The Non-Blocking Write Protocol NBW: A Solution to a
Real-Time Synchronization Problem

Hermann Kopetz and Johannes Reisinger

Technical University of Vienna
Departement of Real-Time Systems
Vienna, Austria

Abstract

The synchronization problem between a communication
controller writing a data structure into a common memory
and a set of concurrently executing real-time tasks reading
this data structure is investigated. Two versions of an adapt-
able new non-blocking protocol are presented and a sche-
dulability analysis for a task set using these protocols is giv-
en.

1 Introduction

The design of an inter~task communication protocol for
hard real time systems is a delicate challenge [2]. The well
known classical solutions, i.e., the enforcement of mutual
exclusion between a reader and a writer, leads to a formida-
ble scheduling problem. The scheduling analysis of a task set
where mutual exclusion between the tasks has to be consid-
ered is complex because two independent delay mechanisms
interact:

o Actaskis delayed because it is blocked before a critical
region.

e Ataskis delayed because it is preempted by a more ur-
gent task.

In 1990 Sha et al. [6] have presented the priority inberi-
tance protocol thatextends the rate monotonic scheduling al-
gorithm introduced by Liu and Layland [5] to handle task de-
pendencies caused by mutual exclusion. The associated
schedulability test for hard real-time tasks considers for ev-
ery task priority the worst possible delay caused by preemp-
tion from higher priority tasks and by blocking from lower
priority tasks accessing the same critical region (data struc-
ture). In the priority inheritance protocol the writer of in-
formation can be blocked before a critical region until aread-
er has finished its critical section.

During the design of a communication controller for our
TTP protocol [4] we uncovered a synchronization scenario
where it does not make sense to block a writer. Consider the
case of a writer writing periodically, e.g. every millisecond,

1052-8725/93 $03.00 © 1993 IEEE

131

the current time into a data structure. A reader that has started
to read this data structure is preempted by a higher priority
task before it has finished the read operation. During this pre-
emption time the data structure is blocked and the writer can-
not update the time anymore. When the reader returns some-
times later it completes the read operation. However, what
it gets is not the current time, but the time of the past interrup-
tion.

To avoid such a scenario, this paper presents a non—block-
ing protocol for inter-task communication in hard real-time
systems and develops an associated schedulability test. In
[7], Simpson presented a non-blocking asynchronous proto-
col for task communication between one writer and one
reader, which needs a fixed amount of buffers (four) foreach
message. The non-blocking protocol presented in this paper
supports a single writer and multiple readers. It contains a
mechanism to configure the number of buffers to the applica-
tion requirements, trading memory space for execution time.

The rest of this paper is organized as follows. In Section 2
we explain the architectural assumptions and introduce some
properties that any solution to the stated synchronization
problem must possess. Section 3 presents the protocol and
develops an argument for the safety of the proposed proto-
col. Section 4 is devoted to the schedulability of a task set
that uses this protocol. In Section 5 we introduce a refined
version of this protocol, which reduces the task response
time at the expense of more memory. The paper concludes
with Section 6.

2 Problem Statement

2.1 Architectural Assumptions

‘We assume a distributed real-time system that consists of
a set of nodes connected by a broadcast communication
channel (Fig. 1).

Each node contains a CPU, a memory, a communication
controller, and a dual-ported memory between the commu-
nication controller and the host CPU (Fig. 2). Some nodes,
the interface nodes, possess an I/O interface to communicate
with I/O devices in the environment.

Input/Output

I

< I I >
Real-Time Bus
w[[

Fig. 1: Distributed Computer System

< 2> Real-Time Bus
I/O Controller
Local
CPU Memory
Internal Bus

Fig. 2: Node Architecture

The communication controller receives messages from
the broadcast communication channel and writes these mes-
sages into the dual-ported memory. The messages contain
observations about real-time entities (e.g. temperature,
pressure, etc.) in the environment. Since the validity of these
observations is invalidated by the progression of real-time,
the appropriate message semantics in such an application is
that of a state messages [3], i.e., anew version of a message
overwrites the previous version and messages are not con-
sumed by the reader. This type of message semantics is very
similar to the semantics of a variable in a programming lan-
guage. In this architecture the network is thus more or less
hidden behind the memory abstraction.

