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Abstract

An accurate and safe estimation of a task’s worst case
execution time (WCET) is crucial for reasoning about the
timing properties of real-time systems. In RISC proces-
sors, the execution time of a program construct (e.g., a
statement) is affected by various factors such as cache
hits/misses and pipeline hazards, and these factors im-
pose serious problems in analyzing the WCETs of tasks.
To analyze the timing effects of RISC’s pipelined execu-
tion and cache memory, this paper proposes extensions of
the original timing schema [26] where the timing infor-
mation associated with each program construct is a sim-
ple time-bound. We associate with each program construct
what we call a WOTA (Worst Case Timing Abstraction),
which contains detailed timing information of every exe-
cution path that might be the worst case execution path
of the program construct. This extension leads to a re-
vised timing schema that s stmilar to the original timing
schema except that concatenation and pruning operations
on WCTAs are newly defined to replace the add and max
operations on time-bounds in the original timing schema.
Our revised timing schema accurately accounts for the tim-
ing effects of pipelined execution and cache memory not
only within but also across program constructs. This paper
also reports on preliminary results of WCET analyses for
a pipelined processor. Qur results show that up to 50 %
tighter WCET bounds can be obtained by using the revised
timing schema.

1 Introduction

In real-time computing systems, tasks have timing re-
quirements (i.e., deadlines) that must be met for correct
operation. Thus, it is of utmost importance to guarantee
that tasks finish before their deadlines. Various schedul-
ing techniques, both static and dynamic, have been pro-

*This work was supported in part by KOSEF (Grant
KOSEF-93-01-00-06) and ADD (Contract ADD-91-4-4).

tDept. of Computer Engineering, Seoul National University,
Seoul 151-742, Korea

{Dept. of Computer Engineering, Chung-Ang University,
Seoul 156-756, Korea

Young Hyun Bae'
Sang Lyul Min'
Kunsoo Park?

Gyu Tae Jang!
Chang Yun Park?
Chong Sang Kim!

posed to ensure this guarantee. These scheduling algo-
rithms generally require that the WCET (Worst Case Ex-
ecution Time) of each task in the system be known a priori.
Therefore, it is not surprising that much research has fo-
cused on the estimation of the WCETSs of tasks.

In a non-pipelined processor without cache memory, it
is relatively easy to obtain a tight bound on the WCET
of a sequence of instructions. One just has to sum up
their individual execution times that are usually given by
a table. The WCET of a program can then be calculated
by traversing the program’s syntax tree bottom-up and
applying formulas for calculating the WCETSs of various
language constructs. However, for RISC processors such
a simple analysis may not be appropriate because of their
pipelined execution and cache memory. In RISC proces-
sors, an instruction’s execution time varies widely depend-
ing on many factors such as pipeline stalls due to hazards
and cache hits/misses. One can still obtain a safe WCET
bound of a program by assuming the worst case execu-
tion scenario (e.g., each instruction suffers from all kinds
of hazards and every memory access results in a cache miss
and so on). However, such a pessimistic approach would
yield an extremely loose WCET bound resulting in severe
under-utilization of machine resources.

Our goal is to predict tight and safe WCET bounds of
tasks for RISC processors. Achieving this goal would per-
mit RISC processors to be widely used in real-time sys-
tems. Our approach is based on an extension of the timing
schema [26]. The timing schema is a set of formulas for
computing execution time bounds of language constructs.
In the original timing schema, the timing information asso-
ciated with each program construct is a simple time-bound.
This choice of timing information facilitates a simple and
accurate timing analysis for processors with fixed execu-
tion times. However, for RISC processors, such timing
information is not sufficient to accurately account for tim-
ing variations resulting from pipelined execution and cache
memory.

This paper proposes extensions of the original timing
schema to rectify the above problem. We associate with
each program construct what we call a WCTA (Worst Case
Timing Abstraction). The WCTA of a program construct
contains timing information of every execution path that
might be the worst case execution path of the program



construct. Each timing information includes information
about the factors that may affect the timing of the succeed-
ing program construct. It also includes the information
that is needed to refine the execution time of the program
construct when the timing information of the preceding
program construct becomes available at a later stage of
WCET analysis. This extension leads to a revised timing
schema that accurately accounts for the timing variation
resulting from history sensitive nature of pipelined execu-
tion and cache memory.

The proposed approach has the following advantages.
First, the approach makes possible an accurate analysis of
combined timing effects of pipelined execution and cache
memory, which was not possible in previous approaches.
Second, the timing analysis using the proposed approach
is more accurate than that of any other approach we are
aware of. Third, the proposed approach is applicable to
most RISC processors since it does not make any machine
specific assumption. Finally, the proposed approach is ex-
tensible in that its general rule can be used to model the
timing behavior of other machine features. For example,
its underlying general rule can be used to model the timing
variation due to TLB and write buffers.

This paper is organized as follows. In Section 2, we
survey the related work. Section 3 explains the problems
in accurately estimating the WCETs of tasks in pipelined
processors and presents our analysis method. In Section 4,
we describe an accurate timing analysis technique for in-
struction cache memory and explain how this technique
can be combined with the pipeline timing analysis tech-
nique given in Section 3. Section 5 identifies the differences
between the WCET analysis of instruction caches and that
of data caches, and explains how we address the issues re-
sulting from these differences. In Section 6, we report on
preliminary results of WCET analyses for a pipelined pro-
cessor. Finally, we conclude this paper in Section 7.

2 Related work

A timing prediction method for real-time systems
should be able to give safe and accurate WCET bounds
of tasks. Measurement-based and analytical techniques
have been used to obtain such bounds. Measurement-
based techniques are, in many cases, inadequate to pro-
duce a timing estimation for real-time systems since their
predictions are usually not guaranteed, or enormous cost is
needed. Because of these limitations of the measurement-
based approaches, analytical approaches are becoming
more popular. There have been several recent studies
about this issue [4, 8, 9, 18, 19, 20, 22, 23, 24, 27, 28].
In many of these studies, the assumed machine model is
a simple non-pipelined processor without cache memory
[18, 22, 23, 27]. Thus the timing effects of pipelined exe-
cution and cache memory are not taken into account.

