
Bounding Worst-Case Instruction Cache Performance*

Robert Arnold, Frank Mueller, David Whalley Marion Harmon
Computer Science Dept., Florida State Univ. Comp. & Info. Sys. Dept., Florida A&M Univ.

Tallahassee, FL 32306-4019 Tallahassee, FL 32307-3101
e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506 e-mail: harmon@cis.famu.edu, phone: (904) 599-3042

Abstract

The use of caches poses a difficult tradeoff for architects
of real-time systems. While caches provide significant
performance advantages, they have also been viewed as
inherently unpredictable since the behavior of a cache ref-
erence depends upon the history of the previous refer-
ences. The use of caches will only be suitable for real-
time systems if a reasonably tight bound on the perfor-
mance of programs using cache memory can be predicted.
This paper describes an approach for bounding the worst-
case instruction cache performance of large code seg-
ments. First, a new method called Static Cache Simula-
tion is used to analyze a program’s control flow to stati-
cally categorize the caching behavior of each instruction.
A timing analyzer, which uses the categorization informa-
tion, then estimates the worst-case instruction cache per-
formance for each loop and function in the program.

1. Introduction
Caches present a dilemma for architects of real-time

systems. The use of cache memory in the context of real-
time systems introduces a potentially high level of unpre-
dictability. An instruction’s execution time can vary
greatly depending on if the instruction causes a cache hit
or miss. Whether or not a particular reference is in cache
depends on the program’s previous dynamic behavior. As
a result, it has been common practice to simply disable
the cache for sections of code where predictability is
required [1]. Unfortunately, even the use of other archi-
tectural features, such as a prefetch buffer, cannot
approach the effectiveness of using a cache. Furthermore,
as processor speeds continue to increase faster than the
speed of accessing memory, the performance advantage of
using cache memory becomes more significant. Thus, the
performance penalty for not using cache memory in real-
time applications will continue to increase.

Bounding instruction cache performance for real-time
applications may be quite beneficial. The use of instruc-
tion caches has a greater impact on performance than the

*This work was supported in part by the Office of Naval Research
under contract number N00014-94-1-0006.

use of data caches. In addition, code generated for RISC
machines often results in four times more instruction ref-
erences than data references [2]. There also tends to be
greater locality for instruction references than data refer-
ences, resulting in higher hit ratios for instruction cache
performance. Unlike many data references, the address of
each instruction remains the same during a program’s
execution. Thus, instruction caching behavior should be
inherently more predictable than data caching behavior.

This paper shows that with certain restrictions it is pos-
sible to predict much of the instruction caching behavior
of a program. Let a task be the portion of code executed
between two scheduling points (context switches) in a
system with a non-preemptive scheduling paradigm.
When a task starts execution, the cache memory is
assumed to be invalidated. During task execution,
instructions are brought into cache and often result in
many hits and misses that can be predicted statically.

Figure 1 depicts an overview of the approach described
in this paper for bounding instruction cache performance
of large code segments. Control-flow information, which
could have also been obtained by analyzing assembly or
object files, is stored as the side effect of the compilation
of a file. The control-flow information is passed to a
static cache simulator. It constructs the control-flow
graph of the program that consists of the call graph and
the control flow of each function. The program control-
flow graph is then analyzed for a given cache configura-
tion and a categorization of each instruction’s potential
caching behavior is produced. Next, a timing analyzer
uses the instruction caching categorizations along with the
control-flow information provided by the compiler to esti-
mate the worst-case instruction caching performance for
each loop within the program. A user is then allowed to
request the instruction cache performance bounds for any
function or loop within the program.

2. Related work
Several tools to predict the execution time of programs

have been designed for real-time systems. The analysis
has been performed at the level of source code [3], inter-
mediate code [4], and machine code [5]. Only the last
tool attempted to estimate the effect of instruction caching

-1-

Configuration
Cache

Categorizations
Caching

Simulator
Cache
Static

Information
Flow

Control
Compiler

Files
Source

C

User Timing Requests

Timing
Analyzer

Timing
Predictions

Instruction

Figure 1: Overview of Bounding Instruction Cache Performance

and was only able to analyze code segments that con-
tained no function calls and fit entirely into cache. Thus,
this tool was able to assume that at most one miss will
occur for each reference.

Niehaus outlined how the effects of caching on execu-
tion time can be estimated [6]. He suggested that caches
be flushed on context switches to provide a predictable
cache state at the beginning of each task’s execution. He
provided a rough estimate of the speedup benefit of
caches and tried to determine the percentage of instruction
cache references that can be predicted as hits. The sug-
gested level of analysis was very abstract since it only rec-
ognized spatial locality for sequential execution and some
temporal locality for simple loops. No general method to
analyze the call graph of a program and the control flow
within each function was described.

Lin and Liou suggested that more frequently executed
tasks be placed entirely in cache and other tasks be denied
any cache access [7]. While this approach may have
some slight benefit for a few tasks, the performance of the
remaining tasks will be significantly decreased. Part of
their rationale was that if a task could not entirely fit in
cache, then the worst-case execution would be the same as
an uncached system since cache hits could not be guaran-
teed. It will be shown later that a high percentage of
instruction cache hits for such programs can be guaran-
teed and that the worst-case performance is significantly
better than a comparable system with a disabled cache.

