
Integrated Scheduling of Multimedia and Hard Real-Time Tasks
�

Hiroyuki Kaneko, John A. Stankovic,
Subhabrata Sen and Krithi Ramamritham

Computer Science Department
University of Massachusetts

LGRC, Box 34610
Amherst MA 01003-4610

UMass Computer Science Technical Report 96-45
August 1996

Abstract

An integrated platform which is capable of meeting the
requirements of both traditional real-time control process-
ing and multimedia processing has enormous potential for
accommodating various kinds of new applications. How-
ever, except for the simplest of situations, few, if any, re-
search or commercial systems successfully provide architec-
tural and OS mechanisms which can efficiently support both
hard real-time computation and multimedia soft real-time
computation. In this paper, we propose a multimedia server
executing on multiprocessor real-time operating systems to
provide different classes of guarantee to support both types
of processing. The multimedia server supports multiple pe-
riodic multimedia streams with a capability for graceful QoS
degradation during system overload. In this paper we (i)
discuss realistic system implementation issues on the SGI
IRIX/REACT/PRO operating system, (ii) develop several
multimedia server scheduling algorithms, and (iii) present
a performance evaluation. We chose the SGI system as an
implementation platform because it is being used more and
more for multimedia applications. Our performance evalua-
tion demonstrates that a multimedia server algorithm based
on a flexible, proportional allocation scheme provides the
best performance and that simple iterative scheduling is ad-
equate for handling graceful degradation of the multimedia
streams. We consider issues such as server size and period
as well as the impact of context switch overhead on the per-
formance. We also show that for applications which require
integrated resource sharing, neither the frame scheduler nor
the deadline scheduler supplied in the IRIX/REACT/PRO OS

�

This work was supported by the National Science Foundation Grant
No. IRI-9208920and CDA-9502639,and Mitsubishi Electric Corporation.

are suitable. We propose an implementation solution that is
appropriate.

1. Introduction

Many hard real-time applications such as automated man-
ufacturing and attack helicopters are being designed to take
advantage of audio and video information. This information
has real-time requirements such as delay and jitter tolerance,
requires suitable real-time operating system support, and is
less critical than hard real-time control information. How-
ever, support for processing this information must co-exist
with the hard real-time control information. For example,
in attack helicopters such as the Comanche, control tasks
have to be executed within their deadlines otherwise the
helicopter will not fly. Audio and video sensors can pro-
vide monitoring and sophisticated control of the helicopter.
To do this requires flexible and dynamic scheduling that in-
cludes various types of interaction between the hard and soft
real-time control tasks.

Accommodating multimedia and traditionalreal-time ap-
plications which have interaction requirements is a challeng-
ing research issue. However, little attention has been paid
to the coexistence of these applications. For example, the
Mercuri system [?] is one of the few research projects tar-
geting this objective, where data from remote video cameras
are transferred through an ATM network and displayed in
X windows, but they fail to provide any guarantees and end
up with providing best effort services.

This paper presents a mechanism to support the co-
existence of multimedia applications and traditional hard

1

real-time applications that interact via shared use of
CPUs, using the SGI Challenge multiprocessor and its
IRIX/REACT/PRO OS. It develops various real-time
scheduling algorithms to provide the necessary scheduling
support, and presents a performance evaluation that demon-
strates the value of the solutions. We chose the SGI system
as an implementation platform because it is being used more
and more for multimedia applications.

The rest of this paper is organized as follows. Section
2 introduces several applications which can benefit from
direct integration of hard real-time control and multime-
dia. Section 3 presents the integrated scheduling algorithms
and a solution that can be used on the IRIX/REACT/PRO
OS. In the simplest of applications, a solution can be based
on complete partitioning of the two classes of work. In
this case, the frame scheduler or deadline scheduler of the
IRIX/REACT/PRO OS can be used. For more compli-
cated applications, integrated solutions are necessary, and
we show that the standard IRIX/REACT/PRO schedulers
cannot be used. The QoS degradation solution is discussed
in Section 4. In Section 5, simulation results are presented.
These show that a multimedia server based on a flexible,
proportional allocation scheme is highly effective and that a
simple iterative policy is adequate for handling QoS degra-
dation in overload. Section 6 summarizes the work.

2. Applications

With technology like high performance CPUs, memory,
disks and high speed networks becoming less expensive and
more easily available, a number of multimedia applications
have emerged both in the commercial world and in research.
At the same time, traditional real-time computing is still one
of the major applications being used in various fields. In
order to motivate the need for a platform which is capable
of supporting these two types of computations at the same
time, consider the following applications.

First, even the coexistence of a simple video stream dis-
play and real-time control processes requires new solutions.
For example, suppose that in a power plant or industrial
manufacturing plant, plant operators (i) monitor situations
in different locations of the plant via cameras and (ii) con-
trol actuators based on this monitoring. Currently these
analog video monitoring systems and digitized controlling
systems are implemented on completely separate platforms.
Replacing these redundant systems with an integrated digi-
tized system can reduce the cost since the reduction in the
number of cables, display equipment, etc. is significant.
In addition to the reduction in cost, the integrated digitized
system can provide more functionality. For example, pro-
cessing of the audio and video by on-line algorithms may

then directly control various actuators for more effective and
faster response to problems. Also several video streams can
be shown on a single screen, information for them can be
fused, and automatic control of actions might be triggered,
allowing faster and more accurate response. Many com-
panies, including Honeywell and Mitsubishi, are pursuing
applications with similar characteristics.

Second, many examples can be found in military appli-
cations such as controlling the fly-by-wire Comanche heli-
copter through trees and telephone wires and “looking for”
enemy soldiers or vehicles based on processing video and
audio data. Upon detection of various situations from the
video and audio processing, direct control of the helicopter
may occur. The workload presented by this application is
highly dynamic and subject to both hard and multimedia
real-time constraints.

Third, computer-participative multimedia applications
are another emerging trend in multimedia research [?].
As opposed to computer-mediated multimedia applications
such as online encyclopedias and video-conferencing sys-
tems, in which the computer acts as a mediator between the
application author and user or between two users, computer
participative multimedia applications perform analysis on
their audio and video data input, and take actions based
on the analysis. For example, a system in which a pro-
gram watches television news shows and maintains an on-
line database of stories organized by subject is introduced in
[?]. In this type of application, input data have to be manip-
ulated or filtered by software rather than hardware because
of the flexibility required in the design. Similar applications
can be seen in [?] and [?]. It is possible to make use of these
techniques for traditional real-time systems. For example,
we may want to know if there is any intruder in an isolated
area by filtering the data from the remote monitoringcamera
with a motion detection filter. The detection can be directly
connected to the alarm system or controlling functions such
as shutting the valves or closing the gates.

We assume that single processor systems will not be used
for these applications since multimedia processing is some-
times very computation-intensive (e.g., the Comanche heli-
copter uses a multiprocessor as the main processing engine).
In some of the ongoing multiprocessor-based research ap-
proaches, some processors are dedicated to multimedia pro-
cessing and others to traditional real-time processing, e.g.,
[?]. Although this approach can provide good isolation of
one type of processing from another, it has several disad-
vantages:

� It cannot achieve high utilization of system resources
in a dynamic environment.

