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ABSTRACT

This paper describes the concept of the operating system
ERCOS (Embedded Real-time Control Operating System).
ERCOS has been specially designed to meet the functional-
ity and performance requirements in the area of automotive
applications.

The ever increasing functional requirements for modern
electronic control units are introducing considerable com-
plexity in the area of software development. It is well
known that real-time operating systems provide powerful
means to handle complex functions under real-time con-
straints. Past experience, however, has shown that the effi-
ciency and flexibility of operating systems was very often
inadequate for automotive applications.

To overcome these insufficiencies the operating system
ERCOS has been designed with dedicated support for auto-
motive requirements. This has been achieved by supple-
menting the run-time part of the operating system by power-
ful off-line tools.-The off-line tools support the construction
of reusable and modular software in real-time applications
by virtue of an object-based model and a strict separation of
system-independent functional design and the run-time
configuration. Furthermore, they allow the optimization of
calls to the operating system to achieve very high efficiency.

The major operating system concepts for scheduling,
interprocess communication, guarantee of mutually exclu-
sive access, timer handling and fault-tolerance as imple-
mented in ERCOS are presented. ’

Bosch will use ERCOS as a standard operating system
platform for its automotive products. The operating system
is compatible with the OSEK specification [OSE95] and has
been passed to an independent software house! to make it
available to third parties.

1. INTRODUCTION

Over the last decade functionality and complexity of auto-
motive electronics has experienced a dramatic increase.

! ETAS GmbH & Co.KG, MarkgroningerstraBe 45, D-71701 Schwieber-
dingen, Germany. FAX +49 711811 3950
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Examples of such systems are electronic engine manage-
ment systems, anti-lock braking systems, gear box control
and others. Supported by the ever growing computing
power of microcontrollers this development went alongside
with a rapidly increasing size and complexity of the soft-
ware. In the past the achievable level of functionality was
predominantly determined by hardware and the perform-
ance of microcontrollers. Currently the limiting factor is
shifting more and more from hardware performance to the
software development process. Especially in the case of
dependable systems, software is the limiting factor for the
achievable level of functionality.

1t is well known that operating systems support the de-
velopment of complex software systems. This experience,
drawn from larger computer systems, also applies to auto-
motive electronics. There are, however, special require-
ments for operating systems in the area of automotive elec-
tronics. Firstly, the operating system should support han-
dling of hard real-time requirements which are dictated by
the environment, e.g., the injection timing of an engine. And
secondly, since cost is of utmost importance very high effi-
ciency has to be achieved. Especially the requirement for
high efficiency has been in conflict with the performance of
general purpose real-time operating systems. This was the
reason why commercial operating systems, e.g., [Rea86,
IS193] did not gain acceptance in this field of application.
The operating system ERCOS has therefore been specially
designed to meet the requirements of automotive electron-
ics. Bosch will use ERCOS as a standard operating system
for its automotive products.

The remainder of this article is organized as follows.
Section two defines requirements and goals for automotive
electronics software. Section three discusses problems of
object-oriented software construction in the presence of
hard real-time requirements and multi-tasking. The ERCOS
object model is introduced. Section four to eight present the
major functions of the operating system and its concepts.
These are the scheduling strategy, the message concept for
interprocess communication, mutually exclusive access to
critical resources, timer functions, fault-tolerance features
and exception handling. Along with this presentation pos-
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_# sible alternate solutions and ,.thevl_‘aticvinalc. behind the solu- -

tion implemented in ERCOS are presented. Finally, section
nine concludes this article.

2. REQUIREMENTS AND GOALS

The development of ERCOS was influenced by a set of
specific goals and requirements. Firstly, it was the goal to
create an unified operating system platform for automotive
electronic products at Bosch. Further requirements for the
operating system were derived from general objectives
which focus on software quality and the software develop-
ment process. Consequently, the catalogue of goals and
requirements was not first and foremost targeted at operat-
ing system functionality itself but at the development of
automotive electronics software and at the development
process. An overview of these objectives and requirements
is given in the following:

Reusability:

It should be possible to reuse software in different control
systems and in “different projects. This requires that the
functional implementation is independent of timing aspects
and global system properties such as priority or scheduling
strategy.

Modularity:

Software should be structured and partitioned according to
the paradigm of object-orientation to support a modular
development and test process.

Efficiency:

Resources of the microcontroller such as RAM, ROM, CPU
and peripherals like timers, ports and analog to digital con-
verters have to be utilized efficiently. Since automotive
applications are very cost sensitive, efficiency is of utmost
importance.

Maintainability and extendibility:

Modifications and extensions to the existing software
should be easily possible. These changes should not cross
interface boundaries and affect other functions except in the
case of interface changes.?

