Timed Perturbation Analysis: An Approach for Non-Intrusive
Monitoring of Real-Time Computations *

Madalene Spezialetti Rajiv Gupta
mspezial Qcsee.lehigh.edu gupta@cs.pitt.edu
EECS Dept., Packard Lab Dept. of Computer Science

Lehigh University University of Pittsburgh

Bethlehem, PA 18015 Pittsburgh, PA 15260

Abstract

A task which is a part of a real time application must not only perform a specific function but it must also
execute under timing constraints specified in the form of deadlines by which the output results must be com-
puted. Thus, any attempt to monitor the run-time behavior of a real time task through code instrumentation
can potentially alter the program’s timing behavior. In this paper we develop perturbation analysis techniques
to identify the situations in which the run-time monitoring activities can be performed non-intrusively. The
techniques identify the idle time available during the execution of a task and schedule the monitoring task
during these times. Instead of treating a monitoring task as an indivisible unit, we partition the monitoring
work among various points at which idle time is available.

Keywords - monitoring, tracing, instrumentation, perturbation analysis, asynchronous communication.

1 Introduction

Due to the complexity of both sequential and distributed real time applications, techniques must be created
which aid in the development and maintenance of these programs. A variety of techniques have been developed
for use on non-real time applications. One such technique is the monitoring of program behavior during execution.
In this approach, the application program is instrumented, at various points, to save specified information. This
information can then be sent to a remote site at which it can be stored to trace program behavior, analyzed
or displayed. Monitoring requests will take two forms: a user may request to capture a certain portion of the
local state at a specific program point; or a user may request the continuous tracing of a certain state, such as a
variable, throughout the execution. A request for tracing can be viewed as multiple monitoring requests of the
former kind.

The task of monitoring can be relegated to a single dedicated process or a group of processes referred to
as monitors. The processes belonging to the computation are then instrumented to communicate the relevant
information to the monitor. Alternatively, a portion of the monitoring code could also be incorporated directly
into the application modules. However, any approach based upon instrumentation is intrusive, that is, it can
alter the behavior of a program in some respects. In a real time application the problem of intrusion is even
more pronounced than it is in non-real time programs, since delays resulting from the execution of monitoring
instrumentation may cause deadlines in real time programs to be missed. Without the aid of specific hardware
enhancements, delays due to the execution of monitoring code will invariably occur. It is the goal of this paper,
however, to provide techniques to analyze real time programs to determine if and when monitoring-related delays

can be absorbed by the application program such that the delays will not cause any deadlines to be missed.

*Supported in part by the National Science Foundation through Grant CCR-9212020 to Lehigh University and a Presidential
Young Investigator Award CCR-9157371 to the Univ. of Pittsburgh.

In order to carry out such analysis, the real time application can be viewed as a series of execution spans,
delineated by input points, at which the computation must wait to receive data. Idle times occur during those
periods when the current execution is complete and the computation is suspended at an input point. Thus, the
idle time can be viewed as the amount of monitoring work that can be absorbed without effecting the program’s
ability to meet deadlines.

To aid in the introduction of monitoring instrumentation into an application, software support must be pro-
vided. The user would indicate a particular monitoring activity that should be carried out. Automatic techniques
will be used to perform the analysis for determining if the monitoring overhead could be absorbed. A straight-
forward technique would be to determine if the idle time of the span in which the code is to be inserted is greater
than or equal to the execution time of the monitoring code. Based on this comparison, the user would be informed
whether or not the code could be non-intrusively added.

This approach, however, may deny the inclusion of monitoring instrumentation unnecessarily, due to the
fact that the instrumentation is viewed as an indivisible unit and only the idle time within the span where
the monitoring point is specified is considered. However, both of these restrictions are not necessary. First,
the monitoring task itself can be decomposed into subtasks, which may include the saving of data and further
transmission of the monitoring of data. Often, these tasks may be divided and need not be carried out as a single
unit. Further, idle time itself may exist at numerous locations throughout the application. Therefore, it may be
possible to divide the monitoring task into subtasks and distribute these subtasks to take advantage of idle time
at various points in the application. In this way, it may be possible to non-intrusively absorb more monitoring
instrumentation then would be possible using the straightforward approach.