It is not effective to dedicate three processors for mul-
timedia processing when there is only one multimedia

2

session and the rest of the processors are overloaded
with real-time processing. Allowing both types of tasks
to exist in the same processor makes the system more
adaptable. This is the main type of interaction among
hard real-time and multimedia tasks that is explicitly
addressed in this paper.

� Correctness may be jeopardized when the various types
of processing interact over shared data resources.

If the two classes of work interact over shared re-
sources, treating them independently may cause tasks
to miss their deadlines due to possible blocking over
these shared resources. The solutions presented in this
paper solve the blocking problem among hard real-time
tasks themselves, but assume that there is no read-write
shared resources between the hard real-time and mul-
timedia tasks.

Our approach is therefore, to accommodate both multi-
media and traditional real-time processes in a multiprocessor
system and allow both types of processes to reside in any
processor. Our solution is described in the context of the
SGI Challenge multiprocessor and its OS.

3. Multimedia Server

3.1. Background

The multimedia server is a periodic task that is dynami-
cally created and scheduled along with hard real-time tasks.
We use a planning-based scheduler, as exemplified by the
Spring scheduling algorithm [?], to perform this level of
scheduling. The server then executes the multimedia tasks
themselves. A planning-based scheduler dynamically gen-
erates schedules or plans in which every task included in
the schedule is guaranteed its required resources (including
a processor) for its worst case execution time. When a new
set of tasks arrives at the system, it attempts to assign execu-
tion windows for the new tasks and every task in its current
schedule such that every task completes by its deadline and
there are no resource conflicts between any tasks scheduled
to execute at the same time. If a feasible schedule cannot
be found, the new set of tasks is rejected and the previous
schedule remains intact. This planning allows admission
control and results in a reservation-based system. The key
aspect of this scheduler is its ability to schedule not only the
CPU but also the other required resources in an integrated
fashion.

On the basis of this planning-basedscheduling algorithm,
we integrate multimedia and hard real-time processes us-
ing a multimedia server. The server is given a fraction of

CPU time and is responsible for controlling the execution
of multimedia tasks. Task executions of multiple multi-
media streams are multiplexed into one multimedia server
instance. Hard real-time tasks are executed in the rest of the
CPU time. Of course, it is possible that we regard each mul-
timedia task instance as a hard real-time task and schedule it
without having the multimedia server. However, the cost in-
volved in individually scheduling these task instances using
the planning-based scheduler would be too high. Its capa-
bility to provide more precise guarantees per task instance
is essential for the hard real-time control tasks, but this level
of determinism is not needed for multimedia sessions which
can do with more statistical types of guarantees.

3.2. Multimedia Task Allocation Policies

In this paper, we investigate both static and flexible allo-
cation schemes as well as proportional and individual alloca-
tion schemes. This gives rise to four different combinations.

� Static proportional allocation

� Static individual allocation

� Flexible proportional allocation

� Flexible individual allocation

This section discusses these different schemes and Section
?? describes how these various combinations are integrated
with the planning-based scheduler.

Static versus Flexible Allocation. Obviously, there can be
many different policies for allocating a fraction of CPU time
to the multimedia server. One clear distinction is between a
static allocation and a flexible allocation. With static alloca-
tion, the start time and duration of each multimedia server
instance are fixed beforehand. Then the on-line scheduler
tries to guarantee the hard real-time tasks by scheduling
them into the CPU time not used by the multimedia server.
Therefore, scheduling of multimedia streams is separated
from scheduling of hard real-time tasks and is not directly
related to the planning-based scheduling algorithm. The
static allocation can be considered a baseline and is not
expected to perform very well. On the other hand, with
the flexible allocation, each multimedia server instance is
treated as one real-time task and dynamically scheduled with
the planning-based scheduling algorithm. The start time of
each multimedia server instance can be moved between its
release time and its deadline minus server computation time.
The release time and deadline are calculated based on the
period of the multimedia server as described below. The
scheduling overhead of the flexible approach is higher than

3

multimedia
stream 1

multimedia
stream 2

multimedia
stream 3

multimedia
server

P1

P1 X 2

P1 X 3

P1

t

t

t

t

Figure 1. Proportional allocation of multime-
dia streams.

that of the static approach because the planning-based sched-
uler has to schedule multimedia server instances in addition
to hard real-time tasks. However, schedulability of hard
real-time tasks is much lower with the static allocation than
with the flexible allocation since the former is much more
restrictive in timing.

Proportional versus Individual Allocation. For both static
and flexible allocation schemes, there are two ways to assign
each multimedia task instance to the multimedia server in-
stance. One is called proportional allocation where each
task instance is split proportionally into the multimedia
server. Suppose there are � different multimedia streams
in the system. Let

���
be the period of the multimedia

server,
���

be the period of the i-th multimedia stream, � �
be the time duration of each multimedia server instance and� � be the estimated execution time of the task instance in
the i-th multimedia stream. Then, since each task instance
is divided into

�	���
 server instances, the computation time of
the multimedia server instance � � is given as

� �
� �� ������� � �
� �
�������

Figure 1 illustrates this allocation scheme. As the multime-
dia stream 1 has the shortest period

���
, the server has the

same period as stream 1, namely
� �

. In this example, the
length of each server instance is the sum of the execution
times of the task of stream 1, half of stream 2 and one third
of stream 3.

Flexibility in task execution is needed especially when
several multimedia streams are multiplexed. For example,
Figure 1 only illustrates how the computation time of the
server instance is decided, not the order in which tasks are
executed within the server. In practice, due to the high
variability in multimedia stream processing, it is virtually
impossible to execute the tasks within the server in the way
the figure shows. The only thing that the system has to
guarantee is that every multimedia stream gets its requested
fraction of time in the server. Although this lack of determin-

buffer

shared
memory

app.
process

application
processor

video display

videoboard

system busnetwork

frame buffer (primary)
frame buffer (secondary)

Figure 2. An example application system.

ism is intolerable for hard real-time tasks, for multimedia
tasks, some amount of jitter caused by the execution delay
can be tolerated.

For example, in the architecture considered here, a typical
type of processing of the multimedia task can involve taking
frame data out of the buffer, processing it and putting it
into the secondary frame buffer on the videoboard (Figure
2). At the end of the processing, the task issues the draw
command to the videoboard, then the videoboard transfers
the data on the secondary buffer with some processing into
the primary buffer. The frame data written in the primary
buffer will be displayed on the screen by hardware. Here, as
long as the display commands are issued at some requested
rate, the specific deadline of each issue does not necessarily
have to be defined. At the same time, the transfer of frame
data to the videoboard can be started just after the display
command of the previous frame is issued. Therefore, the
release time of the tasks do not have to be strictly enforced
either. In fact, the execution time of a multimedia task
depends largely on the amount of data it processes, thus
it is sometimes difficult to estimate a priori the worst case
execution time of the task. The amount of execution time
needed to play back a single frame varies a lot and even
the average execution time needed over a group of pictures
shows considerable variations as a result of changes in scene
or video content [?]. The adaptable scheduling introduced
by the proportional allocation scheme is well suited for these
various application requirements.