2.1 Timing analysis of pipelined execu-
tion

The timing effects of pipelined execution have been re-
cently studied by Harmon, Baker, and Whalley [9], Har-
court, Mauney, and Cook [8], Narasimhan and Nilsen [20],
and Choi, Lee, and Kang [4]. In these studies, the exe-
cution time of a sequence of instructions is estimated by
modeling a pipelined processor as a set of resources and
representing each instruction as a process that acquires
and consumes a subset of resources in time. In order to
mechanize the process of calculating the execution time,
they use various techniques: pattern matching [9], SCCS
(Synchronous Calculus of Communicating Systems) [8], re-
targetable pipeline simulation [20], and ACSR (Algebra of
Communicating Shared Resources) [4]. Although these ap-
proaches have the advantages of being formal and machine
independent, their applications are currently limited to cal-
culating the execution time of a sequence of instructions
or a given sequence of basic blocks'. Therefore, they rely
on ad hoc methods to calculate the WCETs of programs.

The pipeline timing analysis technique by Zhang, Burns
and Nicholson [28] can mechanically calculate the WCETSs
of programs for a pipelined processor. Their analysis tech-
nique is based on a mathematical model of the pipelined
Intel 80C188 processor. This model takes into account
the overlap between instruction execution and opcode
prefetching in 80C188. In their approach, the WCET of
each basic block in a program is individually calculated
based on the mathematical model. The WCET of the
program is then calculated using the WCETSs of the con-
stituent basic blocks and timing formulas for calculating
the WCETSs of various language constructs.

Although this approach represents a significant progress
over the previous schemes that did not account for the
timing effects of pipelined execution, it still suffers from
two inefficiencies. First, the pipelining effects across basic
blocks are not accurately accounted for. In general, due
to data dependencies and resource conflicts with the exe-
cution pipeline, a basic block’s execution time will differ
depending on what the surrounding basic blocks are. How-
ever, since it is required in their approach that the WCET
of each basic block be independently calculated, it appears
that they make the worst case assumption on the preceding
basic block (e.g., the last instruction of every basic block
that can precede the basic block being analyzed needs data
memory access, which prevents the opcode prefetching of
the first instruction of the basic block being analyzed).
This assumption is reasonable for their target processor
since its pipeline has only two stages. However, completely
ignoring pipelining effects across basic blocks may yield a
very loose WCET estimation for more deeply pipelined
processors as we will see in Section 6. Second, although

1A basic block is a sequence of consecutive instructions in
which flow of control enters at the beginning and leaves at the
end without halt or possibility of branching except at the end

[1].



their mathematical model is very effective for the Intel
80C188 processor, it appears that the model is not general
enough to be applied to other pipelined processors. This
is due to many machine specific assumptions made in the
model that are difficult to be generalized to other pipelined
ProCessors.

2.2 Timing analysis of cache memory

Cache memories have been widely used to bridge the
speed gap between processor and main memory. How-
ever, designers of hard real-time systems are wary of using
caches in their systems since the performance of caches is
considered to be unpredictable. This unpredictable per-
formance of caches stems from the following two sources:
inter-task interference and intra-task interference. Inter-
task interference is caused by task preemption. When a
task is preempted, most of its cache blocks® are displaced
by the newly scheduled task and the tasks scheduled there-
after. When the preempted task resumes execution, it
makes references to the previously displaced blocks and
experiences a burst of cache misses. This type of cache
misses cannot be avoided in real-time systems with pre-
emptive scheduling of tasks and results in a wide variation
in task execution times. This execution time variation can
be eliminated by partitioning the cache and dedicating one
or more partitions to each real-time task [14, 15]. This
cache partitioning approach eliminates the cache unpre-
dictability caused by task preemption. However, it still
suffers from the cache unpredictability caused by intra-
task interference that will be explained next.

Intra-task interference in caches occurs when more than
one memory block of the same task compete with each
other for the same cache block. This interference results
in two types of cache misses: capacity misses and conflict
misses [11]. Capacity misses are due to finite cache size.
Conflict misses, on the other hand, are caused by a lim-
ited set associativity. These types of cache misses cannot
be avoided if the cache has a limited size and/or set asso-
ciativity.

Among the analytical WCET prediction schemes that
we are aware of, only three schemes take into account the
timing variation resulting from intra-task cache interfer-
ence (two for instruction caches [19, 21] and one for data
caches [24]). The static cache simulation approach which
statically predicts hits or misses of instruction references
is due to Mueller, Whalley and Harmon [19]. In this ap-
proach, instructions are classified into the following four
categories based on a data flow analysis:

o always-hit: The instruction is always in the cache.
o always-mess: The instruction is never in the cache.

o first-miss: The first reference to the instruction misses
in the cache. However, all the subsequent references

2 A block is the minimum unit of information that can be ei-
ther present or not present in the cache-main memory hierarchy
[10].

for (k=05 ky<ngiky++) {

Figure 1: Sample C program fragment

hit in the cache.

o conflict: The instruction may or may not be in the
cache.

This approach is simple but has a number of limitations.
One limitation is that the analysis is too conservative. As
an example, consider the program fragment given in Fig-
ure 1. Assume that both of the instruction memory blocks
b; and b; are mapped to the same cache block and that no
other instruction memory blocks are mapped to that cache
block. During the actual execution, among the n1 X n2 ref-
erences to by, n1 X no—n1 references are cache hits and only
ny references are cache misses. However, by being classi-
fied as conflict, all the ny X no references to b; are treated
as cache misses in this approach. Another limitation of
this approach is that the approach has not addressed the
issues of locating the worst case execution path and of cal-
culating the WCET, which are critical in scheduling tasks
in real-time systems.

In [21], Niehaus et al. discuss the potential benefits of
identifying instruction references corresponding to always-
hit and first-mess in the static cache simulation approach.
However, as it is noted in [19], their analysis is rather ab-
stract and no general method to analyze the worst case
timing behavior of programs in the presence of instruction
caches is given.