It is therefore the goal of this paper to perform timing analysis on sequential or parallel real time programs
to determine one or more program points at which monitoring instrumentation can be placed so that it will be
non-intrusively absorbed by the application.

Extensive research has been carried out in the area of real-time languages and their analysis for scheduling
[4, 14, 18]. Previous work on timing analysis has mainly concentrated on execution timing analysis. This includes
compiler support for computing WET estimates [9, 10, 12] and the run-time refinement of WET estimates based
upon a combination of compile-time information [15, 6] and run-time information [3, 5]. In [19] authors present
the straightforward approach of introducing the monitoring activity at the user selected points and [20] presents
a hardware solution to non-intrusive monitoring by providing architectural support. Our approach can enhance
the effectiveness of monitoring systems such as the ISSOS [13].

In the next section we will present the models used to characterize the real time application program and the
monitoring tasks. In section 3 we present timing analysis algorithms by which monitoring tasks are integrated
into a real time application task. In section 4 we present extensions to our approach to handle parallel real time

applications which are composed of multiple tasks. We conclude with a brief discussion of work in progress.

2 Real-Time Tasks and Monitoring Tasks

A typical real time application can be modeled as a repeated execution, at regular intervals, of a code segment.
For example, the Infrared Missile Warning application encountered in avionics receives an image represented by
a 2D mesh of pixels as the input. This image is processed through various spatial and spectral filters and then
examined for the presence of missiles. This task must be completed by a specified deadline following which a
new image is received and the task is repeated all over again. The code segment that implements the real time

task is characterized as containing input points, output points and deadlines. At the input points information

» Task Period
- » Input 1g

> > Input 1,
Output O
" Deadlined

1
‘7l U I u Application task
K /R I ndicated
monitoring point

Monitoring task

1/

@

Task Period
Deadlined

o [
o I R

o JEIEEEl

Figure 1: Introducing Monitor in a Real-Time Task

is received by the application and it is assumed that the execution can not progress past such a point until the
information has been received. A period during which the execution of an application is suspended due to the
need to await the arrival of input is termed pre-input idle time. The output points represent those points at
which an expected result is generated. Deadlines are associated with output points, and the expected result of
the output point must be generated by the associated deadline. There may exist idle time between successive
executions of the application task if the first input needed to begin the task is not yet available. Such a period
is termed post-completion idle time. It is the segments of pre-input and post-completion idle time which will be
used to non-intrusively absorb monitoring activity.

As an example of an application task, consider the diagram in Figure 1. In this application, the main code
segment, which will be executed repeatedly, will accept two inputs I; and I at regular intervals, and produce a
single output, O, with a deadline, d, associated with it. The implementation of the real time application results
in the timing behavior shown in Figure 1. A segment of code is executed after the reception of the first input 7.
However, this code segment completes execution before the arrival of the second input, I>. This situation leads
to pre-input idle time associated with I, during which the execution of the application must suspend until the
new input is received. Following the generation of the output, O, there is a post-completion idle time before the
next iteration of the task can begin.

Let us now consider a number of approaches to accommodating monitoring activity into the application task
based on the specification of a monitoring point by the user. The straightforward approach would be simply to
insert the monitoring task directly at the user specified point, as shown in Figure 1b. However, this technique

has a number of drawbacks. By placing the code directly at the specified point, the monitoring task is essentially

given a higher priority than the application task, since any processing of the application task will be postponed
until the monitoring task is complete. As a result, deadlines may be missed as shown in Figure 1b. Conversely,
if the determination of whether or not the monitoring task should be inserted is based solely on whether or not
the next deadline can be met, monitoring insertion may be denied even though it could potentially have been
accommodated by breaking and distributing the monitoring activity.