There have been attempts to improve the performance
and predictability of accessing memory for real-time sys-
tems by architectural modifications. For instance, Kirk
described a system that relied on the ability to segment
cache memory into a number of dedicated partitions, each
of which can only be accessed by a dedicated task [8].
But this approach introduced new problems that included
lower hit ratios due to the partitioning and an increased
complexity of scheduling analysis by introducing another
resource (cache partitioning) in the allocation process.
Lee et. al. suggested to prefetch instructions in the direc-
tion that improves the worst-case execution time [9]. The

justification for using their approach was that "it is very
difficult, if not impossible, to determine the worst-case
execution path and, therefore, the worst-case execution
time of a task" when instruction caching is employed.
Their analysis measured a 45% improvement of the pre-
dicted worst-case time as compared to no prefetching (and
no instruction cache). This improvement is probably
quite optimistic since bus contention was not taken into
consideration (contention between instruction prefetching,
data access, and thread prefetching). Furthermore, mis-
predicted branches may result in an uninterruptible block
fetch along the wrong path that cannot be aborted. This
misprediction penalty may now cause worst-case behavior
along the (previously) shorter path. It will be shown later
in this paper that much better worst-case performance pre-
dictions can be made in the presence of instruction
caching than with just a prefetch buffer.

3. Static cache simulation
The method of static cache simulation is used to stati-

cally categorize the caching behavior of each instruction
for a given program/task with a specific cache configura-
tion. The static simulation consists of three phases. First,
a program control-flow graph is constructed. Next, this
graph is analyzed to determine the possible program lines
that can be in cache at the entry and exit of each basic
block within the program. Finally, the control-flow analy-
sis information is used to categorize the caching behavior
of each instruction. The following subsections give a
brief overview of the static simulator. A more formal
approach can be found elsewhere [10], [11].

3.1. Constructing the control-flow graph

Information is obtained from the compiler that
describes the control flow for each function within the
program. This control-flow information includes the
number of instructions in each basic block, the successors
of each block, and an identification of the blocks with
function calls within the program. From this information
a call graph between functions is constructed. In addition,

-2-

a control-flow graph is constructed for each function,
where the nodes are basic blocks and the edges denote
control-flow transitions between basic blocks.

To statically estimate the caching behavior of a pro-
gram as accurately as possible, functions are distinguished
by function instances. An instance depends on the calling
sequence, that is, it depends on the immediate call site
within its caller as well as the caller’s call site, etc. The
instancei of a function corresponds to theith occurrence
of the function within a depth-first traversal of the call
graph. Thus, a directed acyclic call graph (without recur-
sion) is transformed into a tree of function instances.

3.2. Instruction categorization

The static cache simulator calculates abstract cache
states associated with basic blocks. This calculation is
performed by a repeated traversal of the call graph’s func-
tion instances and the basic blocks within each function
instance’s control-flow graph. The notion of an abstract
cache state is a concession from the choice of an exhaus-
tive set of all possible cache states that may occur at
execution time and the exponential growth of such an
exhaustive set during simulation.

Definition 1: A pro gram line can potentially be cached if there
exists a sequence of transitions in the combined control-flow
graphs and call graph (with function instances) such that the
program line is cached when the basic block is entered.

Definition 2: An abstract cache state of a basic block in a func-
tion instance is the subset of all program lines that can poten-
tially be cached prior to the execution of the basic block.

An obvious goal of the static cache simulation is to
determine whether each instruction reference will always
result in a cache hit or always result in a cache miss dur-
ing program execution. An instruction in a basic block
within a function instance can be classified as analways
miss if the instruction is guaranteed to never be in cache
when it is referenced. Analways miss will occur when
the instruction is the first reference to a specific program
line in the basic block and the program line is not in the
abstract cache state associated with the block. An instruc-
tion in a basic block within a function instance can be
classified as analways hit if the instruction is guaranteed
to always be in cache when it is referenced. Analways
hit is guaranteed when other instructions in the basic
block have already referenced the same program line or
the program line is in the abstract cache state associated
with the block and no other program line that maps to the
same cache line is in the abstract cache state.

Unfortunately, some instructions cannot be guaranteed
to be always in cache or always not in cache when

referenced. The caching behavior of these remaining
instructions can be viewed differently depending upon the
loop being analyzed. For instance, consider the example
in Figure 2. Instructiona is the first instruction that can
be executed within the program linex in the outer loop.
Instructionb is the first instruction that can be executed
within the program liney in the inner loop. Assume pro-
gram linesx and y are the only two lines that map to
cache linec and there are no conditional transfers of con-
trol within the two loops. In other words, instructionsa
and b will always be executed on each iteration of the
outer and inner loops, respectively. How should instruc-
tion b be classified? With respect to the inner loop,
instructionb will not be in cache when referenced on the
first iteration, but will be in cache when referenced on the
remaining iterations. This situation can be ascertained by
the static cache simulator since it can determine that there
are no other program lines within the inner loop that con-
flict with program liney and the abstract cache state at
the exit point of the basic block preceding the inner loop
does not contain program liney. With respect to the outer
loop, instructionb will always cause a miss on each itera-
tion since it will not be in cache as the outer loop initially
enters the inner loop.

inst a
Instruction Cache

inner loop

inst b

cache line c

outer loop

prog line y

prog line x

Figure 2: Example of a First Miss and First Hit

The caching behavior of instructiona in Figure 2 can
also be predicted, assuming that the instruction that physi-
cally precedes the outer loop has to be executed immedi-
ately before the loop is entered. In this situation the first
reference to instructiona will be a hit. All subsequent
references to instructiona will be misses. This situation
can be ascertained by the static simulator since it can
determine that no other conflicting program lines can be
accessed before instructiona is referenced for the first
time and program linex will never be in cache on transi-
tions back to the loop header.