Real-time support:

The software has to support real-time requirements. It is
therefore necessary that the system responds within a guar-
anteed latency period to requests. There is a very broad
spectrum of timing requirements ranging from 100 millisec-
onds down to only a few microseconds.

These goals and requirements aim at the management of the
steadily increasing software complexity, at shortening de-
velopment times and improving software quality. Experi-
ence shows that rigorous software engineering methods and
a dedicated tool support should be applied to reach these
goals. As a key principle of modern software engineering,
object-orientation addresses all these goals except for real-

2 Note that this requirement can only be fulfilled in the domain of values
and not in the domain of time since the timing usually changes in a single
processor system if a function is changed.
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time support and efficiency. This principle should therefore
be considered for the software development process in this
field. However, there are problems when applied to multi-
tasking real-time systems. These problems are discussed in
the next section.:

3. THE ERCOS OBJECT MODEL

During the last decade the paradigm of object-orientation
[Mey88] has found broad acceptance in the field of non
real-time software applications. Its major aims are to im-
prove flexibility, reliability and reuse of software. While
these goals are important for real-time software too, classi-
cal object-oriented programming languages such as C++
[Str91] are inadequate for hard real-time requirements and
multi-tasking. Besides features such as dynamic binding and
multiple inheritance the basic problem with object-
orientation and multi-tasking real-time systems lies in the
object implementation. Object-oriented programming lan-
guages do not support concurrent programming and—
naively applied—lead to considerable implementation over-
head. Thus a suitable adaptation of object-oriented concepts
and a dedicated support by operating system mechanisms
are needed to draw advantage from object-oriented design
within hard real-time systems when efficiency is critical.

An object abstracts an entity which has an internal state
(that is invisible from the outside), a well-defined interface
and a characteristic functionality. In the context of automo-
tive electronics such an object may be for example a fuel
injector or a lookup table. The important aspect of an object
is the separation between its implementation—which is
encapsulated in the object—and its interface. Typically, an
object interface consists of methods (functions) and attrib-
utes (variables). Object interfaces with variables, however,
cannot be used for real-time systems with multi-tasking
because data inconsistency may arise.

3.1. THEPROBLEM OF DATA INCONSISTENCY

Real-time systems typically support preemptive scheduling
to guarantee short latency periods. This may lead to cases
where the execution of some low priority process is pre-
empted by a higher priority process. Under the assumption
that the preempted process reads an object attribute and that
the preempting process writes the same object attribute data
inconsistency may arise if the preemption occurs between
two consecutive read operations, see Figure 1.

Proc 2

Proc 1 Proc 1 (cont) J

Figure 1: Data inconsistency through object attributes
implemented by variables



After preemption through Proc 2, Proc 1 reads the object
attribute x a second and a third time and gets a different
result (x = 2) than before the preemption (x = -1). This ex-
ample shows that the data accessed by Proc 1 becomes
inconsistent. As a consequence, it may happen that Proc 1
fails. For example let Proc 1 implement a function which
tests the sign of x and then takes two different execution
paths where x is used again. If Proc 1 is not preempted the
implementation will work correctly. But if the timing of
processes changes slightly or if Proc 1 is reused in a new
application it may easily happen that it gets preempted and
does no longer function correctly. Consider the case where
Proc 1 calculates the absolute value of x by the algorithm:

if (x<0)
{y= -x;}

else
{y=x;}

Since the sign of x may change between the comparison and
the assignment operation, Proc 1 may fail.

Correct function therefore depends on the timing and
the sequence of preemptions in a certain system, as this
example shows. This, however, conflicts with the basic
requirements for software reuse, modularity, maintainability
and extendibility. It also conflicts with the goals of object-
orientation where objects should be encapsulated and their
correct function should be independent of the environment.
To avoid software failures which are timing and system
configuration dependent data consistency has to be guaran-
teed.

Data consistency:
For the duration between start and termination of a process
P, it has to be guaranteed that all data locations which are
accessed by P; may change their value if and only if they
are changed by P,.

3.2... ERCOS OBJECT MODEL

To guarantee data consistency ERCOS provides a message
communication mechanism (c.f. chapter 5) instead of vari-
ables. This mechanism separates the memory areas of dif-
ferent processes and provides functions to exchange infor-
mation between processes. The interfaces of ERCOS ob-
jects therefore consist of functions (methods) and messages
(instead of attributes realized by variables).

The basic object classes that are supported by ERCOS
are processes, functions, messages and resources. Out of the
basic classes only processes are active. Processes change
their state autonomously because they are activated exclu-
sively by the operating system. They provide methods for
initialization and activation. A function is a passive object
which can be called. Messages are basic objects for com-
munication between processes. They provide the methods
send and receive. To model resources which can only be
accessed exclusively, ERCOS provides resource objects
with the methods get and release. Figure 2 shows an exam-
ple of basic ERCOS objects and their relations. The objects
considered here are basic objects at the lowest hierarchy
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level. ERCOS provides the possibility to construct complex
objects with well defined interfaces out of basic objects.