Next let us consider approaches in which we split the monitoring task. The local saving of data that takes
little time, as it entails only the storing of data at a specified location, is performed at the monitoring point.
The packaging and transmission of the monitoring data which dominates the local monitoring actions can be
inserted at a later point in a task. Thus, a second approach to monitoring insertion would divide the monitoring
task to insure that the monitoring task does not take priority over the application task and cause deadlines to
be missed. This approach would place only the segment of code needed to store monitored data at the insertion
point, and then only carry out the more time-consuming portion of the monitoring task during post-completion
idle time. In this way, the monitoring task is given lower priority in relation to the completion of the application’s
computation. However, it may not be possible to carry out the monitoring activity before the expected arrival
of the input data needed to begin the next iteration of the application. This scenario is shown in Figure lc. In
this case, the monitoring activity could be abandoned and not completed or, if it were completed, a delay would
occur in beginning the next iteration.

Finally, let us consider a third approach, in which the monitoring task is broken up and can be carried out at
a number of points. At the insertion point specified by the user, the required data would be saved locally. The
more time consuming transmission, however, will be distributed, if necessary, to be carried out in portions at
various times. When determining where the remaining portion of the monitoring activity should be carried out,
the post-completion idle time would be utilized first, thus insuring that the application itself will have the highest
priority. If the task can not be completely accommodated in post-completion idle time, pre-input idle times will
be utilized to carry out portions of the monitoring task. This approach will insure that monitoring activity will
only be inserted at points where it can be handled non-intrusively, that the monitoring does not take priority
over the application and that, by attempting to insert portions of the monitoring task during post-completion
and pre-input idle times, more monitoring activity can be accommodated non-intrusively than would be possible
if the monitoring task were treated as an indivisible unit. An example of this approach in shown in Figure 1d. It

is this approach to the insertion of monitoring code which will be presented in the remainder of this paper.

3 Timed Perturbation Analysis of a Single Real Time Task

In this section we consider a real time application that is implemented as a single sequential task which is
executed repeatedly, receives inputs at regular intervals, and is required to generate outputs at regular intervals to
meet specified deadlines. We assume that the input and outputs points are identified in the code that implements
the task and that these points are guaranteed to be visited during each iteration through the task. The following

notation is used during this analysis:

e The time at which an input I becomes available is denoted as ¢4y4:1(1).- The deadline for an output O is
denoted as ¢4y qi1(0)- The times 4yqi1(1) and tqyqi1(0) are measured as the time elapsed since the beginning

of the current invocation of the task.

e For a stream of inputs/outputs that are consumed/produced inside a loop, the time at which the first in-

put/output is available/produced is specified, ¢4y aii(r)/tavait(o), and in addition the interval, 7,erioq(1)/ Tperiod(0),

at which the subsequent inputs/outputs are available/produced is also specified.

The goal of timing analysis is to identify for each statement ¢ the starting time, start;, and the completion
time, finish;, of the statement assuming that the maximum execution time, exec;, of each statement is given and
enough resources are available to execute the tasks in parallel. In addition to the execution times of statements
the analysis also takes into account the constraints associated with the task inputs. Following the analysis the
amounts of pre-input and post-completion idle times are known.

This analysis is performed using the control flow graph (CFG) representation of the program instrumented
with code fragments for saving data requested by monitoring requests. We assume that the CFG is reducible. The
analysis is based upon intervals [1] in the CFG where each interval corresponds to a program loop L. Each interval
has a header node h, a last node [, and a back edge from ! to h. We assume that the lower and upper bounds of
the loop index variable, and thus the number of loop iterations, for each loop are known at compile-time.

The timing analysis is carried out in two passes. Two passes are required because the timing information
being computed includes both synthesized and inherited attributes. The execution time of a loop is a synthesized
attribute since it is computed by examining the statements inside the loop. The starting time of the loop is an
inherited attribute since it depends upon the execution timing of the statements preceding the loop. Thus, an
efficient approach to this analysis requires two passes. The first pass processes intervals starting at the innermost
level and terminating at the outermost level. This allows the execution times of loop iterations, and hence the
entire loops, to be computed. In the second pass, the starting times of various input and output statements
are computed by propagating execution time information from earlier parts of the CFG to the later parts and

pre-input delay nodes are introduced to ensure that no input is consumed before it becomes available.