We assume that access to the communication channel is
realizedby a TDMA (time division multiple access) or a sim-
ilar access protocol, where the minimal interval between two
message instances concerning the same state variable in the
environment is known a priori.

There is a set of concurrently executing tasks {T} that
execute on the host CPU. Every one of these tasks T; is char-
acterized by a maximum execution time c;, and has to be
completed by a deadline d; after its invocation. We call }; =
d; — ¢; the laxity of task T;. Since there is only one CPU for
the execution of a set of real-time tasks, task preemption is
supported by the real-time operating system.

2.2 The Synchronization Problem

In this paper we focus on the synchronization problem be-
tween the communication controller writing areal-time data
structure into the dual ported memory and the set of asynch-

132

ronously executing real-time tasks reading this data struc-
ture. This is a special form of the classical reader/writer
problem. The communication controller is the writer and the
tasks executing on the host computer are the readers. The
specifics of this synchronization problem relate to the fact
that the data structure contains real-time data. Whereas in
“’classical” solutions of the reader/writer problem the writer
can be delayed to maintain the integrity of the data structure
while it is being read, such an approach is of questionable
utility if the data structure contains time dependent data.

23 Properties of the Solution

We are interested in solutions to this reader/writer prob-
lem that satisfy the following properties:

Safety Property

If aread operation completes successfully, it must be guar-
anteed that it has read an uncorrupted version of the data
Structure.

The interference relation of read/write operations is
asymmetric, i.e., a reader does not interfere with another
reader, nor does it invalidate the results of a write operation.
However, a write operation can destroy other concurrent
read and write operations. Since in our system there is only
one writer, the safety property has to be checked for read op-
erations only.

Timeliness Property

The tasks containing the read operations must complete
their execution before their deadlines.

Inahardreal-time system the execution time of all opera-
tions must be limited by a known upper bound. This is a
stronger version of the classical liveness property, that prog-
ress must be made.

Non Blocking Property

The writer cannot be blocked by the readers.

Atan abstract level, the information flow from a writer to
areader is unidirectional. If this unidirectional information—
flow property can be maintained atall system levels, it is pos-
sible to add or remove readers without any change to the
writer. Furthermore, no buffer space has to be provided in the
communication controller. This reduces the complexity of
the controller and simplifies the composition and testing of
large systems.

3 The Non-Blocking Protocol

3.1 Rationale

We propose a solution to this reader/writer problem that
takes advantage of the architectural characteristics described

above. Since there is only one writer to the data structure, it
can write whenever it needs to write. There is no possibility
that any one of the concurrently executing read operations
will invalidate the results of this single writer.

The readers, however, must be more careful. They can
read at any time but must check at the end of the read opera-
tion whether the writer has interfered during the execution of
the read. If such an interference is observed, the reader must
discard the results of the previous read operation and restart
the read operation again. In the schedulability analysis it
mustbe shown that the number of retries that can occur in the
worst possible scenario is limited by a known upper bound.

3.2 Protocol Description

We associate a concurrency control field, CCF, with ev-
ery critical data structure. CCF is stored in a single word of
memory and is initialized with 0 during the initialization
phase. We make the assumption that a single-word read or
write operation of CCF is atomic. This atomicity has to be
guaranteed by the hardware.

Before starting the write operation, the writer increments
CCF by one. It then performs the write and after it has com-
pleted, it increments CCF by one again. If the value of CCF
is increased beyond its range R (determined by the memory
word length) it wraps around. We assume that R is large
enough so that the maximum number of interferences during
a single read operation is less than R/2.