Figure 2: Example of basic objects and their relations

These complex objects are called subsystems. Each subsys-
tem defines which objects constitute the interface and which
are hidden inside. Figure 3 shows an example of a subsys-
tem which provides a function and a message as an inter-
face. Additionally, to implement the required functionality
there are two processes, two functions and one resource
which are hidden inside the subsystem.

Figure 3: Example of a complex object (subsystem)

Within a subsystem there is no restriction to sequential
activations. Subsystems may contain an arbitrary number of
processes which can be executed in parallel by means of
multi-tasking. Additionally, it is possible to access subsys-
tem interfaces in parallel. )

The ERCOS object model is therefore well suited for
real-ime systems with multi-tasking capabilities. It supports
object-based software construction, reuse of software,
modularity and extendibility. The ERCOS object model is
supported by a set of comprehensive tools which have been
developed to allow easy construction of object-based soft-
ware while providing interface checks for consistency and
optimization techniques for the runtime management of
objects.

4. SCHEDULING

Scheduling is one of the core functions of a real-time op-
erating system. The scheduler has to decide which process
should be started among a set of ready processes [CSR87].
This decision strategy, called scheduling algorithm, is very
important since it has influence on the real-time capabilities
and efficiency of the system. To achieve the strict require-
ments for efficiency and real-time performance ERCOS
employs a combination of static and dynamic scheduling
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together with a mixed preemptive/cooperative scheduling
strategy. SR

4.1. STATIC AND DYNAMIC SCHEDULING

The most fundamental distinction with scheduling is
whether it is static or dynamic [SSN95]. With static
scheduling, the scheduling algorithm has complete knowl-
edge of all tasks and their constraints. Usual constraints are
computation time, deadline, future release times, prece-
dence relations and mutual exclusion. Since all the process
constraints are known before the system starts, it is possible
to determine the execution order of processes off-line. If
such an off-line schedule exists, it is sufficient at runtime to
start the processes at the predetermined points in time with
a predetermined order. A dynamic scheduling algorithm on
the other band has only knowledge of the ready processes
but it has no knowledge of future activation times. Since
new processes may become ready spontaneously, the
scheduler has to decide at runtime which process has to be
selected among the ready processes.

The advantage of dynamic scheduling over static
scheduling is its flexibility to react on external events. Es-
pecially, the effectiveness of static scheduling decreases
with a decreasing latency period [Pol95b]. Disadvantages of
dynamic scheduling are higher computational requirements
and the memory demand for the management of processes.
By supporting static as well as dynamic scheduling, ERCOS
allows the implementation of combined strategies which are
optimal with respect to the application requirements for
response time and memory demand.

4.2. SCHEDULE-SEQUENCES

Object-oriented system construction and modern software
engineering methodologies which are targeted at software
reuse result in a large number of fine grained processes.
Analysis and experience shows that simple sequential
precedence relations exists between many of these proc-
esses. ERCOS takes advantage of this fact and implements
tasks as schedule-sequences which represents these prece-
dence relations.

Figure 4: Schedule-sequence

A schedule-sequence is defined as the result of static
scheduling. It contains a sequence of processes to be exe-
cuted in the specified order and at a given priority level
upon occurrence of a certain activation event. Dynamic task
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scheduling (or multi-tasking) only concerns schedule-se-
quences as a whole and not individual processes. Figure 4
depicts the principle concept of a task defined as a sched-
ule-sequence. Within a schedule-sequence the scheduler
does not need to take scheduling decisions since the execu-
tion order is constructed statically. This reduces the compu-
tational requirements at runtime. Additionally, the memory
demand is reduced considerably since it is not necessary to
manage a large number of processes (> 100) but a much
smaller number of schedule-sequences. This methodology
typically reduces the number of entities that have to be
managed at runtime by a factor 10-20.

4.3. COOPERATIVE AND PREEMPTIVE SCHEDULING

There are two possible strategies when to switch from an
executing task to a ready task with higher priority. The first
strategy, called cooperative scheduling, switches execution
at predefined points in the software. These predefined
points are the borders between processes within a task. If
necessary, it is also possible to implement switching points
by operating system calls. Since the scheduler has to wait
until the running process is ready and thus cooperates with
the application software, the scheduler is said to be coop-
erative, see Figure 5.

task B

task A

With the second strategy, called preemptive scheduling,
execution can be switched within processes at the boundary
of machine instructions (under the assumption that inter-
rupts are not disabled). The scheduler is therefore able to
suspend the currently executing process within a task and to
start the execution of a task with higher priority, see Figure
6.