Another multimedia task assignment approach is to as-
sign each multimedia task instance individually to a server
instance. We call this the individual allocation scheme.
Here again, the period of the server is the same as the mini-
mum period of all multimedia streams multiplexed into the
server. For example, in Figure 3, there are three multimedia
streams and the stream with the shortest period is stream
2, thus the server has the same period as stream 2 and all
the tasks in stream 2 are allocated to the server instances
with their locations unchanged. Then the tasks in stream 1
and stream 3 are allocated to their nearest server instances.
The server instance to which the task is assigned has to be
located between the task’s release time and deadline. If such

4

multimedia
stream 1

multimedia
stream 2

multimedia
stream 3

multimedia
server

t

t

t

t

Figure 3. Individual allocation of multimedia
streams.

multimedia
stream 1

multimedia
stream 2

multimedia
server

t

t

t
#1 #2 #3 #4

deadline
of #1

deadline
of #2

deadline
of #3

L1

L1

Figure 4. Deadlines of the flexible individual
allocation.

a server instance cannot be found, a new server instance has
to be created. The order in which tasks are executed inside
the server can be decided by using the earliest deadline first
algorithm. Each server instance has to keep state informa-
tion on which tasks it is responsible for and in what order it
has to execute them.

As opposed to the proportional allocation scheme, the in-
dividual allocation method can provide deterministic guar-
antee for each execution of the multimedia task instance.
Each task instance is executed exactly in the allocated time
when the static allocation approach is taken. Even if we take
the flexible allocation scheme for the multimedia server in-
stances, we can execute each task instance deterministically
within its deadline by choosing the deadline of each mul-
timedia server instance in the following way. Suppose we
have two multimedia streams, stream 1 and stream 2 (Figure
4), and the computation time of a task instance in stream 1
is � � . At first, we make a deadline of a server instance the
same as the start time of its next server instance. For exam-
ple, in the figure, the deadline of the server instance #1 is the
start time of the server instance #2. Then we multiplex the
stream 1 with the server. The first task instance of stream 1
is attached to the server instance #2 and the deadline of the
server instance #2 is extended by � � because as long as the
order of execution is maintained, the execution of the task
instance of stream 2 within its deadline is guaranteed.

3.3. Scheduling Algorithm

In the previous section, we discussed four different mul-
timedia server assignment policies. In general, any one of
them may be chosen based on the system requirements and
its performance for that system. Regardless of which one is
chosen, at runtime, the scheduler takes the following steps.

We have to consider separately the cases when a multime-
dia stream comes into the system and when a hard real-time
task enters. In the former case, if no multimedia stream
already exists in the system, the scheduler creates a new
multimedia server whose computation time and period are
the same as those of the incoming stream. On the other
hand, if one or more multimedia streams already exist in the
system, the scheduler merges the new stream into the server
using the chosen assignment policy (proportional or indi-
vidual). If the period of the incoming multimedia stream
is smaller than that of the current server, a new server is
created with period equal to that of the new stream. In-
stances of the new server will replace those of the old one
at the earliest possible time at which the changeover can
occur without violating the QoS guarantees of the existing
multimedia streams. An upper bound on this changeover
time delay is the LCM of the periods of the existing mul-
timedia sessions. After setting up the multimedia server
for the incoming stream, the scheduler tries to schedule the
hard real-time tasks that reside in the system. If we take the
static allocation approach, we just try to put the hard real-
time tasks into the unused CPU time outside the multimedia
server using the planning-based scheduling algorithm de-
scribed before. If we take the flexible allocation approach,
we regard each multimedia server instance as one hard real-
time task and schedule it along with other server instances
and hard real-time tasks. If the scheduling is not successful,
the incoming multimedia stream is rejected to ensure the
executions of already guaranteed multimedia streams and
the hard real-time tasks.

In both cases, the scheduler attempts to schedule all server
instances whose period start times are before the latest dead-
line of the existing hard real-time tasks. If the scheduling is
not successful, the incoming multimedia stream is rejected
to ensure the executions of already guaranteed multimedia
streams and the hard real-time tasks.

In the case of the arrival of a hard real-time task, the
procedure is slightly different. If the deadline of the in-
coming task is earlier than the latest deadline of the existing
tasks, the scheduler attempts to schedule the the current task
set plus the new task. Otherwise, the scheduler needs to
create more multimedia server instances whose period start
times are before the deadline of the incoming task. After the
creation of these server instances, the new task set will be
tested for scheduling. If the scheduling is not successful, the

5

new hard real-time task is rejected. This scheduling proce-
dure ensures that the already admitted multimedia streams
or real-time tasks are always guaranteed to be executed no
matter how many tasks arrive later. Of course, a differ-
ent approach is possible here. If hard real-time tasks have
higher priority over multimedia streams, we can reduce the
QoS guarantees provided to existing multimedia streams so
that a subsequent attempt at building a feasible schedule is
more likely to succeed and the incoming hard real-time task
is guaranteed. We will discuss this issue in Section 4.

Before actually running the scheduling algorithm, mak-
ing a preliminary admission test with the estimated execu-
tion time may be helpful. That is, if the sum of the task’s
execution time is greater than the amount of CPU time that
the system can provide, there is no way that the scheduler
can create a feasible schedule. With this test, the system
can take some actions much more quickly since the cost of
this test is much less than that of the actual scheduling test.
In order to make this admission test, the scheduler has to
calculate the percentage of CPU time multimedia tasks use
in a scheduling time period

�
and the percentage of CPU

time hard real-time tasks use. Now let us call the ratios
multimedia server ratio and hard real-time task ratio and
denote them by ��� and ��� , respectively. In the case of the
proportional scheme, since all the server instances have the
same computation time and the same period, ��� is equal to
(server computation time / server period). For example, if
we have 20 ms of server computation time and 100 ms of
server period, the multimedia server ratio ��� is 20% and
that means 20% of the CPU time will be allocated to the
multimedia tasks. ��� of the individual allocation scheme is
sum of the computation times of the server instances divided
by the scheduling period which is the length of time from the
current time to the latest deadline of the hard real-time tasks.
The hard real-time task ratio ��� is also sum of the execution
times of the hard real-time tasks divided by the scheduling
period. In order for the schedule to be successful, �����	���
has to be at least less than 100%
 (the number of proces-
sors). If ��������� is greater than 100%
 (the number of
processors), the incoming request is immediately rejected
or a degradation approach is taken, depending on the policy
in effect at that time.

3.4. Implementing the scheduling algorithm on an
SGI Challenge Multiprocessor

The SGI Challenge multiprocessor system [?], Figure 5,
is a shared memory, symmetric multiprocessor architecture.
This architecture has four levels of memory hierarchy - two
levels of cache (on-chip cache and cache on the CPU board),
main memory and disk. There is a 100:1 access speed dif-
ference between successive levels of the memory hierarchy.

...

CPU

SP

0 CPU CPU CPU
1 n

...

Global
Memory

SCSI

Interface

VME
Interface

AP_SET

1.2 GB/sec

j

AP AP
1 j

Figure 5. Architecture of SGI/Challenge Mul-
tiprocessor.

The processors and global main memory are connected via
a 1.2 Gigabytes per second processor bus.

Details of Scheduling Mechanisms built into SGI’s OS.
 �
������ [?, ?] is a commercial, UNIX based OS which
has been optimized for multiprocessor performance. It of-
fers many interesting features which are useful for support-
ing real-time applications. These include memory mapped
I/O, asynchronous I/O, the option to lock pages in mem-
ory to avoid unpredictable page fault delays, the facility to
direct interrupts to or away from specific CPUs, and to iso-
late and restrict subsets of CPUs to execute only specific
processes using specific scheduling disciplines etc. The
IRIX/REACT/PRO facilities which are capable of support-
ing real time and multimedia applications in certain scenar-
ios are the the Frame Scheduler and the Deadline Scheduler.