The static cache simulator will produce a classification
for each loop level in which an instruction is contained.
The classifications indicate how references to an

-3-

instruction should be treated in the worst-case estimation
given that an always hit and always miss cannot be guar-
anteed and the current loop is the most deeply nested loop
containing the instruction. These conditions and classifi-
cations are depicted in Table 1. Afirst miss simply indi-
cates that the first reference to the instruction should be
treated as a cache miss and all remaining references dur-
ing the execution of the loop should be considered cache
hits. Likewise, afirst hit indicates that the first reference
to the instruction will be a hit and all remaining references
during the execution of the loop will be misses. When
processing an outer loop, the timing analyzer can adjust
the value obtained from the timing associated with an
inner loop by examining the transitions between classifi-
cations from one loop level to the next. These adjust-
ments will be described in the Timing Analysis section.

Other program
lines in the loop
that map to the
same cache line?

The instruction is
always executed in
the loop and is in
cache initially?

In the worst
case treat the
instruction
as:

no no first miss
no yes always hit
yes no always miss
yes yes first hit

Table 1: Categorizations for the Remaining Instructions

3.3. Implementation of static cache simulation

The iterative algorithm in Figure 3 was used to calcu-
late the abstract cache states. Each basic block has an
input and output state of program lines that can poten-
tially be in cache at that point. Initially, the top block’s
input state (the entry block of themain function) is set to
all invalid lines. The input state of a block is calculated
by taking the union of the output states of its immediate
predecessors. The output state of a block is calculated by
taking the union of its input state and the program lines
accessed by the block and subtracting the program lines
with which the block conflicts. The calculation of these
abstract cache states requires a time overhead comparable
to that of data-flow analysis used in optimizing compilers
and a space overhead ofO(pl * bb * fi), wherepl is the

input_state(top) := all invalid lines
WHILE any change DO
FOR each basic block instance B DO
input_state(B) := NULL
FOR each immed pred P of B DO
input_state(B) += output_state(P)

output_state(B) :=
(input_state(B) + prog_lines(B))
- conf_lines(B)

Figure 3: Algorithm to Calculate Cache States

number of program lines,bb is the number of basic
blocks, andfi is the number of function instances. The
correctness of iterative data-flow analysis has been dis-
cussed elsewhere [12].

A simple example will be used to illustrate the
approach for bounding instruction cache performance.
Figure 4 contains C code for a simple toy program that
finds the largest value in an array. Figure 5 shows the
actual SPARC assembly instructions generated for this
program within a control-flow graph of basic blocks.
Note the immediate successor of a block with a call is the
first block in that instance of the called function. Assume
there are 4 cache lines and the line size is 16 bytes (4
SPARC instructions). Block 8a corresponds to the first
instance ofvalue() called from block 2 and block 8b
corresponds to the second instance ofvalue() called
from block 4. The instruction categorizations are given to
the right of each instruction. For instructions that were
not categorized as always being a hit or always a miss for
each loop level, a categorization of each loop level is
given, proceeding left to right from the innermost to the
outermost loop. Note that a function is considered a loop
with a single iteration. Tw o passes are required to calcu-
late the input and output states of the blocks, given that
the blocks are processed in the order shown in Figure 6.
Pass 3 results in no more changes.

1 extern char min,a[10];
2
3 main()
4 {
5 int i, high;
6
7 high = min;
8 for (i = 0;i < 10;i++)
9 if (high < value(i))
10 high = value(i);
11 return high;
12 }
13
14 int value(index)
15 int index;
16 {
17 return a[index];
18 }

Figure 4: C Program to Find the Largest Array Value

After determining the input states of all the blocks,
each instruction is categorized according to the criteria
specified in the previous section. By examining the input
states of each block, one can make observations that may
not be detected by a naive inspection of only physically
contiguous sequences of references. For instance, the
static cache simulator determined that the last instruction
in block 6 will always be in cache (an always hit) due to
spatial locality. It also determined that the first instruction
in block 8b will always be in cache (an always hit) due to