[
¥

task B i

Figure 6: Preemptive task scheduling

The advantage of cooperative scheduling is the efficient
utilization of resources. It is guaranteed by design that re-
sources such as stack, registers or messages are accessed
exclusively. Additionally, there is no need to save the proc-
ess context when switching between processes, all processes
can execute with the same register bank and with one stack.
The disadvantage of cooperative scheduling is its relatively



slow response time that depends on the worst case execu-
tion time of processes. For external events (interrupts) and
for periodic activities with controlled jitter short response
times are necessary. Preemptive scheduling can fulfill the
requirement for short response times. The disadvantage of
preemptive scheduling are higher memory requirements
since it is necessary to save the context of preempted proc-
esses and to guarantee data consistency (c.f. chapter 3.1).

ERCOS therefore supports a combination of coopera-
tive and preemptive scheduling. This allows to select the
most effective combination for a certain application. Typi-
cally, only a small amount of the application has short la-
tency requirements which requires preemptive scheduling
while the large remainder can be scheduled cooperatively.
The necessary amount of memory resources can thus be
minimized while guaranteeing the application specific real-
time requirements. This is realized by a hierarchical sched-
uler concept where the cooperative scheduler is subordi-
nated under the preemptive scheduler. The cooperative
scheduler is treated as a single task at the lowest priority
level of the preemptive scheduler. Both schedulers use fixed
priority assignments as described in [LL73, KRP*93].
Schedulability can therefore be analyzed for the preemptive
and the cooperative part according to [Bak91] and [JSM91]
respectively. The operating principle of the hierarchical
scheduler is shown in Figure 7.

©oop. pri

{proc_}[proc ||proc | [proc |
| proc |

Figure 7: Combined preemptive/cooperative scheduler

The preemptive scheduler provides additional flexibility to
handle external events. It is possible to assign an interrupt
source to a preemptive priority level. There is no distinction
necessary between tasks that are activated by hardware
(interrupts) or by software. Thus ERCOS provides a unify-
ing concept for hardware and software activated tasks. It is
even possible to have software activated tasks at higher
preemptive priority levels than hardware activated tasks.

5. MESSAGES

The ERCOS object model is based on messages for data
communication between objects. To achieve data consis-
tency in a real-time system with preemptive scheduling it
has to be guaranteed that objects do not share memory. The
message mechanism separates the memory space of objects
and performs the necessary information exchange.
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5.1. EVENT- AND STATE-MESSAGE SEMANTICS

There are two possible types of message semantics which
are described in the following.

Event-message semantics:

Event-message semantics [Tan92] is characterized by a
consuming receive operation, i.e. if a message is received, it
gets consumed such that the next receive operation gets the
next message. A message is therefore associated with an
event that is processed upon receiving the message. Event-
messages are typically implemented by message queues,
since it is common that more than one message can be sent
before receiving a message. With event-message semantics
there is a synchronization between sender and receiver: For
each message which has been sent there is exactly one re-
ceiver. This 1:1 synchronization relation can be imple-
mented with blocking or non-blocking semantics.

State-message semantics:

The semantics of state-messages [KDK*89] is very similar
to that of global variables. If a state-message is received the
last value which has been sent is returned. By this the mes-
sage is not consumed. It is therefore possible to receive a
value that has been sent to a state-message more than once.
The difference between global variables and state-messages
is that global variables can be overwritten at arbitrary points
in time whereas the receiver of a state-message gets a mes-
sage copy that is kept unchanged if no further receive op-
eration is performed which guarantees data consistency. A
state-message therefore reflects the last state of some entity
which can be read by receiving a message or updated by
sending a message. With state messages there is no syn-
chronization relation between sender and receiver. Rather,
they can be used for an unsynchronized 1:n or m:n informa-
tion exchange between processes. State messages are typi-
cally implemented by message pools. The sender puts the
recent message in the pool while receivers get copies of this
message from the pool.

Commercially available real-time operating systems, e.g.,
{Rea86, ISI93, TSK89] implement event-messages which
are not suited for automotive electronics. There are two
major problems. Firstly, from a functional point of view
most processing activities are carried out periodically.
There is a multitude of objects that are activated with dif-
ferent periods or sampling rates. It is therefore inappropriate
to require a 1:1 synchronization between sender and re-
ceiver of event-messages. And secondly, the efficiency of
typical send and receive operation implementations is in-
sufficient. In high-end automotive applications there is a
transaction rate of up to 100.000 messages per second
which cannot be handled if send and receive operations are
consuming between 15 to 100 us per call. This would result
in a theoretical processor load of 150~1000% for communi-
cation only.