Rawat performs a static analysis for data caches [24].
His approach is similar to the graph coloring approach to
register allocation [5]. In his analysis, first, live ranges of
variables and those of memory blocks are computed®. Sec-
ond, an interference graph is constructed for each cache
block. An edge in the interference graph connects two
memory blocks if they are mapped to the same cache block
and their live ranges overlap with each other. Third, live
ranges of memory blocks are split until they do not over-
lap with each other. If a live range of a memory block
does not overlap with that of any other memory block, the
memory block never gets replaced from the cache during
execution within the live range. Therefore, the number
of cache misses due to a memory block can be calculated
from the frequency counts of its live ranges (i.e., how many

3A live range of a variable (memory block) is a set of ba-
sic blocks during whose execution the variable (memory block)
potentially resides in the cache [24].



for (k=05 ky<ngiky++) {

if (cond)

s o]

else

o [ o]

Figure 2: Another sample C program fragment

times the program control flows into the live ranges). Fi-
nally, the number of total data cache misses is estimated
by summing up the frequencies of all the live ranges of all
the memory blocks used in the program.

Although this analysis method represents a significant
progress over the analysis methods in which every data
reference is treated as a cache miss, it still suffers from the
following three limitations. First, the analysis does not
allow function calls and global variables, which severely
limits its applicability. Second, the analysis leads to an
overestimation of data cache misses by assuming that all
possible execution paths are taken during program execu-
tion. To see this point, consider the program fragment in
Figure 2. Assume that S; and S reference data memory
blocks b; and b;, respectively and that these two blocks are
mapped to the same cache block. Further assume that the
execution time of S7 is much longer than that of S;. Un-
der these assumptions, the worst case execution scenario of
this program fragment is to repeatedly execute S; within
the loop. In this worst case scenario, only the first access
to b; will miss in the cache and all the subsequent accesses
within the loop will hit in the cache. However, since the
live range of b; overlaps with that of b;, all the accesses
to b; are assumed to miss in the cache. This results in
an excessive overestimation of the data cache misses due
to accesses to b;. The third limitation of the approach is
that it has not addressed the issues of locating the worst
case execution path and of calculating the WCET, again
limiting its applicability.

3 Pipelining effects

In pipelined processors, various execution steps of in-
structions are simultaneously overlapped. Because of this
overlapped execution, an instruction’s execution time will
differ depending on what the surrounding instructions are.
However, this timing variation cannot be accurately ac-
counted for in the original timing schema, since the timing
information associated with each program construct is a
simple time-bound. In this section, we extend the timing
schema to rectify this problem.

In our extended timing schema, the timing information
of each program construct is a set of reservation tables

w  $25, 16(523) 1|2|3|4|5|6|7|8]|9|10{11|12{1314|15|16|17|18|19| 20|21
nop FoO| XX x| x|x]x]|x
Iw  $24, 16($22) RD XX x| x| x| x
nop X x
mult $25, $24 ALY X|X|X
MD XX x x| x x| x| x| x|x|x X | x
mflo $25
DIV
addu $21, $21, $25
MEM X x[x|x X | x
WB X| X | X[x X | x

Figure 3: Sample MIPS assembly code and the corre-
sponding reservation table

R, Ry
lzla]als]e]7]e]o w0 frefa]ua]s v|2]3|a|s|s]7|e|o|0]i|i2||]s
IF X | X XX |X]|X IF X X[ X X
RD X | X XX | X[X RD X[ X|X X
ALU X | X XX | X[ X[X]X ALU X | X| X X
MD. X | X|X]|X MD
DIV, DIV XX XX X IX|X[X]X
EW X [ x| x em x| x X
WB X XX | X]|X[X WB X | X X

tmax = 15cycles tmax = 15cycles

Figure 4: Two reservation tables with equal #,,44

rather than a time-bound. The reservation table was origi-
nally proposed to describe and analyze the activities within
a pipeline [16]. In a reservation table, the vertical dimen-
sion represents the stages in the pipeline and the horizontal
dimension represents time. Figure 3 shows a simple basic
block in MIPS assembly language and the corresponding
reservation table. In the figure, each x in the reservation
table specifies the use of the corresponding stage for the
indicated time slot. In the proposed approach, we analyze
the timing interactions among instructions within a basic
block by building its reservation table.

A program construct such as an if statement may have
more than one execution path. Moreover, it is not always
possible in pipelined processors to determine which one
of the execution paths is the worst case execution path
by analyzing the program construct alone. As an exam-
ple, suppose that an if statement has two execution paths
corresponding to the two reservation tables shown in Fig-
ure 4. Here the worst case execution path depends on the
instructions in the surrounding program constructs. For
example, if one of the instructions near the end of the pre-
ceding program construct uses the MD stage, the execu-
tion path corresponding to Ry will become the worst case
execution path. On the other hand, if there exists an in-
struction using the DIV stage instead, the execution path
corresponding to Ro will become the worst case execution
path. Therefore, we should keep both reservation tables
until the timing information of the surrounding program
constructs is known.

Figure 5 shows the data structure for a reservation ta-
ble used in our approach both in textual and graphical
forms. In the data structure, ¢4 is the worst case exe-
cution time of the reservation table, which is determined
by the number of columns in the reservation table. In im-
plementation, not all the columns in the reservation table



struct pipeline timing information {
time tmaz;
reservation_table head[bpeqdl ;
reservation_table tail[é:4:];

max

19 head 6tail

Figure 5: Reservation table data structure

are maintained. Instead, we maintain only a first few (i.e.,
5head) columns whose timing behavior may be affected by
the instructions in the preceding program construct and
a last few (i.e., 8tai1) columns that may affect the timing
behavior of the succeeding program construct. Regardless
of how small or how large épcqaq and 8:q:: are, a reservation
table represented in this way is safe in that the timing be-
havior deduced from this approximate representation does
not underestimate the actual WCET. However, the larger
Ohead and b:q:; are, the tighter the resulting WCE'T estima-
tion is, as we will see later. dpeqd = 6tqit = 00 corresponds
to the case where the full reservation table is maintained.

As explained earlier, we associate with each program
construct a set of reservation tables where each reserva-
tion table contains the timing information of an execution
path that might be the worst case execution path of the
program construct. We call this set the WCTA (Worst
Case Timing Abstraction) of the program construct. This
WCTA corresponds to the time-bound in the original tim-
ing schema.