The REACT/PRO Frame Scheduler isolates a CPU and
uses a cyclic executive to schedule and dispatch selected
processes on that CPU. It supersedes normal IRIX schedul-
ing for this CPU and directs all other processing, daemons,
and interrupt handling overheads away from it. Given a set
of real time processes with periods and worst case execution
times, the user has to compute the major and minor frame
rates for the scheduler, and queue the processes for service
in one or more minor frames. The frame scheduler then ser-
vices the minor frames in order, once every major frame. In
each minor frame, the processes queued for service in that
frame are served in queue order, possibly multiple times,
until the minor frame ends. It is possible to use multiple
synchronized frame schedulers for concurrently executing a
set of real time processes on a subset of CPUs. The frame
scheduler is more suitable for static scenarios characterized
by a fixed set of tasks whose requirements do not change
over time. In more complex environments characterized
by dynamic event arrivals, the frame scheduler is not suit-
able since the minor and major frame values may have to
be potentially recomputed and allocation of processes to
minor frame queues re-determined. To do this, the frame
scheduler would have to be paused, its parameters modified
and processes reassigned to minor frame queues, before the

6

scheduler can be restarted. This temporary pause in the
scheduler would cause unacceptable disruption in service.

The Deadline Scheduler [?] attempts to guarantee exe-
cution rates to sessions. The admission control checks if the
total CPU-time allocation for all the processes over a prede-
fined frame interval is below a maximum limit and if so the
requesting process is admitted. The processes are arranged
in the scheduling queue according to time-to-deadline and
are serviced in round-robin order. Although IRIX does
implement the basic priority inheritance protocol [?] to pre-
vent the unbounded priority inversion problem, blocking by
lower priority tasks can still occur [?]. Unless the resources
required by the real-time applications are carefully isolated,
they may also be delayed due to blocking over a resource
held by a process in the time-sharing class. However, the
analysis for admission control does not account for the de-
lay terms due to this blocking. Deadlocks can also occur
and can result in violation of the guaranteed QoS. Also this
scheduler is primarily suited to handling periodic tasks. The
only way aperiodic hard real time tasks can be accommo-
dated is by treating them as periodic for admission control
(this makes the admission control very pessimistic) and ex-
plicitly removing the task from the scheduling queue at the
end of its execution. It is also not clear how the deadline
scheduling can provide the guaranteed rates over multiple
processors.

Based on this discussion we can say that neither the
Frame Scheduler nor the Deadline Scheduler built into
IRIX/REACT/PRO suits our needs. In the following sec-
tion, we outline how our planning based solution can be
implemented on top of IRIX in the SGI/Challenge architec-
ture, by using a different mechanism.

Details of implementing a Planning-based Approach. A
supervisor process, called MASTER, executing at a very
high priority on

� �����
, which is designated the system pro-

cessor (SP), will group processors into a processor set called
AP SET. The processors in this set, called application pro-
cessors (AP), will be actually executing the hard real time
and multimedia application tasks and for predictable per-
formance, need to be spared from unpredictable interrupt-
driven workloads. MASTER isolates and restricts each AP
in the set using the following steps:

� Specify that the system processor will perform all the
overhead processing related to the scheduling clock
interrupts.

� Isolate the APs from sprayed interrupts.

� Assign I/O interrupts to either the SP or a separate I/O
processor.

� Restrict each AP from executing processes that are not
explicitly assigned to it.

� Isolate each AP from TLB misses. As long as an
isolated CPU executes only processes whose pages are
locked into memory, it will receive no broadcast/TLB
interrupts from other CPUs as actions by processes in
other CPUs cannot change the address space mapping
of any process on this CPU.

Now the system is configured to provide integrated sup-
port for multimedia and hard real time tasks. The supervisor
running on the SP, executes the server allocation algorithm
and the planning-based scheduler on dynamically arriving
tasks. Initially the system is idle and then some tasks (mul-
timedia sessions and aperiodic hard real time tasks) arrive.
If MASTER is successful in finding a feasible schedule for
the incoming workload, the outcome is a dispatch table with
one column for each AP - this is the dispatch list for that
AP. The list consists of a series of tuples � ���	�
�����
�	�
��� � � ,
where

�
is the process identifier,

�
��� �
and

�
��� �
are the

scheduled start time and scheduled finish time, respectively.

� �
��� �����
��� � � defines a scheduling interval over which
�

is
guaranteed to execute on the corresponding AP.

1. The master now allocates a dispatch task ��� to each� � � using the ��� ����� � � command. ��� is given a pri-
ority in the real time class and is restricted to run only
on that AP. In IRIX, the real time class is a band of
priorities in the range 30-39. Processes allocated to
this range do not have their priorities degraded, and
the system accords them the highest importance next
to kernel processes.

2. At this point, the dispatch task is the only ready-to-run
eligible task on each AP and therefore the OS starts it.

3. The dispatch task ��� does the following:

(a) It goes to the dispatch list in main memory for� � � , finds the next tuple � ���	�
��� �
�	����� � � . This
indicates that process

�
has to be executed next

from time
�
��� �

to
�
��� �

.

(b) If the scheduled start time
�
��� �����! #"�$%$�& �(' , the

current time, it will start a timer to expire at
�
��� �

and go to sleep on that timer. The timer will be
executing on the system processor

� �
. When it

times out, an interrupt is sent to
� � � .

(c) When the timer interrupt arrives, the ISR on the
AP awakens the dispatcher � � and returns. The
dispatcher runs immediately, being the only eli-
gible runnable task on that processor.

(d) � � now checks if the process
�

is already in the
real time queue of the AP. If so it must have

7

executed at least once before on this AP, and been
suspended at the end of its allocated time. The
dispatcher then uses the resume() system call to
make the process ready, starts a timer to expire at�
��� �

and goes to sleep.

(e) If the process
�

is being executed for the first time
on processor

� � � , the dispatcher � � will

i. allocate the process to the real time prior-
ity class at a lower priority than � � , and
restrict the process to execute only on pro-
cessor

� � � ; and

ii. then start a timer to expire at
�
��� �

and go
to sleep.

Note that since the dispatcher is executing at a
higher nondegrading real-time priority than the
process

�
, it will not be preempted by the latter,

before it voluntarily suspends itself.

(f) Now
�

is the only eligible ready-to-run process on� � � and so it is dispatched next. It now executes
until it either finishes, or the time advances to�
��� �

when a timer interrupt occurs.

(g) When the timer goes off, the ISR suspends pro-
cess

�
if it has not yet finished, wakes up the

dispatcher and returns. � � now fetches the next
tuple from the dispatch list and the whole protocol
repeats itself.

The dispatch table is a shared data structure in global
main memory, which is accessed by the different dispatchers
from each AP as well as by the master scheduler-planner.
Different dispatchers need to access different columns in
the table and so do not interfere with each other. Also,
the master and dispatcher on any AP are always working
on different parts of the dispatch table. Whenever new
tasks arrive at time

� #"�$%$
, the master computes

�
, an upper

bound on the time available for it to compute and return
a feasible schedule if such a schedule exists.