-4-

h

h

h

m

h

save %sp,-96,%sp

main()

retl

mov %o1,%o0

sethi %hi(_min),%o0

ldsb [%o0+%lo(_min)],%l2

restore %l2,%g0,%o0

ret

mov %l2,%l0

cmp %l1,10

add %l1,1,%l1

mov %o0,%l2

mov %l1,%o0

call _value,1

add %l1,1,%l1

cmp %l0,%o0

mov %l1,%o0

mov %l2,%l0

mov %g0,%l1

bge,a L16

bl,a L18

add %o1,%lo(_a),%o1

sethi %hi(_a),%o1source lines 17-17

value()

ldsb [%o0+%o1],%o1

(b)

call _value,1

source lines 7-8

source lines 9-9

source lines 9-9

source lines 10-10

source lines 10-10

source lines 8-8

source lines 11-11

Block 8

Block 7

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

h

h

h

m

fm / fm / m

(a)

h

h

h

h

fm / fm

h

fm / fm

h

h

fm / fm

h

m

h

fh / fh

m

h

h

h

m

m=always miss

h=always hit

fm=first miss

fh=first hit

program line 3

program line 4

program line 5

program line 2

program line 1

program line 0

Figure 5: SPARC Insts with Categorizations for Figure 4

"I" = invalid
cache 0123012301 cache 0123012301
program IIII012345 program IIII012345
PASS 1
in(1)=[IIII] out(1)=[II01]
in(2)=[II01] out(2)=[II01]

in(8a)=[II01] out(8a)=[II 45]
in(3)=[II 45] out(3)=[I 12 4]
in(4)=[I 12 4] out(4)=[I 12 4]

in(8b)=[I 12 4] out(8b)=[I 2 45]
in(5)=[I 2 45] out(5)=[2345]
in(6)=[I 12345] out(6)=[12345]
in(7)=[12345] out(7)=[12345]

PASS 2
in(1)=[IIII] out(1)=[II01]
in(2)=[II012345] out(2)=[II01234]

in(8a)=[II01234] out(8a)=[II 2345]
in(3)=[II 2345] out(3)=[I 1234]
in(4)=[I 1234] out(4)=[I 1234]

in(8b)=[I 1234] out(8b)=[I 2345]
in(5)=[I 2345] out(5)=[2345]
in(6)=[I 12345] out(6)=[12345]
in(7)=[12345] out(7)=[12345]

Figure 6: Calculation of States for Blocks in Figure 5

temporal locality. It detected that the first instruction of
block 3 and the second instruction of block 8 will never
be in cache (always misses) since the program lines asso-
ciated with the two instructions map to the same cache
line and the execution of block 8 always precedes block 3.
The static cache simulator was also able to predict the
caching behavior of instructions that could not be classi-
fied as always being a hit or always a miss. It determined
that the second instruction in block 3 will miss on its first
reference and all subsequent references will be hits. Since
the first instruction in block 5 and first instruction in block
6 are both classified as first misses and they are in the
same program line, then only one miss will occur associ-
ated with both instructions during the program execution.
Finally, the first instruction in block 2 will always be in
cache on its first reference and may or may not be in
cache on subsequent references depending on whether the
second call tovalue() is executed. Thus, in the worst
case the instruction is viewed as a first hit.

The current implementation of the static simulator
imposes some restrictions. First, only direct-mapped
cache configurations are allowed.1 Second, recursive pro-
grams are not allowed since cycles in the call graph would
complicate the generation of unique function instances.2

Finally, indirect calls are not handled since an explicit call
graph must be generated statically.

3.4. Timing analysis

The goal of this research is to allow a user to acquire
the most accurate bounds on instruction caching perfor-
mance of code segments that can be obtained in a reason-
able amount of time. After the static cache simulator has
produced the instruction categorizations, the user will be
queried for a maximum number of iterations for each loop
that the compiler could not determine statically. Next, a
timing analysis tree is constructed and the worst-case
instruction cache performance is estimated for each loop
in the tree. Once this initial timing analysis has been
completed, the timing analyzer accepts timing requests for
either functions or loops.3

1 Recent studies have shown that direct-mapped caches typically
have a faster access time for hits, which outweighs the benefit of a high-
er hit ratio in set-associative org anizations for large caches [13].

2 While cycles in a call graph can be detected, they are also diffi-
cult to describe to a user and it is difficult for the user to estimate the
maximum number of recursive iterations that will be performed.

3 Work is currently progressing on processing timing requests for
ranges of source lines within a single iteration of a loop.

-5-

3.5. Constructing the timing analysis tree

A timing analysis tree is constructed to simplify the
process of predicting the worst-case times. Each node
within the tree is considered a natural loop.4 The outer
level of each function instance is treated as a loop that
will iterate only once when entered.

The timing analyzer next determines the set of possible
paths through each loop. A path is a sequence of unique
blocks in the loop connected by control-flow transitions.
Each path starts with the loop header and is terminated by
a block with a backedge or a transition to an exit block
outside the loop. Figure 7 shows a simple example that
identifies a loop header, backedges, exit blocks, continue
paths, and exit paths. Each path is designated as either a
continue path (the last block is the head of a backedge
transition), an exit path (the last block has a transition to
an exit block outside the loop), or both. Thus, each path
corresponds to a possible sequence of blocks that could be
executed during a single loop iteration. The number of
loop iterations indicates the number of times the header of
the loop is executed once the loop is entered.

1

2

3 4

5 6

7

back edgeback edge

loop header

exit block

continue path: 2->3

exit path: 2->4

continue/exit path: 2->4->6

Figure 7: Example Introducing Loop Terminology

If a path within a loop enters a child loop, then the
entire child loop is represented as a single block along
that path. Associated with each loop is a set of exit
blocks, which indicates the possible blocks outside the
loop that can be reached from the last block in each exit
path. Thus, the possible paths within non-leaf loops that
contain child loops can also be calculated.