With this framework, the timing schema can be ex-
tended so that the timing interactions among instructions
not only within but also across program constructs can be
accurately accounted for. In the extended timing schema,
the timing formula of a sequential statement S: S5 S» is
given by

W(S) =W(s1) EPW(s:)

where W(S), W(S1) and W(Sz) are the WCTAs of S,
S1 and Sz, respectively. The operation @ between two
WCTASs is defined as

Wi @WQ = {w1 ® wa|w1 € Wh,wp € W}

where w; and wsy are reservation tables and the @ oper-
ation concatenates two reservation tables giving another

1123 |4]5 8 9 [10]|11 |12 1[(2|3]4]5 8 (9 (101112
F x| x x| x Folxx|x|x|x X
RD XX X X RD XXX X XX
ALY x| x @ ALU x| x|x X
MD MD
DIV X XXX XX DIV X | X
MEM X x| x MEM x| x x| x|x
wa x x [ x| x wB X X x| x| x
tmax =12cycles ' tmax =12cycles
1]23|a]s 8 |9 |10[11[12 1516(17|18[19
IF X | X X | X XX | X[ X]|X X
RD X | X X X X|X[X]|X X | X
ALU XX X xX|x X
MD
DIV XIX|X X
MEM X X X X | X[ X
WB XX X[ X[X
tmax =19cycles
1(2]3|4
IF [ x| x X
RD X | X
ALU X | X
MD
DIV
MEM X
WB

tmax =19cycles

Figure 6: Example application of & operation

reservation table. This concatenation operation models
the pipelined execution of a sequence of instructions fol-
lowed by another sequence of instructions. The semantics
of this operation for a target processor can be deduced
from its data book. Figure 6 shows an application of the
@ operation. From the figure, we can note that as more
columns are maintained in head and tail, more overlap
between head and tail of adjacent program structures can
be modeled and, therefore, a tighter WCET estimation can
be obtained.

The above timing formula effectively enumerates all the
possible candidates for the worst case execution path in
S51;52. During each instantiation of this timing formula,
a check is made to see whether the resulting WCTA can
be pruned. An element in a WCTA can be eliminated
completely from the WCTA if we can guarantee that the
element’s WCET assuming the worst case scenario for the
element on the surrounding program constructs is shorter
than the WCET of some other element in the same WCTA
assuming the best case scenario for this element on the
surrounding program constructs. This pruning condition
can be more formally specified as follows:

A reservation table w in a WCTA W can be
pruned without affecting the prediction for the
worst case timing behavior of W if

El'wl S VV, W.tmazr < 'W’~tma.r — Ohead — Otail

In this condition, w.t,mas 1s w’s execution time when we as-
)

sume the worst case scenario for w on the surrounding pro-

gram constructs (i.e., when no part of w’s head and tail



is overlapped with the surrounding program constructs).
On the other hand, w’.t,;nas — 8head — 8tair is the execution
time of w’ when we assume the best case scenario for w’ on
the surrounding program constructs (i.e., when its head is
completely overlapped with the tail of the preceding pro-
gram construct and its tail is completely overlapped with
the head of the succeeding program construct).

The timing formula of an if statement S: if (exp) then
S; else S; is given by

W(s)

Wezp) P (W(s1) [ W(s2))

where W (S), W(ezp), W(S1) and W(Sz) are the WCTAs
of S, exp, S1 and Sz, respectively and U is the set union
operation. As in the previous timing formula, pruning is
performed during each instantiation of this timing formula.

Function calls are processed like sequential statements.
In our approach, functions are processed in a reverse topo-
logical order in the call graph* since the WCTA of a func-
tion should be calculated before any of the functions that
call it is processed.

Finally, the timing formula of a loop statement S: while
(exp) S; is given by

N

W(S) = (W (exp) P W (51))) EP W (ezp)

=1

where N is a loop bound that is provided by some exter-
nal means (e.g., from user input). This timing formula
effectively enumerates all the possible candidates for the
worst case execution scenario of the loop statement. This
approach is exact but is computationally intractable for
a large N. In the following, we will give an alternative
formulation of the loop timing analysis.

Loop timing Analysis Assume that the number of
elements in W (exp) @ W (S1) is p corresponding to the
set of execution paths P = {p1,p2,...,pp}. Consider an
execution scenario of £ loop iterations where p; is executed
in the first iteration and p; is executed in the last iter-
ation. There are |P|*~2
them let 'wpf] be the execution scenario with the longest
execution time and 'wcta('wpf]) be its WCTA. Note that
'wpf] is unique since all of the |P|Z_2 possible scenarios
share the same head inherited from p; and the same tail
inherited from p; and, therefore, the surrounding program
constructs cannot make any difference in the way they af-
fect the timing of the scenarios. With this framework,
the WCTA of the loop statement is obviously contained in
(Upi,PjGP wcta(wpf\;)) P W(ezp).

The calculation of 'wcta('wpfj) can proceed as follows:

possible such scenarios. Among

First, since wpf] begins with p;’s execution, 'wcta('wpf])

4 A call graph contains the information on how functions call
each other [6]. For example, if f calls g, then an arc connects
f’s vertex to g’s in their call graph.

(W(ezp) @ W(s1) | (W(eap) @ W(S2))

P
Pkl Ko
1|23 |45 8|9 |10[11|12 1/2]3]4]5 8|9 |10]11]12
F | x|x x| x Foxx|x|x]|x X
RD x| x X X RD x| x|x|x X | x
ALY x| x @ ALU x| x| x X
MD MD
[ X x x| x|x|x DIV x| x
MEM X x| x MEM x| x x| x[x
ws X X | x| X WB X X x| x| x
.t
Pkl-tmax ' sz max
P P
( Pki @ Pky)
1(2(3]|4(5 819110(11(12 15/16|17|18(19
F [ x|x x| x x [ x x| x][x X
RD x| x X x x| x|x]x X |x
ALY x| x x| x| x X
MD
DIV X x x| x| x]|x x [ x
MEM X x[x x| x X [ x|x
wB X x [x]x X X x| x| x

Pkl-tmax (Pk2.1|Pk1)

Figure 7: Calculation of (pg, .t|px.,)

inherits p;’s head. Likewise, since 'wpf] ends with p;’s ex-
ecution, wcta(wpfj) inherits p;’s tail. Second, assuming

tha‘t wpfj = piapil apiza R apig_z ap]a
is given by the following equation:

'wcta('wpfj)’s tmaz

£
weta(wpf;)-tmaz = Pi-tmaz + (Pig-t1Pi) + (Pig-tIpig) + -

F(piy_g-tlpi, )(Pi,_ o tlpi,_ o)+ (pj-tlps,_,)

where (pi,.t|pr,) = (Pr; ® Py )-tmaz — Pky -tmaz denot-
ing px,’s execution time when its execution is immediately
preceded by pg,’s execution (cf. Figure 7).