1. Algorithm ComputeExecutionTimes {

2 for each interval L, in innermost to outermost order do

3 — initialize the header node h

4. startilowj‘ =0

5. — process the nodes in the interval

6 for each node in L in reverse-depth-first order do

7 — Let Pred; be the set of immediate predecessors of 7
8 start.”™L = MAXpepreq, finishy

9. finishiowL = startéowL + exec;
10. endfor

11. — compute loop execution time

12. itery = finishéowL

13, Finish!" 9" = (highy - lowy, + 1) x itery,
14. erecy = finishZzghL

15. endfor

16.}

Let us consider the first phase of analysis, presented in algorithm ComputeFzecutionTimes, in greater detail.
In the following discussion L refers to a loop and lowy and highy are the loop bounds. The times startg and
finishg denote the starting time and completion time of statement ¢ during loop iteration j, where j is the loop
index variable. The starting time of the loop is initialized to zero. Next, starting at the header and terminating
at the last node in the loop, the starting and completion times for all statements in the loop are computed.
Following this pass over the statements in the loop the completion time of the last node in the loop essentially
provides us with the execution time of a single loop iteration. From the execution time of a single loop iteration,
itery,, the execution time of the entire loop, execy, can now be computed. The completion time of the entire loop,

finishZighL , is the completion time of the header node following the last iteration. As the analysis proceeds to

outer intervals, an enclosing interval views a nested interval L as a single node with the execution time of execy,
which would already have been computed.

After the completion of the above pass the execution time of each loop is known; however the times at which
the various input and output statements inside a loop are executed is unknown since the code was processed from
the inside out assuming that the starting time of each loop header is zero (see line 4). In the second phase the
loops will be processed in the reverse direction, that is, from the outermost loop to the innermost loop. This will
enable us to compute startﬁ for a loop and hence the starting time of input and output statements in the loop.
We will only compute the starting and completion times of statements in intervals containing input and/or output
statements since this is the only information needed to identify idle times. However, our technique is general and
can be used to determine the timing information for all statements.

We assume that the outermost interval representing the real-time task is a loop. If it is not a loop we can
view it as a loop with a single iteration. The starting time of the outermost interval is initialized to zero. The
starting time of a nested interval is computed from the finishing times of the predecessors of the header node.
The starting and completion times of the nodes in an interval are computed in the reverse-depth-first order.

If a nested interval is encountered then the processing of the enclosing interval may have to be suspended
until the nested interval has been processed. If the code inside the nested interval contains no input or output
statements then we can compute the completion of the nested interval and continue processing. However, if
the nested interval contains input statements, we must suspend the processing of the enclosing interval, since the
presence of input statements may require delays to be introduced which will alter the execution time of the nested
interval. We also suspend the processing of an interval if a nested interval with output statements is encountered.
The presence of output statements requires processing of the nested interval so that completion times of output
statements can be computed. Once the completion time of the nested interval is known the processing of the
enclosing interval resumes. Finally when the entire interval has been processed we know the updated time that
it takes to execute a single iteration of the current interval.

Once the starting time of an input statement is computed, it is compared with the time at which the input
becomes available to determine the need for a pre-input delay. Let us consider an input I which is a single input,
that is, it is executed only once during each iteration through the real-time task. If the computed value of starty
is lower than 4, 4i1(1), then a pre-input delay of length ¢4, 4(1)-starts is introduced immediately preceding input
I. Consider a stream of inputs which are received by an input statement I that is nested inside a loop L with
header h and last statement /. For simplicity let us assume that the input is received at the top of the loop.
Once the time start;wa has been computed we compare this value with ¢4, ;1) and if required introduce a delay,
delayfﬁ), immediately preceding the loop L. Next, pre-input delay, delayi"(I), is introduced inside the loop to
meet the constraints imposed by the interval associated with a stream of inputs consumed inside a loop. The loop
iteration time stery, is compared with 7,¢.i04(1), the interval at which inputs become available. If the comparison
yields a need for a delay, this delay, delayin(l), is introduced along the loop back edge. Figure 2 shows where the
pre-input delays are placed for an input I. The iteration execution time and loop execution time are updated if
delays are introduced. The algorithm PlaceDelays summarizes the timing analysis. This algorithm is called with
the interval representing the entire task as its parameter.

