally, a cycle-accurate simulator should be used to ver-
ify the accuracy of a timing analyzer and the actual hard-
ware should be used to verify the accuracy of the simula-
tor. But our study shows that one should not blindly rely on
so-called cycle-accurate simulators.

8. Related Work
Many research groups have addressed the the problem

of timing analysis. Methods of analysis range from unopti-
mized programs on simple CISC processors over optimized

programs on pipelined RISC processors and uncached ar-
chitectures to instruction and data caches [23, 25, 12, 18, 15,
22, 32, 17]. In fact, our work is probably most closely re-
lated to that of Harmon et al. [12] in terms of comparing the
actual hardware. However, instead of using time-consuming
reverse engineering methods (requiring error-prone data ac-
quisition with, e.g., an oscilloscope), we demonstrate that
data sheets together with observing actual hardware may be
sufficient for the design of a timing analyzer. These meth-
ods are used to obtain safe bounds on the WCET as discrete
values in a non-parametric fashion.

Parametric timing analysis by Vivancos et al. describes
techniques to handle variable loop bounds [28]. This allows
dynamic schedulers to re-assess the WCET based on loop
bounds determined dynamically during program execution.
In independent work, path expressions were used to com-
bine a source-oriented parametric approach of WCET anal-
ysis with timing annotations, verifying the latter with the
former, in work by Chapman et al. [6]. Bernat and Burns
recently proposed algebraic expressions to represent the
WCET of programs [3].

The FAST framework by Seth et al. models processor
frequency and incorporates parametric timing into the anal-
ysis framework [26]. Probabilistic and experimental ap-
proaches to obtaining the WCET for programs have also
been proposed [30, 4].

Our timing analyzer framework builds on the concepts of
prior work [22, 32, 14, 31, 15]. Modifications and enhance-
ments have been made to the framework to work with var-
ious different architectures and instructions sets. The AiT
tool [27], loosely based on our early work, particularly that
on caching, is a commercially available timing analysis tool
that has been shown to provide tighter estimates for the Mo-
torola Coldfire architecture employed in Airbus planes.

Chen et al. recently presented methods to perform static
timing analysis for embedded software [7]. They utilize In-
teger Linear Programming concepts to obtain the WCET
for an embedded architecture. They cope with more com-
plex architectures supporting branch prediction and pred-
ication, which are not issues in the AVR architecture. In
other related work, Engblom et al. target a line of custom
ASICs based on a standard CPU core based on the At-
mega90 line [9]. Prior work handles pipeline effects and ef-
fects of variable-cycle instructions in a different manner [8].
In that work, the timing of any single instruction provides
a baseline. Then, all possible subsequences of instructions
of different lengths are examined to obtain savings in exe-
cution time due to instruction overlap in the pipeline. These
savings are expressed as negative delta values for any in-
struction sequence of length two, three etc. This method,
although exhaustive, is extremely time-consuming. In con-
trast, our work shows that it is sufficient to capture edge-
effects between basic blocks, and only if they occur, as in

case of the existence of variable-cycle instructions. Hence,
our method is considerably more efficient in terms of anal-
ysis overhead.

9. Conclusion
In this work, we enhanced existing tools and developed

new tools to incorporate them into a framework capable
of performing timing analysis with the aim of obtaining
WCET estimates for the Atmel Atmega architecture fam-
ily. The Atmel AVR architecture and instruction set was tar-
geted for static timing analysis as this architecture is widely
used in the Berkeley Motes architecture — an architecture
that is becoming ever more popular for use in a wide variety
of applications. The timing analysis framework is capable
of statically analyzing code compiled for the Atmel proces-
sors. It provides tight, safe, and accurate WCET estimates,
which forms the base for subsequent real-time schedulabil-
ity analysis. To verify our results, we performed a series of
experiments using a three-tiered approach, which is unique,
to the best of our knowledge. Timing results from the ac-
tual hardware, from a cycle-accurate simulator and from our
timing analysis framework were studied and compared. We
found that the cycle-accurate simulator is capable of under-
estimating the WCET at times. Hence, it does not provide a
safe base for WCET calculations.

In contrast, our timing analysis framework was able to
calculate WCET cycles with an over-estimation of less than
2% for programs with statically known loop bounds. We ad-
dress the handling of variable-cycle instructions, path merg-
ing without pipeline stalls and accurate accounting for tim-
ing overhead. Our approach extends beyond the Atmel AVR
family as the modeled architectural features are common
in low-end embedded processors. By enhancing the entire
framework, significantly tighter bounds were obtained by
our timing analysis framework. Specifically, the enhanced
pipeline modeling improves the accuracy of WCET bounds
by 5 to 20%. Our effient modeling of variable-cycle instruc-
tions further improves the accuracy by 30 to 40% for total
improvements of up to 77%.

Our framework is also capable of performing static tim-
ing analysis for NesC commands. The WCET results ob-
tained for both NesC and C code are accurate as well as
tight. This shows that our framework is flexible enough to
bound the WCET of sensor network applications in NesC
as well as C for the Atmel architecture, both at the level re-
quired by schedulability analysis of real-time systems.

To our knowledge, this is the first time that such a
three-tiered assessment of timing experiments has been car-
ried out. It demonstrates short-comings in so-called “cycle-
accurate simulators” while static timing analysis provided
safe bounds on the WCET. Furthermore, making our tim-
ing analysis toolset available to sensor node applications
may be a significant contribution towards addressing a doc-
umented need for tool support for EmNets.