Let D1y be  (piy-tlpi) + (pisetlpiy) + ..o +
(Pipa-tpip_s) + (Pip_s-tlpi,_s) + (p5-tlpi,_,).  Consider
a complete weighted directed graph G = (P, A) where
P = {p1,p2,...,pp} and each weight wpy is (pn.t|pm).
With this setting, D, ; ; is the maximum weight of a path
(not necessarily simple) from p; to p; in G containing ex-
actly £ arcs. This problem can be solved using the following
equations.

Do _ —oo if pi # p;
083 0 otherwise
Dei; = max{De1,ir + w;}

PrEFP

Computation of Dy ; ; for all p;,p; € P, £=0to N —1 us-
ing this dynamic programming technique takes O(N x|P|?)
time. For a large NV, this time complexity is still unaccept-
able. In the following, we will describe a technique that
gives very tight upper bounds for Dy ; ;’s. The technique
is based on the calculation of the maximum cycle mean of
G.

The maximum cycle mean of a weighted directed graph
G is m = mazc m(C) where m(C) is the mean weight of
C and C ranges over all directed cycles in G. The maxi-
mum cycle mean can be calculated in O(|P| x |A|) using
the algorithm due to Karp [13]. Let m be the maximum
cycle mean of G, then Dy ; ; can be safely approximated by



D'4i; = £xm+ (m—wj;). We prove this in the following
proposition.

Proposition 1 If D, ; ; is the mazimum weight of a path
(not necessarily simple) from p; to p; containing exactly
£ arcs in a complete weighted directed graph G = (P, A)
and m is the mazimum cycle mean of G, then D;;; <
D'yi; =£xm+ (m—wj) for all p;,p; € P and £ > 0.

Proof. Assume for the sake of contradiction that D, ; ; is
greater than £ x m + (m — wy;). Then we can construct
a cycle containing £ + 1 arcs by adding the arc from p;
to p; to the path from which Dy ; ; is calculated. The arc

should exist since GG is a complete graph. The resulting
De,ijtwji >

cycle has a mean weight greater than m since v,

£x —wgy it .. . .
% = m. This implies an existence of a

cycle in G whose mean weight is greater than m. This
contradicts our hypothesis that m is the maximum cycle
mean of G and thus Dy;; <fxm+ (m—wj). [0

Moreover, it can be shown that D’;; ; — D ; ;, which
indicates the looseness of the approximation, is bounded
above by 3 X (m — Wmin) where wmi, is the minimum
weight of an arc in A [17]. We can expect this bound to be
very tight since m >~ wmin. (Remember that P consists of
the paths in W(ezp) @ W(S1) that cannot be pruned by
each other.)

Once D"Z—l,z‘,] (or Dg_1,;; if possible) is calculated,
wcta(wpfj) is given by

£ 1
weta(wp;) = (Pi-tmazw + D' p_1,4,5 (6r Ds_1,4,j), Pi-head, p;.tail)

Finally, the WCTA of the loop statement is given by

W(s)=( |J weta(wpl))) E W(erp)

pi,p; EP

Assuming that we use D’¢; ;, the calculation of the WCTA
of the loop statement in this way takes O(|P| x |A|) time.

Interference Up until now, we assume that tasks ex-
ecute without preemption. However, in real systems,
tasks may be preempted for various reasons: preemptive
scheduling, external interrupts, resource contention, and
so on. Each task preemption accompanies a task switch.
The task switch delay introduced by pipelined execution
in addition to that incurred in non-pipelined processors is
bounded by the maximum number of cycles that the effects
of an instruction remain in the pipeline (in MIPS R3000
it is 36 cycles in the case of the div instruction).

4 Instruction caching effects

For a processor with an instruction cache, the execu-
tion time of a program construct will differ depending on
which execution path has been taken prior to the program

cache
contents

cache

e

block 1 3 3 s
bo bz bo by

(hit/miss) (hit/miss) (hit) (miss)

Figure 8: Sample instruction block references from a
program construct

construct. This results from history sensitive nature of
the instruction cache. As an example, consider a program
construct that accesses instruction blocks® (bz, bs, ba, b4)
in the sequence given (cf. Figure 8). Assume that the in-
struction cache has only two blocks and is direct-mapped.
In a direct mapped cache, each instruction block can be
placed exactly in one cache block whose index is given by
instruction block number modulo number of blocks in the
cache.

In this example, the second reference to by will always
hit in the cache because the first reference to b2 will bring
b2 into the cache and this cache block will not be replaced
in-between. On the other hand, the reference to by will al-
ways miss in the cache even when by was previously in the
cache prior to this program construct because the first ref-
erence to bz will replace bs4’s copy in the cache in-between.
(Remember that b2 and bs are mapped to the same cache
block in the assumed cache configuration.) Unlike the
above two references whose hits or misses are guaranteed,
the hit or miss of the first reference to b2 depends on the
cache contents immediately before executing this program
construct and so does the hit or miss of the reference to bs.
The hits or misses of these references will affect the (worst
case) execution time of this program construct. Moreover,
the cache contents after this program construct will, in
turn, affect the execution time of the succeeding program
construct. These timing variations again cannot accurately
be represented by a simple time-bound of the original tim-
ing schema.