Figure 8 shows some of the information in the timing
analysis tree for the program in Figure 5. Within each
loop node the maximum number of iterations is indicated.
To the right of each loop node are the possible paths

4 A natural loop is a loop with a single entry block. While the
static simulator can process unnatural loops, the timing analyzer is re-
stricted to only analyzing natural loops since it would be difficult for
both the timing analyzer and the user to determine the set of possible
blocks associated with a single iteration in an unnatural loop. It should
be noted that unnatural loops occur quite infrequently.

through the loop. Blocks representing a child loop in a
path are denoted by having a dashed line boundary. In
this example all paths can both continue and exit. The
worst-case instruction cache performance is given adja-
cent to each loop node. The calculation of these results is
described in the next section.

8(b) 5 6

1 2 7
main

(a)
value
(b)

{worst case: 44 misses, 183 hits}

{worst case: 42 misses, 178 hits}

2 3 68(a)

2 8(a) 3 4

{worst case: 2 misses, 3 hits} 8(a) {worst case: 1 miss, 4 hits} 8(b)

[max:1]

[max:1] [max:1]

loop 1
in main

[max:10]

value

Figure 8: Timing Analysis Tree for Program in Figure 5

3.6. Loop analysis

The loops in the timing analysis tree are processed in a
bottom-up manner. In other words, the worst-case time
for a loop is not calculated until the times for all of its
immediate child loops are known. There will be a worst-
case time calculated that corresponds to each exit block.
Thus, when the timing analyzer is calculating the worst-
case time for a path containing a child loop, it uses the
child loop times associated with the exit block of the child
loop that is the next block along the path. For instance,
the time associated with the loop in Figure 7 exiting to
block 5 would be less than the time exiting to block 7
since block 6 would not be executed on the last iteration.

Let n be the maximum number of iterations associated
with a loop. The algorithm for estimating the worst-case
time for the loop is as follows:
(1) Calculate the maximum time required to execute any con-

tinue path assuming that all first misses are counted as hits
and first hits are counted as misses. Set the number of cal-
culated iterations to 0.

(2) Go to step 6 if the number of calculated iterations isn - 1.
(3) Calculate the maximum time required to execute any con-

tinue path in the current iteration, where each instruction
classified as a first miss and not yet encountered is counted
as a miss and all first hits are counted as misses.

(4) Go to step 6 if the time calculated in step 3 is equal to the
time calculated in step 1.

(5) Add the maximum time calculated in step 3 to the total
worst-case time for the loop. If this is the first iteration,
subtract the difference between a miss and a hit from the
total worst-case time for each first hit in the loop. Denote

-6-

which first misses will now be counted as hits. Add one to
the number of calculated iterations. Go to step 2.

(6) Add (n - 1 - number of calculated iterations) * (time from
step 1) to the total worst-case time for the loop.

(7) Calculate the times for all exit paths within the loop for the
last iteration. For each set of exit paths that have a transi-
tion to a unique exit block, add the longest time within that
set to the time calculated in step 6 to produce a total worst-
case time associated with that exit block for the loop.

The algorithm terminates when the number of calcu-
lated iterations reachesn - 1. The algorithm can terminate
earlier if the maximum time required to execute any con-
tinue path is equal to the maximum time required to
execute a continue path where all first misses are treated
as hits. In fact, the upper bound on the number of times
that step 3 has to be processed ism+1, wherem is the
number of paths in the loop. Each path will have its first
misses treated as misses at most once. After all first
misses are eliminated, the next maximum path found
would be equal to the value calculated in step 1.

The algorithm selects the longest path on each iteration
of the loop. In order to demonstrate the correctness of the
algorithm, one must show that no other other path for a
given iteration of the loop will produce a longer worst-
case time than that calculated by the algorithm. The cal-
culation of a worst-case time associated with a path sim-
ply requires summing the times associated with each of
the instructions in the path. The time used for each
instruction depends on whether it is assumed to be a hit or
miss, which depends on its categorization. The cache hit
time is one cycle on most machines. The cache miss time
is the cache hit time plus the miss penalty, which is the
time required to access main memory. All categorizations
are treated identically on repeated references, except for
first misses and first hits. Assuming that the instructions
have been categorized correctly for each loop, it remains
to be shown that first misses and first hits are interpreted
appropriately for a given iteration of the loop.

A first hit implies that the instruction will be a hit on
its first reference after the loop is entered and all subse-
quent references to the instruction during the execution of
the loop will be misses. The definition the authors used
for a first hit requires that the instruction be within every
path of the loop. Thus, the first path chosen for step 3
will encounter every first hit in the loop. After the first
iteration, first hits are treated as misses.

A first miss implies that the instruction will be a miss
on its first reference after the loop is entered and all sub-
sequent references will be misses. Step 3 indicates that an
instruction classified as a first miss will be counted as a
miss only the first time it is encountered.

Once the maximum time of the current iteration is
equal to the time calculated in step 1 (where all first
misses are treated as hits), then this value is replicated for
all remaining iterations, except for the last one. Once
there are no more first misses encountered for the first
time (and the first iteration has encountered all first hits),
then the worst-case cache performance for a path will not
change since the instructions within a path will always be
treated the same. The last iteration is treated separately in
step 7. The longest exit path for a loop may be shorter
than the longest continue path. By examining the exit
paths separately, a tighter estimate can be obtained. Thus,
the algorithm estimates a bound that is at least as great as
the actual worst-case bound.