Before starting aread operation, the reader stores the cur-
rent value of CCF in alocal variable CCF_Begin. It then per-
forms the read and after it has completed it reads CCF again
and stores it in a second local variable CCF_End. At this
point the read phase has terminated. The reader then checks
whether the writer has interfered with the read operation by
inspecting the following interference condition. A writer has
interfered with the reader if the value of CCF_Begin is dif-
ferent from the value of CCF_End or if the value of
CCF_Begin is odd. If such an interference is observed, the
reader has torestart the read operation. The detailed protocol
for writing and reading a message is given in the following:

Initialization:
CCF; := 0;
Write message i:

start: CCF_old := CCF;;
CCF; := CCF_old + 1;
<write buf;>
CCFj := CCF_old + 2;

Read message i:

start: CCF_begin := CCF;;
<read buf;>
CCF_end := CCFi;
If CCF_end # CCF_begin or
CCF_begin = odd them goto start;

The boolean expression within the last statement of the
reader is the interference condition.

To increase the protocol efficiency, it is possiible to
execute the second clause of the interference condition im-
mediately after reading CCF;.

3.3 Correctness Argument for the Safety
Property

In this section we present a correctness argument to show
that whenever areader terminates aread operation the safety
property is maintained.

Because of the atomicity of the single~word read and
write a reader either starts before or after a writer and termi-
nates its read phase either before or after a write operation.

Only the following six temporal relations between a read
operation and a write operation are therefore possible:

(1) Write after read:
Read

Write
(2) Read after write:
Read
Write
(3) Read start before write finish:
Read
Write
(4) Write start before read finish:
Read
Write
(5) Read within write:
Read
L Write |

(6) Write within read:
Read |

Write

In relations (1) and (2) the read and write operations are
not concurrent. The interference condition evaluates to false
and the read will terminate safely. In relations (3), (4), and
(6) the differing values of CCF_Begin and CCF_End force
a retry of the read operation. Although CCF_Begin and
CCF_End are the same in relation (5) the value of CCF_Be-
gin will be odd and cause the interference condition to evalu-

133

ate to true. Since the list of relations is exhaustive, the safety
property will be maintained in all possible circumstances.

4 Schedulability Analysis

Since in the architecture discussed here the writer has its
own processor (the communication controller) a preemption
of the writer by a high priority reader and vice versa is not
possible. As a consequence the schedulability analysis is
simplified.

41 Timeliness Analysis

The interactions between the writer and the reader can
lead to an extension of the execution time of the reader. In the
following analysis we first examine the worst case extension
of the execution time by a single interference and then we es-
tablish a bound on the maximum number of interferences.
We will use the following notation throughout the timeliness
analysis:

Attributes of messages:

d’ maximum execution time of a read operation
(without retry)

d¥ maximum execution time of a write operation

mint ... minimum arrival interval of messages

Anributes of tasks:

€y Maximumcomputation time of task not consider-
ing read-retries

Cp eoves maximum computation time of task considering
read-retries

d...... deadline of task

| PR minimum latency of task not considering read—

retries (I, = d — ¢,)
. minimum latency of task considering read-re-
tries (I, = d — ¢,)
N; maximum number of interferences of read opera-
tions by write operations

Single Interference

Because there is no point in time at which we can be sure
that a read operation is not interfered with by a write opera-
tion, we must take into account that read operations have to
be executed repeatedly until they succeed. Let us assume that
the duration of read and write operations is approximately
equal (that is, d" — 6 < d* < d" + 6 for 0 < a*). Under
this assumption, a single interference of a read operation by
a write operation can cause up to three additional read opera-
tions and therefore extend the execution time of a single read
operation by 3d"

L_Read | Read | Read | Read |
Write
Number of Interferences

Due to preemptions of tasks by other tasks with higher
priorities read operations may span a rather large interval of
time which can lead to more than one interference of a single
read operation. Each of these interferences will extend the
execution time of the task by up to 3d” time units. The maxi-
mum execution time of a task considering read-retries there-
fore computes to

¢, = ¢, + 3N d’
and the minimum latency is
l,=1,—3Nd.

We can bound the number of interferences of a read op-
eration of a task by assuming that the chosen scheduling al-
gorithm will guarantee that all tasks of the task set {T} will
terminate before their deadlines, provided the proper maxi-
mum execution times are available. We further assume that
a minimum time (mint) between successive write operations
into the same data structure is known a priori. If such a mini—
value cannot be established, the worst case number of inter-
ferences cannot be bounded.