This situation is similar to the situation for pipelined
execution in the previous section and, therefore, we adopt
the same strategy; we simply extend the timing informa-
tion of elements in a WCTA leaving the timing formu-
las intact. Each element in a WCTA now has two sets
of instruction block addresses in addition to tmez, head,
and tail used for the timing analysis of pipelined execu-
tion. Figure 9 gives the data structure for an element in a
WCTA in the new setting where npiock denotes the number
of blocks in the cache.

In the given data structure, the first set of instruction
block addresses (i.e., first_reference) maintains the in-
struction block addresses of the references whose hits or
misses depend on the cache contents prior to the program

5We regard a sequence of instruction references to an instruc-
tion block as a single reference to the instruction block without
any loss of accuracy in analysis.



struct pipeline cache timing information {
time t,,42;
reservation_table head[6,.44];
reservation_table taill[d;4i1];
block_address first_referencelny,cil;
block_address last_referencelnpi,crl;

Figure 9: Structure of an element in a WCTA
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Figure 10: Contents of the WCTA element corre-
sponding to the example in Figure §

construct. In other words, this set maintains for each cache
block the instruction block address of the first reference to
the cache block. The second set (i.e., last_reference)
maintains the addresses of the instruction blocks that will
remain in the cache after the execution of the program con-
struct. In other words, this set maintains for each cache
block the instruction block address of the last reference
to the cache block. This is the cache contents that will
determine the hits or misses of the instruction block refer-
ences in the first reference of the succeeding program
construct. In t,,4z, we accurately account for the “guar-
anteed” hits and misses such as the second reference to b2
and the reference to by in the previous example. However,
the instruction block references whose hits or misses are
not known (i.e., those in first reference) are conserva-
tively assumed to miss in the cache in the initial estimate
of t,nas. This initial estimate is later refined as the infor-
mation on the hits or misses of those references becomes
available in a later stage of analysis. Figure 10 shows the
timing information maintained for the program construct
given in the previous example.

With this extension, the timing formula of S: S135 S» is
given by

W(S) =W(s1) EPW(s2)

This timing formula is structurally identical to the one
given in the previous section for a sequential statement.

1 struct pipeline_cache_timing.information

2 concatenate(struct pipeline_cache_timing.information wy,
3 struct pipeline_cache timing_information wy)
4 { struct pipeline_cache timing.information ws;

5 int npips, i

6

7 nhizs = 0

8 for (1 = 0,1 < nproek; it+) {

9 if (wy first_referenceli] == NULL)

10 ws first_referenceli] = wy . first_referenceli];

11 else

12 ws first_referencei] = wy first_referenceli];

13 if (woy.last_referenceli] == NULL)

14 ws last_referenceli] = wy .last_referenceli];

15 else

16 w3 last_referenceli] = wo.last_referenceli];

17 if (wy last_referenceli] == wy first_referenceli])

18 nhits T+

19 }

20 w3.head = wy.head

21 w3 .tail = woy.tail

22 w3.-tmaz = ((w1 -tmax, wi-head, wy tail) Bpipeline
23 (wo tmazx, wy-head, wy.tail)) tmax

24 - Phits ¥ Imiss penalty’

25 return ws;

Figure 11: Semantics of the @& operation

The differences are in the structure of elements in the WC-
TAs and in the semantics of the @ operation. The revised
semantics of the @ operation is procedurally defined in
Figure 11.

The function concatenate given in the figure concate-
nates two input elements w; and wz and puts the re-
sult into w3, thus implementing the @ operation. In
lines 9-12 of function concatenate, ws inherits wi’s
first reference if the corresponding cache block is ac-
cessed In wi.
wi, the first reference to the cache block in w1 @ ws
is from wz. Therefore, in this case, ws inherits w2’s
first reference. Likewise, in lines 13-16, ws inherits
ws’s last reference if the corresponding cache block is
accessed in wz or wi’s last _reference otherwise. By com-
paring ws’s first reference with wi’s last_reference,
lines 17-18 determine how many of the memory references
in wy’s first_reference will hit in the cache when ws’s
execution is preceded by wi’s execution. These cache hits
are used to refine ws’s tmaz- (Remember that all the
memory references in ws’s first reference were previ-
ously assumed to miss in the cache in the initial estimate

If the cache block is not accessed in

of ws’s tmw.) In lines 20-21, w3 inherits w;’s head and
wa’s tail. Lines 22-24 calculate ws’s t;mq. taking into ac-
count the pipelined execution across wi; and ws and the
cache hits determined in lines 17-18. In this calculation,
the @pipetine operation is the @ operation defined in the
previous section for the timing analysis of pipelined execu-
tion and tmiss penaity 18 the time needed to service a cache
miss.

As before, an element in a WCTA can safely be elimi-
nated (i.e., pruned) from the WCTA if we can guarantee
that the element’s WCET is always shorter than that of
some other element in the same WCTA regardless of what
the surrounding program constructs are. This condition
for pruning is procedurally specified in Figure 12. The
function prune given in the figure checks whether either



1 struct pipelinecache timing.information

2 prune(struct pipeline_cache_timing-information wy,

3 struct pipeline_cache_timing-information wy)

4 { intomgipp, i

5

6 naiff = 0;

7 for (1 =0,i < nprocks i++) {

8 if (wy first_referenceli] t= wey first_referenceli])

9 ngifft++;

10 if (wy last_referenceli] '= wy last_referenceli])

11 ngiff++;

12

13 if (wy-tmaz < Wi-tmazx - "diff * tmiss penalty - Shead - Stail)
14 return woy;

15 else

16 if (wy.tmax < w2-tmax - "diff * tmiss penalty - Shead - Stail)
17 return wy;

18 else

19 return NULL;

20 }

Figure 12: Semantics of pruning operation

one of the two execution paths corresponding to two input
elements w1 and wz can be pruned and returns the pruned
element if the pruning is successful and null if neither of
them can be pruned.