The timing of a non-leaf loop is accomplished using
this algorithm and the times from its immediate child
loops. Whenever a path in a non-leaf loop contains a
child loop, then the time associated with that child loop
will be used in the calculation of the path time. The tran-
sition of a categorization from the child loop level to the
current loop level will be used to determine if any adjust-
ment to the the child loop time is required. These transi-
tions between categorizations and appropriate adjustments
are given in Table 2. Thefm=>fm adjustment is neces-
sary since there should be only one miss associated with
the instruction and a miss should only occur the first time
the child loop is entered.5 The m=>fh adjustment is nec-
essary since the first reference will be a hit.

Child => Parent Action to Adjust Child Loop Time

fm => fm Use the child loop time for the
first iteration. For all remaining
iterations subtract the miss penal-
ty from the child loop time.

fm => m Use the child loop time directly.

fh => fh Use the child loop time directly.

m => fh For the first iteration subtract the
miss penalty from the child loop
time. For all remaining iterations
use the child loop time directly.

m => m Use the child loop time directly.

Table 2: Use of Child Loop Times

To illustrate the use of the worst-case algorithm, the
calculation of the worst-case instruction cache perfor-
mance for the example shown in Figures 4, 5, 6, and 8

5 Note that additional work was required when the number of dis-
tinct paths containing first misses to different program lines exceeds the
number of loop iterations. This situation can commonly occur within
functions. A maximum adjustment value was used to compensate in an
efficient manner for the remaining loop iterations.

-7-

will be described. The worst-case performance results for
each loop in the timing analysis tree are shown in Figure
8. Since a loop cannot be timed until its immediate child
loops are processed, the two function instances ofvalue
will be processed first, followed by loop 1 inmain, and
finally the functionmain. For loops with just a single
iteration, only step 7 in the worst-case algorithm con-
tributes to the calculated performance of that loop.

The worst-case performance for the example is calcu-
lated in the following manner. The leaf loops of the tim-
ing analysis tree are the two instances of the function
value and are processed first. The worst-case instruc-
tion cache performances ofvalue(a) andvalue(b)
are {2 misses, 3 hits} and {1 miss, 4 hits}, respectively.
For loop 1 inmain, step 1 of the algorithm calculates a
cache performance of {4 misses, 18 hits} given that all
first misses are treated as hits and first hits are treated as
misses. This result was obtained from {2 misses, 10 hits}
from instructions directly in loop 1 and {1 miss, 4 hits}
from both of the invoked function instances ofvalue.
Note that the time obtained from the first function
instance ofvalue was adjusted as described in Table 2
(fm => fm). The result found for the first iteration in step
3 is {6 misses, 16 hits}, which was obtained by adding {3
misses, 9 hits} from instructions directly in loop 1, {2
misses, 3 hits} fromvalue(a), and {1 miss, 4 hits}
from value(b). The next result calculated in step 3 is
equal to the result from step 1. By applying step 6, 8*{4
misses, 18 hits} will be used to represent the performance
of the next 8 iterations. Since both paths through the loop
are exit paths, the worst-case time for the exit paths calcu-
lated in step 7 is the same as the result in step 1. Thus,
the total worst-case performance for loop 1 inmain is
{42 misses, 178 hits} ({6+9*4 misses, 16+9*18 hits}).
The loop representing the entire functionmain only iter-
ates once and is calculated in step 7. The worst-case
instruction cache performance for the entire program is
{44 misses, 183 hits}. This result was obtained by {2
misses, 5 hits} from instructions directly in the outer level
of main and {42 misses, 178 hits} from loop 1 inmain.
The worst-case performance result of loop 1 did not have
to be adjusted in the calculation of the performance of the
function main since the functionmain only iterates
once. The implementation of the algorithm calculates the
exact worst-case instruction cache performance for this
example. This analysis requires a complexity ofO(p*l),
wherep is the number of paths in each loop andl is the
number of loops in the timing tree.

3.7. Effectiveness of the timing analyzer
To assess the effectiveness of the timing analyzer, six

simple programs were selected.Des (Data Encryption
Standard) encrypts and decrypts 64 bits.Matmul multi-
ples 2 50x50 matrices.Matsum determines the sum of the
nonnegative values in a 100x100 matrix.Matcnt is a vari-
ation fromMatsum since it also counts the number of ele-
ments that were summed.Sort uses the bubblesort algo-
rithm to sort 500 numbers into ascending order. The final
program,Stats, calculates the sum, mean, variance, and
standard deviation for two arrays of numbers and the lin-
ear correlation coefficient between the two arrays.

These programs and the results of evaluating these pro-
grams are shown in Tables 3 and 4. For each program a
direct-mapped cache configuration containing 8 lines of
16 bytes was used. Thus, the cache contains 128 bytes.
The programs were 4 to 17 times larger than the cache as
shown in column 2 of Table 3. Column 3 shows that each
program was highly modularized to illustrate the handling
of timing predictions across functions. Columns 4-7 show
the static percentage of each type of instruction catego-
rization in the function instance tree. Each instruction
within the tree was weighted equally. If an instruction
receives different categorizations for each loop nesting
level, then the ratio of the number of instances for a cate-
gorization to the number of loop nesting levels for the
instruction will be used to calculate the percentage. For
example, given that an instruction is classified as
"fm/m/m/m" over 4 loop nesting levels, then 0.25 of the
instruction is considered a first miss and 0.75 of the
instruction is considered an always miss.