§.2. ERCOS MESSAGE CONCEPT

ERCOS therefore provides state-message semantics with a
highly optimized implementation. Based on the ERCOS



" object model, a process receives input data, performs proc-
essing actions and sends output data (input-process-output).
Send and receive operations are mapped onto message
objects. Between processes there is no direct® method of
information exchange by attributes (or variables). Concep-
tually, the state-message implementation of ERCOS pro-
vides a message copy for each receiver process of a mes-
sage. During startup of a process, all input messages are
copied to the private area for message copies. Having fin-
ished, all output messages which are held in a message copy
are copied to the global message area. The functioning
principle of state-messages is shown in Figure 8.

Proc 2

Figure 8: Data consistency through state-messages

Upon start, process Proc 1 copies its input message msg to
the private message copy msg(1l). All subsequent read op-
erations to the message are done from the private copy.
Even though Proc 1 gets interrupted by Proc 2 which
changes the contents of msg from -1 to 2 this change does
not affect Proc 1. It is therefore guaranteed that Proc 1
perceives the same contents of its input message during the
whole execution. This ensures data consistency. For exam-
ple the following algorithm will execute correctly regardless
of whether Proc 1 is interrupted by Proc 2 or not (cf. Figure
1).

if(x<0)
{y= -x;}

else
{y=x;}

5.3. OPTIMIZED MESSAGE IMPLEMENTATION

Due to the high rate of up to 100.000 message transactions
per second, efficiency of send and receive operations is of
utmost importance. Additionally, the memory requirements
for message copies should be confined to an absolute mini-
mum since memory is still an important cost factor for
automotive electronics. ERCOS therefore provides a power-
ful set of optimization methods to achieve efficiency. These
optimizations are based on static source code analysis. To
provide additional information for static analysis a formal
description language is used which supplements the C and
assembler source code. The implemented optimization
strategies are described in the following:

3 Indirect information exchange between processes is possible by using
functions with parameter passing. In this case it is the users responsibility
to ensure data consistency.
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In-line expansion of send and receive operations:

A general purpose implementation of send and receive
operations would have to decide which message copy has to
be read or written depending on the actual process context.
In the case of static source code analysis send and receive
operations can be expanded in-line since the actual process
context is known. This reduces the implementation to sim-
ple assignment operations, €.g., msg(1):= msg; for Proc 1 in
Figure 8. For typical message lengths the execution times of
send and receive operations therefore becomes less than
1 ps.

Reduction of message copies to potential cases of data
inconsistency conflicts:

Data inconsistency may arise only for two special commu-
nication relations between processes. Firstly, if the receiver
of a message can get interrupted by the sender, see Figure 8.
And secondly, if the sender of a message can get interrupted
by the receiver and the sender does not write the message
with an atomic operation. It is therefore only necessary to
provide message copies and copy operations in these two
specific cases. This results in considerable reduction of
memory requirements and execution time for message send
and receive operations.

Pooling of message send and receive operations:

There is further potential to optimize the execution time for
message send and receive operations by pooling. Since the
schedule sequence of processes within a task executes
strictly sequentially it is possible to pool all receive opera-
tions in the header and all send operations in the trailer of a
schedule sequence. If for example, a message is received by
all four processes in the schedule sequence of Figure 9 then
it is sufficient to use only one receive operation and let all
the processes share the same message copy. This saves three
receive operations and three message copies.

Task

Figure 9: Pooling of message send and receive operations

By using these optimizations the message send and receive
rate of 100.000 messages per second could be reduced to
26.000 messages per second in the application mentioned
above. Since the execution duration of these operations is
less than 1 ps this results in a processor load of 2.6%. This
is approximately two orders of magnitude less than other
message implementations.

Consequently the ERCOS message implementation can
meet the ultra high efficiency requirements for automotive
applications while guaranteeing data consistency. This gives
strong support for the ERCOS object model which is based
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on messages for interprocess communication and which
enables software reuse in multi-tasking environments.

6. MUTUALLY EXCLUSIVE ACCESS

The guarantee of mutually exclusive access to resources is
an important functional requirement for real-time operating
systems. To avoid inconsistencies it is for example neces-
sary to guarantee mutually exclusive access to the error log
of a control unit to ensure that an error log update cannot
get preempted by a second error log update.

6.1. PROBLEMS WITH SEMAPHORES

Most commonly, this requirement is implemented by sema-
phores [Tan92]. This solution is not well suited for the
requirements of automotive electronics for the following
reasons:

(1) Semaphores can block the caller if the requested re-
source is already accessed. This can lead to deadlock or
live-lock conditions which causes severe software failures.