After the timing analysis described above we determined whether the current implementation of the real time
task meets all the specified deadlines. If the completion time of output an O, finishg, is less than the output
deadline, #4,4i1(0), then the deadline will be met. If deadlines are met then we compute the total idle time

available for introducing monitoring tasks.

1.
2
3
4.
5.
6
7
8

9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

(a) single Input (b) Input Stream

!

s []

Figure 2: Introducing Pre-input Delays.

Algorithm PlaceDelays (L: an interval) {
— initialize the starting time of interval L
if L is the outermost interval then start%owf“ =0
else startilowL = M AX,cpred, finishy, where Pred; = Predy - {1}
if L contains no input/output statements then
finishﬁ'ghL = startilowL + ezecr,
return()
endif
endif
— introduce a delay node, if required, immediately outside L
if interval L receives an input I then
if startilOwL < tayaiy(r) then delay}j'(‘}) = tavail(1) - start;‘mL
else delay}j’(‘?) = 0 endif
sta'rtilowL = start%owj‘ + delayzqfﬁ)
endif
— compute the starting times of input/output nodes in L
for each node iin L in reverse-depth-first order do
if node i is an interval L’ then
PlaceDelays (L’) — process nested interval L’
else — node i is a statement node
start.”t = MAXpeprea, finish,
where if p € L, finish, = finishéowL
if p is header of a nested interval L’°, finish, = finish
if node i is an input node then
— input nodes in the outermost interval
if start\”"* < tavaiy(i) then
delay; = tayai(i) - startiowL
else delay; = 0 endif
endif
startiowL = startéowf“ + delay;
finishiowL = startiowL + ezec;
endif
endfor
— introduce a delay node, if required, along loop back edge inside L
if finish;™" < Tintervai(r) then delayy) = Tintervai(r) - finish;™"*
else delayy ;) = 0 endif ‘
iter;, = fz’nishémluL + delay}fz])
execy = finishZzghL + delayﬂj) e (highL - lowr + 1)

}

highy
P

We determine if a monitoring request that requires the packaging and transmission of specified amount of data
can be accommodated by the idle times in a schedule as follows. We assume that the time entailed in processing

S amount of data is given by:
S
T = b —].
(S)Y=axS+bx [M]

The first term models the cost of packaging data and the second term models the cost of transmitting messages
of maximum size M. Thus, the maximum amount of data that can be processed during time duration ¢ is given
by:

T't)=S3T(S)<t<T(S+1).

We first compute the amount of data that can be processed during pre-input idle times as shown below. In

this equation node ¢ is a delay of length delay; which is encountered count; number of times.
n
Prelnput = ZT‘l(delayi) x count;
i=1

The amount of data that can be processed during the idle time available at the end of each iteration through

the task is given by the expression below, where end denotes the last statement in the task.
PostCompletion = T_l(TaskInterval — finisheng)

Therefore if the amount of monitoring request requires sending M ON amount of data the request can be

accommodated if the following condition is true.
33, where j is after the monitoring point 3 total Prelnput after j + PostCompletion > MON.

Since monitoring tasks are non-essential tasks, we will only schedule their execution if there is idle time in the
schedule that can be safely used to accommodate the monitoring activity. In other words if the scheduler finds
that idle time is available, it will use it to perform monitoring activities.

An example illustrating the results of timing analysis is given below. In the code for the tasks {compute for time}
and {pre—input/post —completion delay for time} indicate the time periods for which computation is performed
and time periods during which idle-time is encountered. The computation times represent the WET estimate of

one or more statements. The delay nodes indicate points at which monitoring activity can be performed.