As shown previously, each read operation can be interf-
ered at least once, independent of mint, execution time, and
latency. For our further considerations, we assume that the
latency of the tasks considering the read-retries (f,) is
known. Thus a read operation must be preempted for an in-
terval of at least mint — d* — 2d" (mint > d* — 2d" is as-
sumed in the rest of the paper) in order to be interfered with
by two subsequent write operations (see Fig. 3).

Each additional preemption interval which lasts at least
mint — d* — 2d’ may lead to an additional interference.
The sum of all preemption times is bounded by J,, otherwise
the task cannot be guaranteed not to miss its deadline. There-
fore the maximum number of interferences computes to:

A

Ny [mj 1=
, I,

N = mint—d”—?d’+1=’
l, = 3N.d"

N = = - t!™

WN; = D(mint —d* —2d" < 1|, -3N.d" =
Nmint + Nd - d) s l,+ mint —d” - 2d" =
1, + mint — dv — 2d’

. " = = 4™
N mint + d- — a* =d=d=d
l, + mint — 3d™
Nes i~
1, + mint — 3d™
N, = —W'__I

The maximum execution time of the task considering
read-retries computes to (we can use = instead of < be-
cause ¢, is an upper bound for the execution time of the task):

l, + mint — 3d'”'-|

Cn = C,+ 3d™ :
Co + 3d |_ mint

‘We must further check that 2N; < R (the range of the
concurrency control field).

> mint — d¥ — 2d* > mint — d¥ — 2d"

Writer ﬂ ﬁ“’ _J—ji.'
h mint | mint f

Fig. 3: Interferences of read operations

Preemption

Reader

4.2 Schedulability Test

For the schedulability analysis the execution times of all
tasks must be extended by the amount calculated above.
Since the protocol is non-blocking, no further consider-
ations about the consequences of the task interactions on the
schedulability have to be taken into account, i.¢., the task set
with the extended execution times can be viewed as indepen-
dent. This is important because many scheduling algorithms
for scheduling a set of independent tasks are known, ¢.g., rate
monotonic, earliest deadline, least laxity [1].

43 An Example

Letus take an example from the field of automotive elec-
tronics to determine the amount of the execution time exten-
sion. In this application the following parameters are realis-
tic:

Message size: 12 bytes (6 words with a size of 16 bits)
read/write time d™; 10 usec

Execution time ¢,: 3 msec

Deadline 4: 10 msec

Laxity [,: 7 msec

mint: 2 msec

Execution time extension:

1, + mint - 3d~J

ete = 3d™ I_ T

=3 %10 x LWJ -

= 30 X 4 = 120 psec

135

The extended execution time of this task will thus be 3.12
msec, an extension of about 4% over the original execution
time.

5 Extension of the Protocol

The protocol described in the previous sections suffers
from two shortcomings:

¢ Itisnotpossible to handle tasks with a very low laxity,
especially tasks with laxity 0.

o If the sum of the read times of all messages read by a
task is non-negligible compared to the execution time
of the task, the protocol is rather inefficient.

Assume that 4" in the above example is 200 psec instead
of 10 psec. In this case, the execution time extension in-
creases to 2400 psec, increasing the execution time by 80%.
In this Section we will present a method which allows the
execution time overhead of tasks of a real-time system to be
adapted to the specific needs of an application. Of course,
this gain in execution time is not free. It has to be paid for by
more memory.

This extended protocol is based on the allocation of more
than one buffer for each message. These additional buffers
will be used to set up periods in time in which a message is
guaranteed not to change. The buffers are written to in a cy-
clic manner. The protocol guarantees that the reader always
reads the most recent version of a message which was avail-
able when the reading procedure started.