References
[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and

F. Mueller. Virtual simple architecture (VISA): Exceeding
the complexity limit in safe real-time systems. In Inter-
national Symposium on Computer Architecture, pages 250–
261, June 2003.

[2] Atmel. Atmel avr 8-bit risc family.
http://www.atmel.com/products/avr/.

[3] G. Bernat and A. Burns. An approach to symbolic worst-case
execution time analysis. In 25th IFAC Workshop on Real-
Time Programming, May 2000.

[4] G. Bernat, A. Colin, and S. Petters. WCET analysis of prob-
abilistic hard real-time systems. In IEEE Real-Time Systems
Symposium, Dec. 2002.

[5] C-Lab. WCET benchmarks. Available from http://www.c-
lab.de/home/en/download.html.

[6] R. Chapman, A. Burns, and A. Wellings. Combining static
worst-case timing analysis and program proof. Real-Time
Systems, 11(2):145–171, 1996.

[7] K. Chen, S. Malik, and D. I. August. Retargetable static tim-
ing analysis for embedded software. In Proceedings of the
International Symposium on System Synthesis (ISSS), Octo-
ber 2001.

[8] J. Engblom. Processor pipelines and static worst-case execu-
tion time analysis. Uppsala Dissertations from the Faculty
of Science and Technology, 2002.

[9] J. Engblom, A. Ermedahl, M. Sjdin, J. Gustafsson, , and
H. Hansson. Execution-time analysis for embedded real-time
systems. In STTT (Software Tools for Technology Transfer)
special issue on ASTEC., 2001.

[10] D. Estrin, G. Borriello, R. Colwell, J. Fiddler, M. Horowitz,
W. Kaiser, N. Leveson, B. Liskov, P. Lucas, D. Maher,
P. Mankiewich, R. Taylor, and J. W. (eds.). Embedded, Ev-
erywhere, A Research Agenda for Networked Systems of Em-
bedded Computers. Computer Science and Telecommunica-
tions Board, National Academies Press, 2001.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The NesC language: A holistic approach to net-
worked embedded systems. In J. J. B. Fenwick and C. Nor-
ris, editors, Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implemen-
tation (PLDI-03), volume 38, 5 of ACM SIGPLAN Notices,
pages 1–11, New York, June 9–11 2003. ACM Press.

[12] M. Harmon, T. P. Baker, and D. B. Whalley. A retargetable
technique for predicting execution time. In IEEE Real-Time
Systems Symposium, pages 68–77, Dec. 1992.

[13] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M. G.
Harmon. Bounding pipeline and instruction cache perfor-
mance. IEEE Transactions on Computers, 48(1):53–70, Jan.
1999.

[14] C. A. Healy, M. . Sjödin, and D. B. Whalley. Bounding loop
iterations for timing analysis. In IEEE Real-Time Embedded
Technology and Applications Symposium, pages 12–21, June
1998.

[15] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the timing analysis of pipelining and instruction caching. In
IEEE Real-Time Systems Symposium, pages 288–297, Dec.
1995.

[16] J. Hill, R. Szewczyk, A. Woo, D. Culler, S. Hollar, and
K. Pister. System architecture directions for networked sen-
sors. In Architectural Support for Programming Languages
and Operating Systems, pages 93–104, 2000.

[17] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond direct mapped instruction caches. In
IEEE Real-Time Systems Symposium, pages 254–263, Dec.
1996.

[18] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, and C. S. Kim. An accurate worst case tim-
ing analysis for RISC processors. In IEEE Real-Time Sys-
tems Symposium, pages 97–108, Dec. 1994.

[19] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. of the Associ-
ation for Computing Machinery, 20(1):46–61, Jan. 1973.

[20] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[21] S. Montan and J. Engblom. Validation of a cycle-accurate

cpu simulator against real hardware. In ECRTS (Euromicro
Conference on Real-Time Systems), 2000.

[22] F. Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18(2/3):209–239, May 2000.

[23] C. Y. Park. Predicting program execution times by analyz-
ing static and dynamic program paths. Real-Time Systems,
5(1):31–61, Mar. 1993.

[24] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. In Seventh
Annual International Conference on Mobile Computing and
Networks (MobiCOM 2001), pages 189–199, 2001.

[25] P. Puschner and C. Koza. Calculating the maximum ex-
ecution time of real-time programs. Real-Time Systems,
1(2):159–176, Sept. 1989.

[26] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast:
Frequency-aware static timing analysis. In IEEE Real-Time
Systems Symposium, pages 40–51, Dec. 2003.

[27] S. Thesing, J. Souyris, R. Heckmann, F. R. andM. Lan-
genbach, R. Wilhelm, and C. Ferdinand. An Abstract
Interpretation-Based Timing Validation of Hard Real-Time
Avionics. In Proceedings of the International Performance
and Dependability Symposium (IPDS), June 2003.

[28] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Paramet-
ric timing analysis. In ACM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Embedded Systems,
volume 36 of ACM SIGPLAN Notices, pages 88–93, Aug.
2001.

[29] D. L. Weaver and T. Germond. The SPARC Architecture
Manual – Version 9. Prentice Hall, 1994.

[30] J. Wegener and F. Mueller. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. Real-Time Systems, 21(3):241–268, Nov. 2001.

[31] R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon.
Timing analysis for data caches and set-associative caches.
In IEEE Real-Time Embedded Technology and Applications
Symposium, pages 192–202, June 1997.

[32] R. T. White, F. Mueller, C. Healy, D. Whalley, and M. G.
Harmon. Timing analysis for data and wrap-around fill
caches. Real-Time Systems, 17(2/3):209–233, Nov. 1999.