In  the prune, lines 6-12  de-
termine how many entries in w;’s first reference and
last reference are different from the corresponding en-
tries in wa’s
last_reference. This bounds the difference between the
cache memory related execution time variation of w; and
that of wy. Line 13 checks whether ws can be pruned by
wi. Pruning of ws by wi can be made if ws’s execution
time assuming the worst case scenario for ws is shorter
than wi’s execution time assuming its best case scenario.
Likewise, line 16 checks whether w; can be pruned by wa.

function

first _reference and

Again as before, the timing formula of S: if (exp) then
51 else S; is given by

W (S)

W(esp) @ W(s) [ wis:)

As in the previous section, the problem of calculat-
ing W(S) for a loop statement S: while (exp) S;
can be translated into a graph theoretic problem. Here

wcta(wpfj) is given by

(Pi-tmazx + D’E_l)l)j, p;-head,p; tail, p;.firstreference, pj.lastreference)

After calculating wcta(wpf\;) for all p;, p; € P, W(S) can
be computed as follows:

( U wcta(wpfj))@W(ezp)

pi,pj €EP

Our loop timing analysis assumes that each loop iteration
benefits only from the immediately preceding loop itera-
tion. This is because in the calculation of (p;.t[p;), we
consider only the execution time reduction of p; resulting
from being preceded by p;. This assumption holds in the
case of pipelined execution since the execution time of an

(W(ezp) P W(s1) | W(eap) E W(S2))

iteration’s head is affected only by the tail of the imme-
diately preceding iteration. This results from our assump-
tion that all the stages of the columns between head and
tail are used in our representation of reservation tables.
These columns prevent the pipelining effects from being
propagated more than one iteration. In the case of cache
memory, however, the assumption that each loop iteration
benefits only from the immediately preceding loop itera-
tion does not hold in general. For example, an instruction
memory reference may hit to a cache block that was loaded
into the cache in an iteration other than the immediately
preceding one. Nevertheless, since the assumption is con-
servative, the resulting worst case timing analysis is safe
in the sense that it does not underestimate the WCET of
the loop statement. The degradation of accuracy resulting
from this conservative assumption can be reduced by con-
sidering a sequence of k (k > 1) iterations at the same time
in the analysis rather than just one iteration [17]. In this
case, each vertex represents an execution of a sequence of k
iterations and wj;; is the execution time of sequence; when
its execution is immediately preceded by an execution of
sequence;. This analysis corresponds to the analysis of the
loop unrolled % times and trades increased analysis com-
plexity for more accurate WCTA calculation.

Set associative caches Up until now we have con-
sidered only the simplest cache organization called di-
rect mapped cache in which each instruction block can
be placed exactly in one cache block. In a more general
cache organization called n-way set associative cache, each
instruction block can be placed in any one of the n» blocks
in the mapped set®. Set associative caches need a policy
that decides which block to replace among the blocks in a
set to make a room for a block fetched on a cache miss.
The LRU (Least Recently Used) policy is typically used
for that purpose. Once this replacement policy is given
(assuming that it is not random), it is straightforward to
implement & and prune operations needed in our analysis.

Interference Unless the cache is partitioned and each
task has dedicated cache partitions, the execution times
and thus the WCETs of tasks are affected by task pre-
emption. In systems that allow task preemption, when
a preempted task resumes execution, it has to reload the
cache blocks that have been displaced by other tasks be-
tween the time it was preempted and the time it resumed
execution. The additional delay due to this cache reload in
the worst case is bounded by the time needed to completely
fill the cache or by the time to reload all of its instruction
and data memory blocks into the cache, whichever shorter
[3]. It is possible to obtain a tighter bound on this addi-
tional delay by taking into account the usefulness of cache
blocks. A cache block is useful at an execution point if the
cache block is accessed at least once after the point before

5In a set associative cache, the index of the mapped set is
given by instruction block number modulo number of sets in the
cache.



being replaced. Obviously the worst case preemption sce-
nario for a task is to be preempted at the execution point
with the maximum number of useful cache blocks and the
corresponding cache-related delay is bounded by the time
needed to reload all the useful cache blocks at that point.

5 Data caching effects

The timing analysis of data caches is analogous to that
of instruction caches. However, the former differs from
the latter in several important ways. First, unlike instruc-
tion references, the actual addresses of some data refer-
ences are not known at compile-time. This complicates
the timing analysis of data caches since the calculation of
first_reference and last_reference, which is the most
important aspect of our cache timing analysis, depends
on the assumption that the actual address of every mem-
ory reference is known at compile-time. This complica-
tion, however, can be avoided completely, if a simple hard-
ware support in the form of one bit in each load/store
instruction is available. This bit, called allocate bit, de-
cides whether the memory block fetched on a miss will be
loaded into the cache. For a data reference whose address
cannot be determined at compile-time, the allocate bit is
set to zero, which prevents the memory block fetched on
a miss from being loaded into the cache. For other refer-
ences, this bit is set to one allowing the fetched block to
be loaded into the cache. With this hardware support, the
worst case timing analysis of data caches can be performed
very much like that of instruction caches by treating the
references whose addresses are not known at compile-time
as misses and completely ignoring them in the calculation
of first reference and last_reference. Even when such
hardware support is not available, the worst case timing
analysis of data caches is still possible although it is with
a consequential loss of accuracy [2].

The second difference stems from accesses to local vari-
ables. In general, data area for local variables of a func-
tion, called the activation record of the function, is pushed
and poped on a runtime stack as the associated function is
called and returns. In most C language implementations,
a specially designated register, called sp (Stack Pointer),
marks the top of the stack and each local variable is ad-
dressed by an offset relative to sp. The offsets of local
variables are determined at compile-time. However, the
value of sp of a function differs depending on from where
the function is called and so do the actual addresses of the
function’s local variables. However, unlike the accesses dis-
cussed in the previous paragraph, the number of addresses
that accesses to a local variable may have is bounded.
Therefore, the WCTA of a function can be computed by
taking into account the sp values the function may have.
Such sp values can be calculated from the activation record
sizes of functions and the call graph.

The final difference is due to write accesses. Unlike
instruction references, which are read-only, data references

may both read from and write to memory. In data caches,
one of two policies is used to handle write accesses: write-
through and write-back policies [10]. In the write-through
policy, the effects of each write are reflected to both the
block in the cache and to the block in main memory. On
the other hand, in the write-back policy, the effects are
reflected only to the block in the cache and a bit called dirty
bit is set to indicate the block has been modified. When a
block whose dirty bit is set is replaced from the cache, the
block’s contents is written back to main memory.