The protocol for writing and reading messages does not
differ very much from the protocol described in Section 3.
The original protocol uses CCF; only to determine an inter-
ference of a read operation by a write operation. In the ex-
tended protocol, CCF; is used in addition to determine the
number of the buffer which is accessed by the reader or the
writer. In addition to CCF;, we need a constant bcny; which
stands for the number of buffers reserved for message num-
ber i. The range R; of CCF; must be a multiple of 2 * ben;.

o The writer has to access the buffers in a cyclic manner.
Because each write-operation increments CCF; by
two, using | CCF;/2 | mod bent; as the number of the
actual buffer guarantees that the buffers are accessed
cyclically.

o The reader has to use the latest available instance of a
message. | CCF,;/2| modbent; always specifies the
buffer which is currently being written or which will be
written next, therefore (| CCF,/2] — 1) mod bent; de-
termines the most recent instance of a message which
is not currently being written.

An instance of a message is guaranteed not to be
overwritten by a newer instance of the same message
if less than beny; instances of the message were written
in the interval [start of read, end of read}. This means

that the interference condition is fulfilled if and only if
the value of the concurrency control field after comple-
tion of the read-operation (CCF_end) minus the value
of the concurrency control field just after completion
of writing this particular instance of the message
(2* | CCF_begin/2) is greater than the number of
increments of CCF; when writing bcnt; — 1 message
instances to this particular buffer (bent; * 2 - 2).

Note: An already started, but not terminated write
operation to a buffer (characterized by an odd concur-
rency control field) does not influence the selection of
a read-buffer, therefore CCF_begin — 1 is the value of
the concurrency control field after completion of writ-
ing the currently read instance of the message in case
CCF_begin is odd. This fact is expressed by the arith-
metic term 2*| CCF_begin/2 }.

In the following protocol, buf;[j] denotes the j*th buffer
reserved for an instance of message i (note that for beng; = 1
this protocol is equivalent to the one presented in Section 3):

Initialization:

CCF; := 0;

Write message i:

start: CCF_old := CCFj;
CCFj := CCF_old + 1;

<write buf; [|CCF_o0ld/2] mod becntji 1>
CCFy := CCF_old + 2;

Read message i:

start: CCF_begin
<read buf; |
mod benti 1>
CCF_end:= CCFy;
* 1f CCF_end < CCF_bkegin
then CCF_end = CCF_end + Ri;
If CCF_end - |CCF_begin/2]} * 2 >
benty * 2 - 2
then goto start;

The line marked with a * is needed because of the limited
range of R;.

:= CCFi;
(LccF_begin/2] - 1)

5.1 Schedulability Analysis

For the schedulability analysis of the extended protocol
we use the same notation as in Section 4, with the additional
parameter bent, which represents the number of buffers re-
served for the message.

For bent > 1, each interference causes exactly one addi-
tional read operation:

¢, =¢C,+Ndandl, =1, — Nd
A write operation to buffer i interferes with a read opera-

tion only if the read operation started when the message in
buffer i was the most recent one. The worst case is therefore

136

a read operation which started immediately before a write
operation has completed and which ends after the next write
operation has started (if bent = 2, otherwise bent — 2 write op-
erations may be in between the two considered write opera-
tions). Therefore, a read operation must last at least
(bent —)mint — d*
time units in order to cause an interference (see Fig. 4), and
must thus be preempted for at least
(bent — Vymint — d* — d’
time units (because aread operation lasts d” time units). Each
successive read operation must be preempted for at least
(bent — Vymint — d’
time units in order to cause an interference.

mint - d¥ — d&*) mint — d*
Preemption k — I 1
Reader |_dr_ _|._dr —

Writer tdw_|_ Edw _J.d_w|
| mint | mint \

Fig. 4: Interferences of read operations (bcnt=2)

The maximum number of interferences therefore com-
putes to:

_ I, — ((bent — V)mint — d» — d')J
N = I_ (bont — Vymint — & 1=
1, — ((bent — Dymint — dv — d?
N ot~ Dmimi =& T
— A — -_— ; —_ v — A
N, = I, = N;dr — ((bent = Vymint — d* — d 1=

(bcnt — VDmint — d-

W, = D{(bent — Dymint — d)
1, = Nd' — (bent — Dmint + a&* + d" =

<

N((bent — Dmint) < 1, +d" =
I, + d*
N = (bent — 1)mint
I, +d”
M |_(bcnt - l)mint_|

The maximum execution time of the task considering
read—retries computes to (we can use = instead of < be-
cause c, is an upper bound for the execution time of the task):

L+
G =cotd I_(bcnt = l)mintJ

‘We must further check that 2bcnt N; < R (the range of
the concurrency control field).