(2) Besides dead- and live-locks semaphores cause the
priority inversion problem. This leads to unbounded delays
when trying to access a resource. An example of a priority
inversion is shown in Figure 10. The low priority process
P1 gets exclusive access to the semaphore S. P1 is pre-
empted by the high priority process P3 which tries to access
the semaphore S as well. Since the semaphore is already in
use by P1, P3 is blocked and has to wait until the sema-
phore S is released. It is therefore possible for the medium
priority process P2 to execute for an arbitrary duration. This
phenomenon is called priority inversion since the high pri-
ority process P3 in fact has to wait for completion of the
medium priority process P2 (even though P2 does not re-
quest access to semaphore S).

N delay caused by P2

prio
s?
P3

'
1
'

¥

Figure 10: Priority inversion

(3) Since semaphores can block the caller if the requested
resource is occupied, the operating system has to provide a
context (stack, register, ...) for each process to save its state
in the case of blocking. Especially, for object based systems
with a high number of processes (>100) this would result in
unacceptable resource requirements.

62. OPTIMIZED STACK BASED PRIORITY CEILING
PROTOCOL

To overcome the problems stated in the previous section,
ERCOS supports an optimized variant of the priority inheri-
tance protocol [SRL90] which is called stack based priority
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ceiling protocol. The basic idea of the priority inheritance
protocol is to elevate the priority of a process which holds a
critical resource when a higher priority process tries to
access the same resource. By elevating the priority of the
lower priority process to that of the higher priority process
it is guaranteed that unbounded priority inversion cannot
occur [SRL90]. This protocol, however is still insufficient
to guarantee absence of deadlocks and of process blocking.
The priority ceiling protocol [RSL88] is a variant of the
priority inheritance protocol where a process inherits the
maximum priority of all processes which potentially have
access to the critical resource. This inherited process prior-
ity is called the priority ceiling of a resource. Application of
this protocol guarantees deadlock free execution but process
blocking is still possible. The following protocol variant of
the priority ceiling protocol guarantees absence of dead-
locks and non-blocking execution. Instead of inheriting the
ceiling priority only in case of an access conflict the priority
ceiling can is inherited immediately upon accessing a re-
source [Bak91]. This protocol variant is called stack based
priority ceiling protocol. It is therefore impossible that a
process which occupies a resource is preempted by another
process trying to access the same resource, see Figure 11.

L 3

no delay caused by P2

prio

- P2

7] 7]

Figure 11: Stack based priority ceiling protocol

ERCOS supports this protocol through off-line tools which
are responsible for the static analysis of the priority ceiling
for each resource. Additionally, they provide the following
optimizations of this protocol. It is detected by static analy-
sis whether a process has the highest priority among all
processes potentially accessing a certain resource. Then it is
not necessary to change the priority of this process when
requesting and releasing the resource. In this case, the off-
line tools therefore expand both operating system calls to
empty. A second optimization is possible if the duration of
the resource access or critical section is very short. If this
duration is approximately the same as that to perform the
priority inheritance and the switch back to the original pri-
ority then it is more efficient to disable interrupts during
execution of the critical section. Again, this implementation
variant is expanded in-line by the off-line tools. The static
source code analysis furthermore provides the possibility to
detect illegal access to critical resources outside of pro-
tected code segments.

t

7. TIMERS

In the case of automotive applications only a minority of
functions is activated by the occurrence of events. The ma-
jority of functions is triggered at certain points in time.
These time-triggered activations can be subdivided into



activations with fixed repetition periods which are kept
unchanged during a whole operating mode and into activa-
tions with variable repetition rates. ERCOS provides there-
fore two types of timer services. Firstly, a static timer serv-
ice for time-triggered task activations with fixed repetition
rates and secondly, a dynamic timer service for time-
triggered activations with varying repetition rates.

Both timer services, however, have the same function-
ing principle. A timer is characterized by its repetition pe-
riod tp and by its start delay £s. The start delay £s specifies
the delay of the first activation and the repetition period
defines the timing of further activations. Upon expiration of
a timer a task gets activated, see Figure 12. Both timer
services provide a very fine grained resolution in the range
of a few micro seconds.

activate activate
task task
t

0 ts tp

Figure 12: General timer service function

7.1. STATIC TIMER SERVICE

The static timer service supports time-triggered activation
with fixed repetition periods. Since the complete timing
information for this activation type is known before run-
time it is possible to calculate a time schedule for a given
set of periodic activations off-line. A corresponding sched-
ule table is generated by the ERCOS off-line tool. It con-
tains a sorted list of all activation times within one overall
period. By using this off-line generated schedule table the
operating systems run-time effort is considerably decreased.
It is not necessary to search the temporarily next timer acti-
vation and manage data structures for active timers. Rather
the operating system only needs to select the next activation
from the pre-sorted schedule table which is very fast. Hence
it is possible to support time-triggered activations with very
short repetition rates, e.g. two tasks with 1000 us and
800 pus.