The timing analysis of data caches with the write-
through policy is relatively simple. One simply has to add
delay to each write access to account for the accompanying
write access to main memory. However, the timing anal-
ysis of data caches with the write-back policy is slightly
more complicated. In a write-back cache, a sequence of
write accesses to a cached memory block, which we call a
write run, require only one write-back to main memory.
We attribute this write-back overhead (i.e., delay) to the
first write in the write run, which we call the leader of
the write run. With this setting, one has to determine
for each write access whether it is a leader to accurately
estimate the delay due to write-backs. In some cases, anal-
yses within basic blocks can determine whether a write ac-
cess is a leader. However, local analyses are not sufficient
to determine whether a write access is a leader in every
case. If we cannot determine whether a write access is
a leader through local analyses, we conservatively assume
that the write access is a leader and add write-back de-
lay to tmaz. However, if a later analysis reveals that the
write access is not a leader, we subtract the incorrectly
attributed write-back delay from ¢,,4-. This global anal-
ysis can be performed by providing one bit to each block
in first reference and last reference and augmenting
the @ operation [2].

6 Experimental results

In order to assess the effects of the extended timing
schema on the accuracy of resultant WCET estimation, we
choose a set of four simple programs as our benchmarks
and compare their WCET predictions using a timing tool
described in [25]. Our timing tool consists of a compiler
and a timing analyzer. The compiler is a modified version
of an ANSI compiler called lee [7]. This compiler accepts a
C source program and generates the assembly code along
with program structure information. The timing analyzer
uses the assembly code and the program structure infor-
mation along with user-provided information to compute
the WCET of the program. In the current implementa-
tion, only the pipeline timing analysis is supported. We
are currently integrating the timing analysis of instruction
and data caches into our timing tool. The machine model
of the timing tool is the MIPS R3000 CPU [12].

The four benchmark programs used in the experiment

are Clock, FFT, I-Sort and S-Matriz. The Clock bench-



Normalized WCET (%)

1000

max

4-7cycles
8-11cycles
—oThw 12- 15 cycles
—5isn 16- 19 cycles
|o—o s Maiix
200 p over 20 cycles

Clock  ISot  SMaux  FFT
Benchmarks

Shead = btail

(a) (b)

Figure 13: Effects of considering pipelined execution
across basic blocks

mark is a program used to implement a periodic timer.
This program periodically checks 20 linked-listed timers
and, if any of them expires, calls the corresponding han-
dler function. The FFT benchmark performs the FFT
(Fast Fourier Transform) on an array of 100 double preci-
sion floating point numbers. The I-Sort benchmark sorts
an array of 100 integer numbers using an insertion sort al-
gorithm and the S-Matriz program multiplies two 10 x 10
sparse matrices and puts the result into another sparse
matrix.

Figure 13-(a) shows the WCET prediction of each of
the four benchmarks. In the WCET prediction, only the
timing effects of pipelined execution are taken into account
and all the instruction and data accesses are assumed to hit
in the cache. The results are shown for 0 < bpeqa = btait <
20 and they are normalized to the case where épeqa =
btait = 0. The latter corresponds to the case where the
pipelining effects across basic blocks are ignored. However,
even in this case, the pipelining effects within basic blocks
are accurately taken into account.

The results show that considering the pipelining effects
across basic blocks can make up to 50 % difference in the
WCET prediction. This large difference can be explained
by the following two factors. First, the execution times of
basic blocks in our benchmark programs are mostly short
(cf. Figure 13-(b)). For example, in the Clock benchmark,
more than 80 % of the basic blocks in the worst case exe-
cution path have execution times less than 11 cycles. Sec-
ond, the assumed machine model (i.e., MIPS R3000) has
a relatively large number of stages (5 stages) in its integer
execution pipeline. They together compound the predic-
tion inaccuracies in the case of ignoring pipelining effects
across basic blocks.

For the FFT benchmark, the WCET overestimation re-
sulting from ignoring pipelining effects across basic blocks
is not as severe as for the other three benchmarks. This
can be explained by a large number of basic blocks found

in F'F'T whose execution times are significantly longer than
those of the other benchmarks (cf. Figure 13-(b)). These

long running basic blocks slightly dilute the importance
of considering pipelining effects across basic blocks in the
case of the FFT benchmark.

The results also show that maintaining about five
columns in head and tail data structures is sufficient
to accurately model the pipelined execution across basic
blocks. This result is closely related to the number of
stages in MIPS R3000’s integer execution pipeline.

7 Conclusion

In this paper, we described a technique that aims at
accurately estimating the WCETs of tasks for RISC pro-
cessors. In the proposed technique, two kinds of timing
information are associated with each program construct.
The first type of information is about the factors that may
affect the timing of the succeeding program construct. The
second type of information is about the factors that are
needed to refine the execution time of the program con-
struct when the first type of the timing information of the
preceding program construct becomes available at a later
stage of WCET analysis. We rewrote the existing tim-
ing schema using these two kinds of timing information so
that we can accurately account for the timing variations
resulting from history sensitive nature of pipelined execu-
tion and cache memory. We also described an optimization
that minimizes the overhead of the proposed technique by
pruning the timing information associated with an execu-
tion path that cannot be a part of the worst case execution
path.

The proposed technique has the following advantages.
First, the proposed technique makes possible an accurate
analysis of combined timing effects of pipelined execution
and cache memory, which was not possible in previous ap-
proaches. Second, the timing analysis using the proposed
technique is more accurate than that of any other tech-
nique we are aware of. Third, the proposed technique is
applicable to most RISC processors since it does not make
any machine specific assumption. Finally, the proposed
technique is extensible in that its general rule can be used
to model the timing behavior of other machine features.
For example, its underlying general rule can be used to
model the timing variation due to TLB and write buffers.

This paper also reported on preliminary results of
WCET analyses that were obtained from a timing tool be-
ing developed by our research group. The results showed
that up to 50 % tighter WCET bounds can be obtained
even when only the effects of pipelined execution across
basic blocks are taken into account.
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