Table 4 shows the dynamics results associated with
these test programs. Column 2 indicates the hit ratio for
each program. OnlyMatmul had a very high hit ratio due
to spending most of its cycles in 3 tightly nested loops
containing no calls to perform the actual multiplication.
Column 3 shows the cycles spent for an execution with
worst-case input data. The number of cycles was mea-
sured using a traditional cache simulator [14], where a hit

Num Num Always Always First First

Bytes Func Hit Miss Miss Hit
Name

Des 2,232 5 70.62% 26.76% 1.83% 0.79%
Matmul 788 7 71.15% 24.51% 3.57% 0.77%
Matcnt 800 8 70.64% 25.48% 2.65% 1.22%
Matsum 632 7 69.89% 26.24% 3.87% 0.00%
Sort 536 5 68.18% 27.60% 4.22% 0.00%
Stats 1,488 8 71.76% 24.30% 3.55% 0.39%

Table 3: Static Results for the Test Programs

-8-

required one cycle and a miss required ten cycles (a miss
penalty of nine cycles). These assumptions were
described as realistic by other researchers [13], [2]. Col-
umn 4 shows the number of cycles estimated by the tim-
ing analyzer. Column 5 shows the ratio of the predicted
worst-case instruction cache performance using the timing
analyzer in column 5 to the observed worst-case perfor-
mance in column 3. Column 6 shows a similar ratio
assuming a disabled cache. This naive prediction simply
determines the maximum number of instructions that
could be executed and assumes that each instruction refer-
ence requires a memory fetch of ten cycles (miss time).

Hit Observed Estimated Estim. Naive

Ratio Cycles Cycles Ratio Ratio
Name

Des 81.59% 142,079 158,678 1.12 3.88
Matcnt 85.32% 959,064 1,049,064 1.09 4.31
Matmul 99.05% 2,917,887 2,917,887 1.00 9.21
Matsum 87.09% 677,210 677,210 1.00 4.63
Sort 84.05% 7,620,684 15,198,004 1.99 8.18
Stats 88.59% 357,432 357,432 1.00 4.93

Table 4: Dynamic Results for the Test Programs

The example programs illustrate various points. The
Matmul and Stats programs have no conditional state-
ments except to exit loops. The only conditional control
statement besides loops in theMatsum program was an
if-then statement to check if an array element was
nonnegative. For such programs, predictions for worst-
case performance as compared to observed worst-case
performance can be estimated very tightly.

The Matcnt program not only determines the sum of
the nonnegative elements (like theMatsum program), but
also determines the number of nonnegative and negative
elements in the matrix. Thus, there was anif-then-
else construct used in the code to either add a nonneg-
ative value to a sum and increment a counter for the num-
ber of nonnegative elements or just increment a counter
for the negative elements. The adding of the nonnegative
value to a sum was accomplished in a separate function.
This function was placed in a location that wouldconflict
with the program line containing the code to increment a
counter for the negative elements. Multiple executions of
thethen path, which includes the call to the function to
perform the addition, still required more cycles than alter-
nating between the two paths. Yet, the algorithm for esti-
mating the worst-case performance assumed that the first
reference to a program line within a path would always be
a miss if there were accesses to any other conflicting pro-
gram lines within the same loop (see Table 1). This

assumption simplified the algorithm since the effect of all
combinations of paths does not have to be calculated and
an exponential time complexity was avoided. Thus, one
reference was counted repeatedly as a miss instead of a
hit. This path was executed 10,000 times and this
accounted for a 90,000 cycle [10,000*miss penalty] or 9%
overestimation. Note that the execution of this single path
accounted for 43.56% of the total instructions referenced
during the execution of the program.

The analysis of the final two programs,Des andSort,
depicts problems faced by all timing analyzers. The tim-
ing analyzer did not accurately determine the worst-case
paths in a function withinDes primarily due to data
dependencies. A longer path could not be taken in a func-
tion due to a variable’s value in an if statement. TheSort
program contains an inner loop whose number of itera-
tions depends on the counter of an outer loop. At this
point the timing tool either automatically receives the
maximum loop iterations from the control-flow informa-
tion produced by the compiler or requests a maximum
number of iterations from the user. Yet, the tool would
need a sequence of values representing the number of iter-
ations for each invocation of the inner loop. The number
of iterations performed was overrepresented on average
by a factor of two for this specific loop. This inaccuracy
accounted for the overestimation in both the estimated
and naive ratios since most of the cycles for the program
were produced within this loop. Note that both of these
problems have nothing to do with cache predictability.

3.8. Processing user timing requests
Once the timing analyzer has calculated a worst-case

time for each loop in the timing analysis tree, the user can
request specific timing information about portions of the
program. The user first specifies the name of a function.
The user is then presented with the set of loops that are
within the function. Each loop is identified by its loop
nesting level within the function and the source line num-
bers it spans. The user can choose to obtain a worst-case
performance for the entire function or select a loop. Since
there may be more than one instance of a function within
the timing analysis tree, the timing analyzer will deter-
mine the worst-case times from all function instances
associated with the user request.