�
is chosen

large enough so that there is a high probability of finding
a feasible solution within this time, but at the same time,
the response of the scheduler to dynamic arrivals is not too
slow. MASTER then draws a cutoff line in the dispatch
table at

� #"�$%$ � � and attempts to make modifications to the
part of the current schedule which are beyond this cutoff
line. This avoids race conditions between the master and
dispatcher tasks on accesses to the shared dispatch list. The
implementation of the dispatch table can be similar to the
one used in the Spring real time kernel [?].

The scheduling queues in IRIX are implemented in a
distributed fashion to permit a high level of concurrent ac-
cess [?]. There are local per-processor �������
��� � on which
only processes which are restricted to that processor and

processes which have affinity for that processor are queued.
Other processes are maintained on the central global queue.
In our case, the APs are explicitly restricted to executing only
the dispatcher and the hard real time tasks and multimedia
servers as allocated to them by the master process. Also
each hard real time task or multimedia server is restricted to
be executed only on that AP to which it is queued. So the
OS, when it needs to search for the next task to execute on
a particular AP has to look only in its local ����������� . All this
together ensures that the performance is predictable and task
executions are as laid out by the scheduler-planner. Note
that to prevent the unpredictable delays and nondeterminism
caused by page faults, all the pages of the supervisor pro-
cess, the hard real-time tasks and the multimedia sessions,
as well as shared pages (for example, the global dispatch
table) should be locked into main memory.

4. Degradation of QoS

In our approach, the quality of service (QoS) require-
ments of the multimedia tasks are mapped into the compu-
tation time and period of the multimedia server. As stated in
the previous section, one way of alleviating system overload
is to degrade the QoS of the multimedia sessions assuming
that hard real-time tasks have higher priorities over mul-
timedia sessions. There are a couple of ways to achieve
this degradation of multimedia QoS. For example, we can
reduce the computation time of the multimedia server, in-
crease the period of the server or even drop some of the
server instances. However, deciding how to degrade the
QoS of the multimedia sessions so that the scheduling of
the hard real-time tasks will likely succeed and still keep the
degree of degradation as low as possible is not very easy
since the scheduling of the hard real-time tasks itself is a
NP-hard problem. Moreover, the cost of the scheduling test
is fairly high because the planning-based scheduler takes
into account all the resources of every task. Therefore, our
goal here is to find the best server adjustment plan, that is,
the plan which not only gives a feasible schedule for all the
tasks, but also produces a schedule with the highest value,
i.e., gives the maximum amount of CPU time to the multi-
media server, with a minimal number of scheduling tests.

Here we present a multilevel scheduling approach as
a solution for the above problem. If the first schedul-
ing attempt fails, the scheduler passes the information on
the multimedia server and hard real-time tasks’ require-
ments to the upper level algorithm. This upper level al-
gorithm is referred to as a server planner in the follow-
ing. The first step that the server planner takes is to lower
the server ratio ��� as much as possible so that it satisfies
��� � ��� � margin ���
	�	��
 (the number of processors).
It then iterates as shown in Figure 6 to converge on a suc-

8

yes

no

scheduling test

upper_bound = Rs
lower_bound = Rs * k(calculated
based on the system load)

calculate Rs of the
multimedia streams

schedule succeeded? return

new multimedia streams or
real−time tasks arrive

enters the server planner

make server plans based on
the new Rs

choose the best server plan
using heuristics

Rs = (Rs + upper_bound) / 2 Rs = (lower_bound + Rs) / 2

scheduling test

schedule succeeded?

lower_bound = Rs upper_bound = Rs

yes

no

Rs = (lower_bound + upper_bound)/2

Figure 6. The iterative server rate adjustment
algorithm.

cessful server ratio. Each time that a server ratio is chosen,
the server planner makes several server arrangement plans.
A server arrangement plan is a choice of a server compu-
tation time and server period such that the overall server
ratio is met. For example, two server arrangements might
be a multimedia server with computation time 2 and pe-
riod 20, and computation time 1 and period 10. The server
planner then chooses the best server arrangement using a
heuristic that maximizes the laxity for hard real-time tasks
and invokes the base planning-based scheduler. The latter
tries to schedule all the tasks again with the new multimedia
server arrangement. If it is not successful, the server plan-
ner chooses the next server arrangement plan with a lower
� � , and if successful, the planner chooses it with a higher
� � . This iterative process continues until the iteration count
reaches a pre-defined number, i.e., the scheduler spends its
allowed scheduling time, or the rate of change in ��� is less
than some pre-defined amount. This scheduling process is
summarized in the diagram in Figure 6.

It is important to note that the mechanism presented here
degrades multimedia QoS in terms of the server computation

time and period and how to quantify the resulting application
QoS is still an open issue.

5. Simulation

5.1. Overview

The simulations are divided into roughly three parts.
First, the four different strategies for the multimedia server
scheduling obtained by combining two types of server allo-
cation policies and two types of approaches for allocating
individual multimedia streams to the server instances are
compared to find out which combination provides the best
performance. Second, different deadline and execution time
distributions of hard real-time tasks are input to the sched-
uler to further evaluate the performance characteristics of
the algorithms. Third, the effectiveness of the multilevel
scheduler for QoS degradation of multimedia sessions is
examined.

5.2. Task Generation

A task set generator generates a hard real-time task set
and multimedia stream set for each simulation run. The
real-time task set generated by this generator is, by itself,
a feasible set. That is, in the absence of the multimedia
streams, an optimal scheduler can find a schedule for the
task set. The following parameters are used to generate the
hard real-time task sets:

1. Probability that a task uses a resource, Use P.

2. Probability that a task uses a resource in shared mode,
Share P.

3. The minimum processing time of tasks, Min C.

4. The maximum processing time of tasks, Max C.

5. The minimum deadline of tasks, Min D.

6. The maximum deadline of tasks, Max D.

7. The schedule length, � .

The schedule created by this task set generator is in the form
of a matrix M which has � columns and � rows. Each col-
umn represents a resource and each row represents a time
unit. In order to illustrate the process of task set genera-
tion, we assume that there are � processors and � other
resources, i.e., the total number of resources is � � � . Re-
source items � � � � � represent � processors. The task set
generator starts with an empty matrix. It then generates a

9

task by selecting one of these � processors with the earliest
available time and then requests the � resources according
to the probabilities specified in the generation parameters.
The generated task’s processing time is randomly chosen
using a uniform distribution between the minimum process-
ing time and the maximum processing time. The task set
generator then marks on the matrix that the processor and
resources required by the task are reserved for a number of
time units equal to the task’s computation time starting from
the aforementioned earliest available time of the processor.
The task set generator generates tasks until the remaining
unused time for each processor, up to � , is smaller than the
minimum processing time of a task, which means that no
more tasks can be generated to use the processors. Then
the largest finish time of a generated task in the set becomes
the task set’s shortest completion time,

�
�
. As a result, we

generate tasks according to a very tight schedule without
leaving any usable time units on the � processors between
0 and

�
�
. However, there may be some empty time units

in the � resources. The deadline of each task was cho-
sen between (finish time of the task + minimum deadline
Min D) and (finish time of the task + maximum deadline
Max D). The output of this task set generator is a file writ-
ten in the Spring System Description Language (SDL) [?].
The file describes all the task information such as timing and
resource usage specifications needed by the planning sched-
uler. It is compiled by the Spring compiler and fed into the
simulator. The task generator also places multimedia stream
information into this file. In these experiments we used 5
multimedia streams whose characteristics are described in
the next subsection.