7.2. DYNAMIC TIMER SERVICES

Task activations with varying repetition periods are sup-
ported by the dynamic timer service. For example this timer
service allows for a single delayed task activation by speci-
fying the start delay and no repetition period. Further pos-
sibilities are to change the repetition period of a timer dur-
ing operation or to start and stop a repetitive timer service
depending on the actual operating conditions. To provide
the necessary flexibility the dynamic timer service is han-
dled by the operating system completely on-line.

The major advantage of the dynamic timer service is its
flexibility which is at the price of higher execution time and
memory requirements. On the contrary, the static timer
service provides very high efficiency but less flexibility.
ERCOS therefore provides a unified concept for timers
where it is possible to select the most appropriate service in
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correspondence to the functional requirements. By support-
ing static and dynamic timers it is possible to minimize the
execution time and memory demand.

8. FAULT TOLERANCE AND EXCEPTION
HANDLING

Robustness and fault-tolerance are important properties for
real-time systems since they have to respond to state
changes in the environment with a guaranteed latency pe-
riod. Such guarantees, however, can only be given for a
specified peak load scenario. The peak load scenario de-
fines the maximum arrival rate and pattern of events that
has to be handled by the system. Experience, however, has
shown that the assumptions which are made about the peak
load scenario are violated often. There are two reasons for
this: Firstly, the assessment of the peak load scenario was
wrong and the arrival rate of events is higher than assumed.
And secondly, faults in the peripherals or in the computer
system itself lead to unanticipated event showers. The op-
erating system is therefore required to handle the resulting
overloads gracefully. ERCOS provides a set of features to
handle overload situations and to guarantee timely response.
From an operating systems point of view an overload situa-
tion is introduced if the number of task activations exceeds .
the anticipated peek load assumption.

8.1. GUARANTEED MINIMUM INTERARRIVAL PERIOD

For task activations, the peak load scenario can be specified
in terms of a minimum interarrival period. Individually for
each task this parameter specifies the minimum time inter-
val between two consecutive activations, see Figure 13.

tminper 1

tminper

Figure 13: Minimum interarrival period

In the case of sensor faults or a wrongly estimated peek load
scenario it is possible that two consecutive task activations
are closer together than specified. To prevent system over-
loads, ERCOS provides a mechanism that rejects task acti-
vations which are too early. If tasks are activated by sofi-
ware, the operating system checks the duration since the last
activation. It rejects the task activation if the elapsed time is
shorter than the minimum interarrival period. In the case of
tasks that are activated by hardware interrupts a different
strategy has to be used since the activation is not done by an
operating system call. To ensure that the minimum interar-
rival period is not violated, the operating system disables
the activating interrupt after the task activation for the dura-
tion of the minimum interarrival period. An exact schedu-
lability analysis of this fault-tolerance mechanism is given
in [Pol95b]. Figure 14 shows the handling of early inter-
rupts.
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Figure 14: Handling of early interrupts

8.2. BOUNDED NUMBER OF CONCURRENTLY
READY TASK INSTANCES

For software activated tasks it is under some circumstances
necessary to allow multiple activations of tasks. This results
in multiple concurrently ready instances of a task which can
be managed by the operating system in FIFO manner.
Hence it is possible to implement queuing semantics. Again,
a peek load scenario is required to guarantee that task acti-
vations are handled correctly by the operating system.
ERCOS therefore allows to specify the maximum number of
concurrently ready instances of a task. This parameter
serves two purposes: Firstly, during the system configura-
tion an analysis tool reads all the task definitions and gen-
erates data structures which are sufficient to hold all possi-
ble concurrently active task instances. And secondly, the
operating system checks upon each task activation whether
the maximum number of concurrently active instances will
be exceeded. In this case the task activation is rejected. This
method guarantees that the operating systems data structures
are sufficient to handle the worst case scenario. There is no
need for experimental buffer size estimations. Furthermore,
the operating system is capable of tolerating software faults
at runtime by rejecting excessive task activations.

8.3. DEADLINE MONITORING

Real-time systems are characterized by the fact that they
have to respond to events in the environment with a
bounded latency period. This latency period, called dead-
line, specifies whether a result is delivered timely, thus
being correct or not. ERCOS provides a mechanism to
implement deadline checking. This allows the detection of
late and incorrect system responses and enables the user to
react on behalf of these faults. The deadline mechanism
provides functions to start a deadline supervision and to
check whether a started deadline has expired. The operating
system additionally supervises deadlines by itself. Thus
deadline violations are detected even in the case when the
application program does not call the function for deadline
checking. Furthermore, the operating system provides con-
sistency checks to detect corruption of the internal data
structures of the deadline monitoring service.