Using this new formula, the execution time extension in
the example from the beginning of this section (d™ = 200
usec) is reduced from 2400 psec to

ete = d’ [_HL
(bent — Dmint

= 200 X 3 = 600 psec
for bent = 2 and to

, I, + a»
ele = d |_(bcnt — Dmint

=200 x 0 = 0 psec
for bent = 5.

| = 2520

_ 7000 + 200
J =200 x | R0

6 Conclusion

We have presented two versions of a non-blocking algo-
rithm for the communication between a communication con-
troller and a set of asynchronously executing real-time tasks.
These algorithms are characterized by a unidirectional in-
formation flow, i.e., the writer is not influenced by the activi-
ties of the readers. As a consequence the controller design is
simplified since no provision for the internal buffering of in-
formation within the controller has to be made.

From the point of view of schedulability, the task set can
be considered independent, provided the maximum execu-
tion time of the tasks is increased by an amount that depends
on the frequency of the writer and the laxity of the reader. We
have shown that this increase in the execution time is less
than 10 per cent in a typical scenario from the field of auto-
motive electronics. To handle cases in which the read/write
time of a message is not negligible compared to the execu-
tion time to the task, we have presented an extension to the
simple protocol which allows the execution time overhead
to be reduced to any required amount of time by the use of
additional space within the shared memory.

The protocols presented in the paper consider preemptive
tasks. With non—preemptive tasks or with tasks, which can
be preempted only at pre-determined points in time, the sce-
nario becomes much simpler: When using one buffer, the
execution time extension is 3d” (because only one write op-
eration can interfere a read operation), and when providing
two buffers there is no execution time extension at all.

The transposition of the scheduling problem of a set of
communicating task into a set of independent tasks is signifi-
cant, because many result from the field of schedulability
analysis are only applicable if the independence assumption
holds. In the future we will investigate whether this trans-
position of a set of communicating task into a set of indepen-

137

dent tasks by the provision of appropriate hardware support
can be generalized to other architectures.

7 Acknowledgement

This work has been supported, in part, by ESPRIT Project
PDCS 2, financed by the Austrian Science Foundation
(FWF). Many discussions within the MARS group at the
Technical University of Vienna are warmly acknowledged.
We also have to thank Krithi Ramamritham, Neil Speirs,
Dave Powell, and Yves Crouzet for their useful comments on
earlier versions of this paper.

References

[1] S-C. Cheng, John A. Stankovic, and Krithi Ramamri-
tham. Scheduling Algorithms for Hard Real-Time
Systems — A Brief Survey. In John A. Stankovic and
Krithi Ramamritham, Editors, IEEE Tutorial on Hard
Real-Time Systems, pages 150 - 173, IEEE Computer
Society Press, 1988.

S.R. Faulk and D.L. Parnas. On Synchronization in
Hard Real-Time Systems. Communications of the
ACM, 31(3), March 1988.

Hermann Kopetz, Andreas Damm, Christian Koza,
Marco Mulazzani, Wolfgang Schwabl, Christoph
Senft, and Ralph Zainlinger. Distributed Fault-Toler-
ant Real-Time Systems: The MARS Approach. I[EEE
Micro, 9(1):25-40, Feb. 1989.

Hermann Kopetz and Giinter Griinsteidl. TTP — A
Time Triggered Protocol for Real-Time Systems. In
Proceedings of the 237 Symposium on Fault-Tolerant
Computing, Toulouse, France, June 1993.

C.L.Liuand J.W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environ-
ment. Journal of the ACM, pp. 46— 61, February 1973.

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky.
Priority Inheritance Protocols: An Approach to Real—
Time Synchronization. IEEE Transactions on Com-
puters, 39(9):1175 — 1185, Sep. 1990.

H.R. Simpson. Four-Slot Fully Asynchronous Com-
munication Mechanism. IEE Proceedings, 137(1):17 -
30, January 1990.

(2]

(31

4]

(51

(61

7