5.3. Simulation Method

In the simulation, the performance of various server as-
signment policies are evaluated according to how many of
the

�
feasible task sets are found schedulable. Here, we are

interested in whether or not all the real-time tasks in a task
set and multimedia server instances can finish before their
deadlines. Therefore, the most appropriate performance
metric is the schedulability of task sets. This metric called
the success ratio

� � is defined as
total number of task sets found schedulable��� the total number of task sets .

All the simulation results shown in this section are ob-
tained from the average of six simulation runs. For each
run, we generate 500 task sets (i.e.,

�
= 500). The maxi-

mum 95% confidence interval of any data point was 3.3%
of the success ratio. The system tested consisted of three
processors and 12 nonprocessor resources. Use P is 0.7 and
Share P is 0.5. Although the primary purpose of this simu-
lation is to compare the different server assignment policies
and examine the effects of changing the parameters, we

normalized the simulation time unit into milliseconds and
chose realistic values for the parameters so that we could
assess the feasibility of our approach to some extent. The
schedule length � is 300 ms, and a task’s computation time
is randomly chosen between Min C and Max C. Thus, for
example, when Min C = 10 and Max C = 30, each task set
has between 40 and 50 tasks. Min D is 60 and Max D is
90, thus a deadline of each task is randomly chosen between
60 ms and 90 ms. We put five multimedia streams with
different computation times and periods into one processor.
We made one of the five streams a baseline stream with a
rate of 30 frames/sec and made four other streams with a
20%, 40%, 60% and 80% lower rate than the baseline, re-
spectively. That is, the period of the baseline stream is 33.3
ms and that of the second stream is 40.0 ms (33.3 ms
 1.2).
Similarly, the third, fourth and fifth streams have a period of
46.6 ms (33.3 ms
 1.4), 53.3 ms (33.3 ms
 1.6), and 59.9
ms (33.3 ms
 1.8), respectively. These periods correspond
to frame rates of 25, 21.4, 18.8, and 16.7 frames/sec. These
frame rates were kept constant throughout the simulations
and only their computation times were varied. Each of the
five streams consumes the same amount of CPU time on
average, that is, if the computation time of a task instance
in the baseline stream is 5 ms, computation time of a task in
other streams are 6 ms (5 ms
 1.2), 7 ms (5 ms
 1.4), 8 ms
(5 ms
 1.6), and 9 ms (5 ms
 1.8). If these tasks are allo-
cated to the server proportionally, the computation time of
each server instance is 25 ms (5 ms + 6 ms
 ����� � ms

����� �	�
�
��
 ms + 7

ms
 ����� � ms
����� �	�

�
� � ms + 8 ms
 ���
� � ms

���
� ���
�
� � ms + 9 ms
 ���
� � ms

���
� �	�
�
� � ms

= 5 ms
 5). If they are allocated to the server individually,
each server instance has a different execution duration and
possibly a different period.

5.4. Simulation Results

Comparison of the Server Allocation Policies. The sim-
ulation results with the different multimedia server assign-
ment policies and no degradation policy are shown in Figure
7. The X axis represents computation time of the baseline
multimedia stream as described in the previous section. In
all the simulation results shown, the success ratio keeps
decreasing as the multimedia computation time increases.
This is because the increased multimedia computation time
leaves less CPU time for hard real-time tasks, thus the tight-
ness of the scheduling increases. The results show that the
flexible allocation works much better than the static alloca-
tion. For example, when the baseline multimedia compu-
tation time is 1.2 ms, the success ratio of the two static ap-
proaches goes down to 0%, whereas the flexible approaches
achieve 80% and 100%. The proportional allocation also
works better than the individualallocation. Especially when
the multimedia computation time is relatively short, for ex-

10

�
 flexible proportional�
 flexible individual�
 static proportional�
 static individual

|
0

|
1

|
2

|
3

|
4

|
5

|0

|20

|40

|60

|80

|100

 Baseline multimedia computation time (ms)

 S
uc

ce
ss

 R
at

io
 (

%
) � � � �

�
�
�

�

�

�
�
� �

� �

�

�
�
�

� � �

� �

�
�

�

�

�

�

Figure 7. The server types and the success
ratio (period = 33ms).

ample 2 ms, the flexible proportional approach has 99%
success ratio, but the flexible individual strategy has only
75%. Although these results are as expected, the significant
difference between the static allocation and the flexible allo-
cation approaches is noteworthy. Moreover, the difference
between the flexible proportional allocation and the flexi-
ble individual allocation indicates that the price we have
to pay to ensure that every individual instance of any MM
session always executes within its deadline is quite expen-
sive. This is mainly because the deadlines of the server
instances in the flexible individual allocation are sometimes
much shorter than those in the proportionalone. From these
results, we can conclude that the flexible proportional as-
signment policy provides the highest performance among
the combinations tested in terms of the success ratio.

Effect of Changing Parameters. In the following simu-
lations, only the flexible allocation schemes are examined.
Figure 8 shows the effect of changing the deadlines of hard
real-time tasks on the success ratio. The plain lines are the
success ratio when deadlines are chosen between 60 ms to
90 ms, and the dotted lines are those when deadlines are
between 30 ms and 60 ms. Here, the shape of the curves in
the different deadline ranges looks almost the same, that is,
the curves just shifted horizontally. For example, with the
deadline ranges between 60-90 ms the success ratio of both
proportional and individual allocations drop to 0% when
the baseline computation time is 4 ms, whereas with the
deadline ranges between 30-60 ms, they drop to 0% when
the baseline computation time is only 2.8 ms. These results
indicate that deadlines of hard real-time tasks significantly
affect the upper bound of the multimedia server computation
time and they are almost proportional.

In Figure 9, results are shown where the execution time of
hard real-time tasks is chosen from the different ranges. The
dotted line shows the ranges between 10-20 ms, the plain
line 10-30 ms, and the dashed line 10-40 ms. Although the
CPU loads in those three cases are almost the same because
of the task generation procedure, the success ratio varies sig-

� �
 proportional, deadline=60-90� �
 individual, deadline=60-90� �
 proportional deadline=30-60� �
 individual deadline=30-60

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|0

|20

|40

|60

|80

|100

 Baseline multimedia computation time (ms)

 S
uc

ce
ss

 R
at

io
 (

%
) � � � � �

�
�

�

�

�
� � �

�
�

�
�
�

� � �

� � �
�

�

�

�
� � ���

�
� �

�
�
�
� � � ���

Figure 8. Effect of deadline on success ratio.

	 	
 proportional, size 10-20

 individual, size=10-20� �
 proportional, size=10-30� �
 individual, size=10-30

 proportional, size=10-40� �
 individual, size=10-40

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|0

|20

|40
|60

|80

|100

 Baseline multimedia computation time (ms)

 S
uc

ce
ss

 R
at

io
 (

%
) 	 	 	 	

	

	

	

� �
�

�

�

�
�

�
�

�

� �

�
�

�
�

�
�

�

Figure 9. Effect of hard real-time task size on
success ratio.

nificantly. In other word, granularity of the hard real-time
tasks largely affects the schedulability. In this scheduling
approach, the scheduling of the multimedia server instances
is fairly tight because the deadline of each instance is rela-
tively short. For example, when the period of the server is
33 ms and its computation time is 10 ms, the laxity of the
server is only 23 ms. When the maximum size of the hard
real-time tasks is 40 ms (the dashed line), it is difficult for
them to fit in between the server instances. In the figure, the
success ratio is only 55% with proportional allocation and
30% with the individual allocation when the server’s com-
putation time is 10 ms (it corresponds to 2 ms computation
time for the baseline multimedia stream). These simulation
results have shown the sensitivity of the success ratio to the
size of hard real-time tasks.