8.4. EXCEPTION HANDLING

Besides faults in the timing of task activations as mentioned
above there is a broad variety of faults which are detected
by the operating system at runtime. Among these faults are
stack over- and underflows or corruption of data structures.
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Furthermore, there are possible faults which are detected by
the user software. To handle these faults in accordance to
the application requirements the operating system provides
an exception mechanism [Cri89]. Upon occurrence of a
fault an exception is raised either by the operating system or
by the user. In accordance to the application requirements it
is possible to bind an exception handling routine to an ex-
ception. This binding is done statically at system generation
time and allows binding of user written exception handlers.

9. CONCLUSION

This paper has presented the concept of the operating sys-
tem ERCOS which has been specially designed to meet the
demands of automotive electronics. Bosch will use ERCOS
as a standard operating system platform for its automotive
products. Section 2 describes general requirements and
objectives for the application software in automotive con-
trol units which in turn had influenced the design of the
operating system. These goals are reusability, modularity,
efficiency, maintainability, extendibility, and real-time
support. Modern software engineering practices and espe-
cially object-orientation address many of these goals and
should therefore be strongly considered for use in the soft-
ware development process.

Section 3 outlines problems with conventional object
implementations in real-time systems and describes the
ERCOS object model which overcomes these problems. It
is shown that object implementations based on attributes
(which are implemented by global variables) are not appro-
priate to reach the proposed goals of flexibility, reliability
and reuse in the context of multi-tasking real-time software.
This is due to the inherent parallelism of processes (or
functions called by processes) accessing these attributes.
Specifically this leads to the problem of data inconsistency.
Data inconsistency occurs when a high priority process
changes data used by a low priority process during execu-
tion of the latter. This problem, which depends on configu-
rational and system aspects, is commonly handled by spe-
cial solutions which prevent software reuse. To achieve the
required goals, it is therefore necessary to guarantee data
consistency by a general mechanism. In ERCOS this is
provided by message communication. The ERCOS object
model is therefore based on processes, functions, messages
and resources as basic classes. Functions correspond to
methods, messages are replacing attributes while guarantee-
ing data consistency, processes support the implementation
of autonomously active objects, and resources are used to
guarantee mutually exclusive access to critical resources.
This object model is suitable for parallel execution of proc-
esses within multi-tasking real-time environments while
supporting the goals as stated in section 2.

The scheduling strategy of ERCOS is described in sec-
tion 4. To achieve high run-time efficiency, the operating
system supports a combination of static and dynamic
scheduling. The support for static scheduling reduces the
on-line execution time requirements of the scheduler con-
siderably. Additionally, it is possible to use combinations of
preemptive and cooperative scheduling to minimize mem-



ory resource requirements. Message objects for interprocess
communication are described in section 5. ERCOS imple-
ments state-message semantics and provides a set of new
optimization techniques to provide very high efficiency with
regards to execution time and memory requirements.: This
optimization concept allows the systematic application of
messages and thus guarantees data consistency in general
run-time configurations without loss of efficiency. Handling
of mutually exclusive access to critical resources is de-
scribed in section 6. Multi-tasking real-time operating sys-
tems typically provide semaphores to provide mutually
exclusive access to resources. This mechanism, however,
has severe drawbacks since semaphores introduce blocking,
they may cause dead- or live-locks and they are the source
for unbounded priority inversion. To avoid these problems,
ERCOS supports the stack based priority ceiling protocol.
This protocol guarantees-deadlock free execution, freedom
from blocking and bounded resource access delays. Section
7 describes the timer services of ERCOS. Since many func-
tions are activated by time-triggered activation an efficient
timer service is necessary. To achieve high efficiency the
operating system supports a dynamic and a static timer
service. The dynamic timer service is very flexible and
allows on-line changes. The static timer service is most
efficient but does not allow on-line changes since a stati-
cally scheduled task activation table is used. It is therefore
possible to select an application specific trade off between
flexibility and efficiency.

Applications in the field of automotive electronics often
have very demanding safety and reliability requirements.
ERCOS therefore provides fault-tolerance and exception
handling mechanisms which are described in section 8.
Since real-time systems have to respond to relevant events
in the environment within a bounded latency it is important
to handle system overloads introduced by faulty sensors or
software errors. The operating system provides mechanisms
to enforce a minimum interrarival period between consecu-
tive activations of a single task. Furthermore, there is a
mechanism to limit the number of concurrently active tasks.
For the detection of timing faults the operating system pro-
vides a deadline monitoring mechanism. Handling of faults
is done by the exception mechanism which is supported by
the operating system.

This paper has shown that proper selection of operating
system mechanisms, static source code analysis and optimi-
zation methods allow the construction of a highly efficient
operating system for automotive applications without com-
promising flexibility, reliability, maintainability and support
for software reuse. With its support for static scheduling
and state-messages the operating system is well suited for
extensions to a distributed fault-tolerant real-time system by
adding appropriate services [KG94, MP96].
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