4. Future work
We hav e designed and partially implemented an algo-

rithm to estimate the best-case instruction cache perfor-
mance for each loop within a program. A naive best-case
estimation, which assumes all instructions along the short-
est paths will be hits, will be much closer to the observed

-9-

best-case performance since locality within programs
causes most instruction references to be hits. We expect
that the estimated best-case performance can be as tightly
predicted as the estimated worst-case performance.

We are exploring methods to predict the timing of
other architectural features associated with RISC proces-
sors. Work is currently ongoing that uses a micro-
analysis technique [5] to predict pipeline performance for
the MicroSPARC I. The effect of data caching is also an
area that we are pursuing. Unlike instruction caching,
many of the addresses of references to data can change
during the execution of a program. Thus, obtaining rea-
sonably tight bounds for worst-case and best-case data
cache performance is significantly more challenging.
However, many of the data references are known. For
instance, static or global data references retain the same
addresses during the execution of a program. Due to the
analysis of a function instance tree (no recursion allowed),
addresses of run-time stack references can be statically
determined as well. Compiler flow analysis can be used
to detect the pattern of many calculated references, such
as indexing through an array. While the benefits of using
a data cache for real-time systems will probably not be as
significant as using an instruction cache, its effect on per-
formance should still be substantial.

5. Conclusions
Predicting the worst-case execution time of a program

on a processor that uses cache memory has long been con-
sidered an intractable problem [1], [7], [9]. This paper
has presented a technique for predicting worst-case
instruction cache performance in two steps. First, a static
cache simulator analyzes the control flow of a program to
statically categorize the caching behavior of each instruc-
tion within the program. Second, a timing analyzer uses
this instruction categorization information to estimate the
worst-case instruction cache performance for each loop in
the program. A user is allowed to query the timing ana-
lyzer for the worst-case performance of any function or
loop within the program.

It has been demonstrated that instruction cache behav-
ior is sufficiently predictable for real-time applications.
Thus, instruction caches should be enabled, yielding a
speedup of four to nine for the predicted worst case as
compared to disabled caches (depending on the hit ratio
and miss penalty). This speedup is a considerable
improvement over prior work, such as requiring special
architectural modifications for prefetching, which only
results in a speedup factor of 2 [9]. As processor speeds
continue to increase faster than the speed of accessing
memory, the performance benefits for using cache

memory in real-time systems will only increase.

6. References
[1] D. Simpson, “Real-Time RISCS,”Systems Integration,

pp. 35-38 (July 1989).

[2] J. Hennessy and D. Patterson,Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo,
CA (1990).

[3] C. Y. Park, “Predicting Program Execution Times by
Analyzing Static and Dynamic Program Paths,”Real-
Time Systems 5(1) pp. 31-61 (March 1993).

[4] D. Niehaus, “Program Representation and Translation
for Predictable Real-Time Systems,”Proceedings of the
Twelfth IEEE Real-Time Systems Symposium, pp. 53-63
(December 1991).

[5] M. G. Harmon, T. P. Baker, and D. B. Whalley, “A Retar-
getable Technique for Predicting Execution Time,”Pro-
ceedings of the Thirteenth IEEE Real-Time Systems Sym-
posium, pp. 68-77 (December 1992).

[6] D. Niehaus, E. Nahum, and J. A. Stankovic, “Predictable
Real-Time Caching in the Spring System,”Proceedings
of the Seventh IEEE Workshop on Real-Time Operating
Systems and Software, pp. 80-87 (April 1990).

[7] T. H. Lin and W. S. Liou, “Using Cache to Improve Task
Scheduling in Hard Real-Time Systems,”IEEE Work-
shop on Architecture Support for Real-Time Systems, pp.
81-85 (December 1991).

[8] D. B. Kirk, “SMART (Strategic Memory Allocation for
Real-Time) Cache Design,”Proceedings of the Tenth
IEEE Real-Time Systems Symposium, pp. 229-237
(December 1989).

[9] M. Lee, S. L. Min, C. Y. Park, Y. H. Bae, H. Shin, and C.
S. Kim, “A Dual-mode Instruction Prefetch Scheme for
Improved Worst Case and Average Case Program Execu-
tion Times,” Proceedings of the Fourteenth IEEE Real-
Time Systems Symposium, pp. 98-105 (December 1993).

[10] F. Mueller and D. Whalley, “Efficient On-the-fly Analy-
sis of Program Behavior and Static Cache Simulation,”
Static Analysis Symposium, pp. 101-115 (September
1994).

[11] F. Mueller,Static Cache Simulation and Its Applications,
PhD Dissertation, Florida State University, Tallahassee,
FL (August 1994).

[12] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers Princi-
ples, Techniques, and Tools, Addison-Wesley, Reading,
MA (1986).

[13] M. D. Hill, “A Case for Direct-Mapped Caches,”IEEE
Computer 21(11) pp. 25-40 (December 1988).

[14] J. W. Davidson and D. B. Whalley, “A Design Environ-
ment for Addressing Architecture and Compiler Interac-
tions,” Microprocessors and Microsystems 15(9) pp.
459-472 (November 1991).

-10-