Degradation of Multimedia QoS. The iterative improve-
ment approach discussed in Section 4 was also evalu-
ated with simulations. Here, the server ratio ��� is ad-
justed toward the highest value after every scheduling at-
tempt, that is, when the � '�� scheduling attempt is suc-
cessful, ��� for the � � � � � '�� attempt is increased to

� ����� upper bound � ��� and when it is not successful, ���
is decreased to � lower bound � � � � ��� . For each generated
task set, this scheduling attempt was iterated 9 times and
Figure 10 shows the average success ratio over 500 task sets

 6 simulation runs achieved within � attempts for each
task set. As we can see in Figure 10, all the first scheduling
attempts in the simulations failed. (The success ratio = 0%

11

when the iteration count = 0.) For 78% of the generated
task sets, the second scheduling attempt (the first iteration)
succeeded. The figure shows that for all the task sets, the
scheduling succeeded within 4 iterations. In Figure 11, the
Y axis is the degradation ratio � which indicates the degree
of degradation from the initial requested QoS. � is defined
as

degraded Rs used in the next iteration
initial Rs (application requirement)

(� = 100% means that the server was not degraded at all.)
The plotted degradation ratio were obtained by averaging
the highest � � which gave successful schedules in the �
iterations. The results show that we can get significant
improvement in the server ratio within several iterations.

In Figure 11, we show how close the iteration scheme
comes to the minimum loss in multimedia service that is
possible due to the presence of hard real-time tasks. The
dashed horizontal line in Figure 11 indicates the upper limit
of the degradation ratio. From the figure we see that the
achieved ratio gets fairly close to this limit. A more elaborate
iterative approach may be able to get a higher degradation
ratio, but it will require a larger number of iterations.

In summary, the results show that the scheduler can pro-
vide a feasible schedule within a few iterations without de-
creasing the multimedia computation time too much.

5.5. Influence of Context Switch Overhead

So far our results were based on the assumption that
context switch overheads are negligible. Here we discuss
the effects of context switching. The individual allocation
scheme allocates an entire multimedia task instance to a
single multimedia server instance, and hence does not add
any extra context switching overheads.

The proportional allocation strategy allocates a periodic
multimedia stream to a multimedia server with same or
smaller period by dividing its periodic time allocation across
multiple server periods. This method of servicing a single
multimedia task instance in multiple disjoint time intervals
requires the system to switch the instance in and out mul-
tiple times before it gets its full allocation. The associated
additional context switching overhead due to this fragmenta-
tion constitutes an additional load on the system. However,
this overhead is a function of the period lengths and is con-
stant over different multimedia workloads for a given period
length distribution of the multimedia streams.

Assume there are � multimedia tasks in the system.
Task

�
, � � � � � has period

� �
and estimated worst

case execution time per period is � � . The time to switch
a task in or out is a fixed

� � . Let
� ��� be the of-

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|

0

|

20

|

40

|

60

|

80

|

100

 Iteration count n

 S
uc

ce
ss

 r
at

io
 (

%
)

�

�
� � � �

Figure 10. Iteration count and the success ra-
tio.

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|

66

|

68

|

70

|

72

|

74

|
76

|
78

|

80

 Iteration count n

 D
eg

ra
da

tio
n

ra
tio

 (
%

)
� �

�
� � � � � �

Figure 11. Iteration count and the degradation
ratio.

fered multimedia load to the system, and
� � ��� " ' the as-

sociated overhead of switching each task instance in and
out once during its period. Let

���
	 ��� be the additional
context switching overhead introduced by the proportional
allocation method. Let

�� � be the total context switching
overhead at the end of the server allocation phase. Then,� ��� ��
 �������� �� � � � 	 	 �	��� ��� " ' ��
 ������
������� � � � 	 	 �	�
 � �
 ������
���� �� �����
����� � �
	�	 , where

� � & $�	 & $ ��� �"! �� ��� � � � � �
Therefore,

�#�
	 ��� � �
 �%$ � � �&� " ' � � 	�	 � � � �(' �� �)�)�
���)� $
 ������ �� �+* �
�
 � , the total context switching overhead for proportional

allocation, is constant for a fixed number of multimedia
streams and a given server period.

��� �&� " ' is maximum
�

�
 � if all the periods are identical and decreases as the period
lengths diverge.

���
	 �,� is minimum (i.e., equal to zero) if all
the periods are identical and increases as the period lengths
diverge. If the lengths are similar, there is less fragmentation
of task instances and the context switching overhead

�%�-	 ���
is low. If the period of a multimedia stream is much larger
than the period of the smallest stream (i.e., the period of
the multimedia server), then, this allocation strategy causes
more fragmentation and the number of introduced context
switches is larger. The percentage of additional context
switch overhead caused by proportional allocation depends
only on the relative lengths of the periods of the different

12

� � (� sec) Introduced Overhead
���
	 �,� (�)

10 0.076
20 0.153
30 0.229
40 0.306
50 0.382
60 0.458
70 0.535
80 0.611
90 0.688

100 0.764

Figure 12. Overhead introduced by the pro-
portional allocation strategy when the peri-
ods are 33.3 ms, 40.0 ms, 46.6 ms, 53.3 ms,
and 59.9 ms.

multimedia streams and is independent of the multimedia
workload. For a given number of streams, for a given period
distribution, the overhead is fixed across different loads - the
overhead as a percentage of the offered load is a decreasing
function of the load.

Simulation studies of the previous section assume that
the different multimedia streams have very similar peri-
ods. There are 5 multimedia streams with periods 33.3
ms, 40.0 ms, 46.6 ms, 53.3 ms, and 59.9 ms - the longest
period is 1.8 times the smallest. In Figure 12, we show
how the introduced overhead

���-	 �,� for the above scenario
varies as the context switch time

� � ranges from 10 � sec
to 100 � sec. Even for very large context switch times (e.g.,� � � � 	�	 � sec), the introduced overhead is a very low
	 ������� � . For reasonably fast processors, the context switch-
ing times are lower and the associated overhead even more
insignificant - for eg., for

� � ��� 	 � sec, the overhead is a
mere 	 �
	�� � � . This overhead is too low to affect the perfor-
mance of the scheduling algorithm and so we have ignored
it in the reported simulations.

But, in situations where the session periods vary over
a wide range and the introduced overhead is significant,
it can affect task schedulability, and we need to account
for this additional load in our simulation model. Consider
an example scenario where the context switch overheads
become significant. In Figure 13 we see how the different
context switch overheads vary as the variance in period
lengths changes. We consider 20 multimedia streams, per
stream utilization

� 	 � 	�	 	 � , and smallest period
� 	�	 ��	

ms. This translates to a multimedia server period
� � & $�	 & $ �

	�	 ��	 ms, total multimedia workload
� ��� � � 	 � 	 � � . We

now vary the period lengths of the different multimedia
streams as follows. The periods are generated in increasing
order with

� � � � � &#$�	�&#$ � ' ��� � � $ � � ��
 * , � � � � � 	 .
Here
 is a parameter which specifies how far the period
lengths vary from each other. We analytically compute and

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

U
til

iz
at

io
n

Increment factor

U_cs
U_input
U_ovhd

Figure 13. Context Switch overhead as a func-
tion of variance in the periods of different
multimedia streams.

then plot
�#�-	 ��� , ��� ��� " ' , and

�
 � (corresponding to context
switch time

� � ��� 	 � sec) for different values of
 to get
Figure 13.