Task Period = 150;
External Input In: t4yait(r,) = 0;
External Input I>: t4vaii(z,) = 15 and Tperioacr,) = 20;

1. Receive external input I1;

2. { compute for 10 }

3. { pre-input-delay for 5 }

4. Doi=1To5

5. Receive external input Is;
6 { compute for 13 };

7 if 1 # 5 { pre-input-delay for 7 };
8. EndDo

9. { compute for 17 }

10. { post-completion-delay of 25 }

In the discussion so far we introduced the monitoring work at points immediately preceding input statements
and following task completion. Thus, the monitoring code is introduced at points which are guaranteed to
be executed. If the user makes a monitoring request for tracing the value of a variable, then the amount of
monitoring work may vary from one execution to the next. If the entire monitoring activity is introduced at
points preceding inputs and following task completion then we must reserve enough time for maximum possible
monitoring work that may be performed. A more effective approach would be introduce conditionally performed
monitoring activity at conditionally executed program points. For example, if the amount of work performed
during the then-part of an if-statement is less than the amount of work performed during the else-part, then some
amount of monitoring activity associated with the then-part can be introduced in the then-part rather than at a
pre-input point later in the task. The time saved from pre-input and post-completion idle times can be used by

other monitoring tasks.

4 Analysis of Parallel Real-Time Tasks

A real time application may be too time consuming to be executed under the specified deadlines. We assume
that under such conditions the application is partitioned into a communicating set of tasks that are executed
in parallel on different processors on a distributed-memory system. By choosing a distributed-memory system
we avoid the problems associated with predicting memory reference behavior of cache based shared-memory
systems. For example, in the Synthetic Aperture Radar application the code for computing an eight point FFT
dominates the processing time. We can speed up the FFT computation by a factor of eight by exploiting the
inner loop parallelism available during the FFT computation. The analysis discussed in the preceding section can
be extended to handle a parallel real time application. Each task in a parallel application can still be viewed as a
computation with inputs, outputs and deadlines. Some of the inputs are ezternal inputs as before and others are
internal inputs that are essentially outputs of other tasks. We assume that the communication among tasks is
achieved through non-blocking sends and blocking receives. Furthermore, it is assumed that each send operation
is paired with a unique receive in another task and that the communication statements are definitely executed
during each execution of a task. These assumptions are in context of a real time application. In this analysis
we denote interprocess communication delay by .. The interprocess communication delay is denoted by é.. The
value of §. will depend on the particular architecture and also on the amount of data transmitted.

The busy-idle analysis is applied to an application containing multiple tasks as follows. We first compute
the execution times of the statements in each task independently using the algorithm Compute Ezecution Times.
Next we simultaneously initiate algorithm PlaceDelays for each of the tasks. Coordination among the instances
of PlaceDelays is necessary to process a set of communicating tasks since the timing information of the sending
statement must be computed before the processing of the receiving task can continue. Let us consider the
situation in which a stream of values are communicated from one task to another. If the rate at which data is
being generated by the sending task is lower than the rate at which data can be consumed by the receiving task,
delays will be introduced. Consider the situation illustrated in Figure 3. The receive in interval L’ can be viewed
as an input I whose characteristics are determined by processing interval L and these characteristics are then

used for introducing delays as shown in Figure 3.

5 Implementation Issues and Architectural Support
Next we discuss the issues relating to the implementation of interleaving a real-time task and its monitoring

task. so that they execute on the same processor in a coroutine-like manner. Although, the monitoring requests

L .

. tavail(])zfln”h;:é +6c; and Tpepioa(ry=itery

. if itery > iterys then)
delayil=iter p-iter s iter,

endif

. . 1

Lif (fzmshlowL —|—5c)>sta7"triij5' then

send
R | low
delay%“t = (fznzshj;;}ls +5c)—sta7’trechl

. endif interval L interval L’

Task 1 Task 2

Figure 3: Communicating Tasks.

must be provided at compile-time, it would be desirable if the actual monitoring activity can be turned on/off
dynamically by activating/deactivating switching instructions. We must locate the points in the code at which the
switching is to be performed, introduce the switching instructions, and then provide a mechanism for activating
or deactivating appropriate instructions based upon the generated schedule. One approach that can be taken is to
allow the compiler to introduce the switching instructions in the code. However, these instructions are provided
with guards to make them inactive, that is, none of these instructions will be executed if the tasks are executed in
their present state. In its final phase, the scheduler can use this information, to activate the appropriate switch
instructions.