Here, the context switch overheads are considerable.
From the figure we see that

� � �&� " ' is
� � � 	 	 � � (

� �-	 ���
is
�) if all the periods are identical and decreases (

�%�-	 ���
increases) as the period lengths diverge. For similar period
lengths,

� � ��� " ' dominates and
���
	 �,� is not significant. But

as the periods diverge, although
��� �&� " ' decreases, due to

longer periods of some of the streams,
� �
	 �,� rapidly in-

creases to become the dominant contributor to
� � . Note

that the total context switching overhead is
� � under the

proportional allocation scheme and
� � ��� " ' under the indi-

vidual allocation method. For small variance in periods, the
overheads for the two approaches are similar. As the vari-
ance in period lengths increases,

� � �&� " ' increases,
�#�-	 ���

decreases and
� � remains constant. So the total overhead

for the proportional algorithm remains fixed while that for
the individual allocation scheme decreases, increasing the
difference in overhead between the two approaches in favor
of the individual scheme. The effect of this on the schedula-
bility of the hard real time and multimedia tasks needs to be
studied.

�#�-	 ��� and hence,
� � for the proportional scheme

could be reduced by limiting the amount of fragmentation of
task instances. For example, if there is a session with period� � � � &#$ 	 &#$, but its periodic wcet can be accommodated
in a single instance of the server, we allocate it as such, and
no additional switching overheads are introduced. This is
one of the ways in which the detrimental effects of widely
varying session periods can be reduced. We plan to explore
such possibilities.

13

6. Conclusion

In this paper, we presented a solution for an integrated
platform that supports multimedia and hard real-time ap-
plications. We described how a scheduling solution would
fit within an actual system. Then we presented the multi-
media server scheduling algorithm which enables guaran-
teed execution of both soft real-time multimedia processes
and traditional hard real-time control processes by using a
planning-based scheduling approach. There are four possi-
ble policies for assigning multimedia tasks to the servers in
this integrated scheduling, and the simulation results indi-
cated that with the flexible proportional approach,we can get
reasonable performance even when there are multiple mul-
timedia streams in the system. The results showed that the
algorithm can be used in practical application environments
although it has to be noted that the performance depends on
the computation time of the multimedia tasks and real-time
tasks and the tightness of their deadlines.

This scheduling solution also supports an adaptive QoS
degradation of multimedia sessions during system overload.
We showed through simulations that this degradation ap-
proach can provide high CPU utilization without degrading
deterministic guarantees for hard real-time tasks.

Acknowledgment

The authors wish to thank Gary Wallace for his help with
the implementation of this algorithm in the Spring simulator.

References

[1] D. P. Anderson, Metaschedulingfor ContinuousMedia, ACM
Transactions on Computer Systems, Vol. 11, No. 3, Aug.
1993, pp. 226-252.

[2] J. M. Barton and N. Bitar, A Scalable Multi-Discipline, Mul-
tiprocessor Scheduling Framework for IRIX, IPPS’95 Work-
shop on Job Scheduling Strategies for Parallel Processing,
April 25, 1995.

[3] D. Cortesi et. al., REACT (TM) Real-Time Programmer’s
Guide, Document Number 007-2499-001, Silicon Graphics
Inc., Mountain View, CA 94043-1389.

[4] A. Guha, A. Pavan, J. Liu, A. Rastogi and T. Steeves,Support-
ing Real-Time and Multimedia Applications on the Mercuri
Testbed, IEEE Journal on Selected Areas In Communica-
tions, Vol. 13, No. 4, May 1995, pp. 749-763.

[5] K. Jeffay and D. Bennett, A Rate-Based Execution Abstrac-
tion For Multimedia Computing, Proc. 5th International
Workshop on Network and Operating System Support for
Digital Audio and Video, Durham, New Hampshire, April
18-21, 1995, pp. 67-78.

[6] D. I. Katcher, K. A. Kettler and J. K. Stronsnider, Real-
Time Operating Systems for Multimedia Processing, Pro-
ceedings of Fifth Workshop on Hot Topics in Operating Sys-
tems (HotOS-V), May 4-5, 1995.

[7] D. Niehaus, J. A. Stankovic and K. Ramamritham,The Spring
System Description Language, UMASS CS TR 93-01, Jan-
uary 1991.

[8] D. Niehaus, J. A. Stankovic and Krithi Ramamritham, A
Real-Time Systems Description Language, IEEE Real-Time
Technology and Applications Symposium, May 1995.

[9] K. Ramamritham, J. A. Stankovic and P. Shiah, Efficient
Scheduling Algorithms for Real-time Multiprocessor Sys-
tems, IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 1, No. 2, April 1990, pp. 184-194.

[10] L. Sha, Ragunathan Rajkumar and John P. Lehoczsky, Pri-
ority Inheritance Protocols: An approach to Real-Time Syn-
chronization, IEEE Transactions on Computers, Vol. 39, No.
9, Sept. 1990.

[11] J. A. Stankovic and K. Ramamritham, The Spring Kernel: A
New Paradigm For Real-Time Systems, IEEE Software, May
1991, pp. 62-72.

[12] J. A. Stankovic, Continuous and Multimedia OS Support In
Real-Time Control Applications, Proceedings of Fifth Work-
shop on Hot Topics in Operating Systems (HotOS-V), May
1995, pp. 8-11.

[13] R. Steinmetz, Analyzing the Multimedia Operating System,
IEEE Multimedia, Spring 1995, pp. 68-84.

[14] Y. Taniguchi, A. Akutsu, Y. Tonomura and H. Hamada,An In-
tuitive and Efficient Access Interface to Real-Time Incoming
Video Based on Automatic Indexing, Proceedings of ACM
Multimedia, 1995, pp. 25-33.

[15] D. L. Tennenhouse, J. Adam, D. Carver, H. Houh, M. Is-
mert, C. Lindblad, B. Stasior, D. Weatherall, D. Bacher and
T. Chang, A Software-Oriented Approach to the Design of
Media Processing Environments, Proceedings of the Inter-
national Conference on Multimedia Computing and Systems,
Boston, MA, May 1994, pp. 435-444.

[16] C. A. Waldspurger and W. E. Weihl, Lottery Scheduling:
Flexible Proportional-Share Resource Mangement, Proceed-
ings of the First Symposium on Operating System Design and
Implementation, November 1994.

[17] R. Yavatkar and K. Lakshman, A CPU Scheduling Algorithm
for Continuous Media Applications, Proc. 5th International
Workshop on Network and Operating System Support for
Digital Audio and Video, Durham, New Hampshire, April
18-21, 1995, pp. 223-226.

[18] H. J. Zhang, C. Y. Low, S. W. Smoliar and J. H. Wu, Video
Parsing, Retrieval and Browsing: An Integrated and Content-
Based Solution, Proceedings of ACM Multimedia, 1995, pp.
15-24.

14