Architectural support can be provided to assist the interleaved execution of a task and its monitor. First,
a single bit in a switch instruction can be provided to indicate whether it is active or inactive, rather than
introducing explicit guard variables. Also the architecture can provide two register sets, one for each task, so that
the cost of switching between the tasks is a single instruction. In addition to architectural support for switching
we must also provide caching support for interleaved scheduling. By partitioning the cache among the interleaved

tasks we can ensure that the cache locality is not adversely affected. One such strategy was proposed in [11].

6 Future Work

In this paper we used our timing analysis information to accomodate monitoring code. However, we can also
use this information to enhance the scheduling of real-time tasks. The execution profile of a task derived from
this timing analysis indicates the times at which a task is executing and the times at which it is waiting for an
external input. A real-time scheduler can use these profiles to generate schedules that are able to meet deadlines
by interleaving and overlapping the execution of different tasks, where no schedule that meets the deadlines may
exist without interleaving or overlapping. Using the timing information we have developed a compact task graph
representation which can be used to generate schedules efficiently [8]. We are currently developing extensions to
algorithms for scheduling periodic tasks [2, 16] for generating interleaved schedules. We have also developed other
notions of non-intrusion, and static analysis algorithms for their detection, which are applicable to non-real time

applications [7] [17].

References
[1] M. Burke, “An Interval-based Approach to Exhaustive and Incremental and Interprocedural Data-flow Analysis,” ACM
Transactions on Programming Languages and Systems, Vol.12, No.3, pp.341-395, 1990.

[2] S. Cheng, J.A. Stankovic, and K. Ramamritham, “Dynamic Scheduling of Groups of Tasks with Precedence Constraints
in Distributed Hard Real-Time Systems,” Proceedings of the 7th Real-Time Systems Symposium, pp.166-174, 1986.

[3] P. Gopinath, T. Bihari, and R. Gupta, “Compiler Techniques for Generating Predictable Object-Oriented Real-Time
Software,” IEEFE Software, special issue on Real-time systems, pp.45-50, September 1992.

[4] P. Gopinath, T. Bihari, and R. Gupta, “Supporting Real-Time Software Integrated Circuits,” Proceedings of the IEEE
Workshop on Imprecise and Approximate Computation, pp.55-61, Phoenix, Arizona, December 1992.

[5] P. Gopinath and R. Gupta, “Applying Compiler Techniques to Scheduling in Real time Systems,” Proceedings of the
11th Real-Time Systems Symposium, pp.247-256, Orlando, Florida, December 1990.

[6] R. Gupta and P. Gopinath, “Correlation Analysis Techniques for Refining Execution Time Estimates of Real-Time
Applications,” Proc. of 11th IEEFE Workshop on Real-Time Operating Systems and Software, Seattle, Washington,
May 1994.

[7] R. Gupta and M. Spezialetti, “Towards a Non-Intrusive Approach for Monitoring Dist. Computations through Pertur-
bation Analysis,” Proc. 6th Work. on Lang. and Compilers for Par. Comp., LNCS 768 Springer Verlag, pp.586-601,
1993.

[8] R. Gupta and M. Spezialetti, “Busy-Idle Timing Analysis and Compact Task Graphs: Compile-time Support for
Interleaved and Overlapped Scheduling of Real-Time Tasks,” Technical Report TR-94-24, University of Pittsburgh,
April 1994.

[9] M. Harmon, T. Baker, and D. Whalley, “A Retargetable Technique for Predicting Execution Time,” Proceedings of
the Real-Time Systems Symposium, pp.68-77, 1992.

[10] S. Hong and R. Greber, “Compiling Real-Time Programs into Schedulable Code,” Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and implementation, pp.166-176, 1993.

[11] D.B. Kirk and J.K. Strosnider, “SMART (Strategic Memory Allocation for Real-Time) Cache Design Using MIPS
R3000,” Proceedings of the 11th Real-Time Systems Symposium, pp.322-330, Orlando, Florida, December 1990.

[12] V. Nirkhe and W. Pugh, “Partial Evaluation of High-Level Imperative Programming Languages with Applications in
Hard Real-Time Systems,” Proceedings of the 19th Annual ACM Sigplan-Sigact Symposium on Principles of Program-
ming Languages, pp.269-280, 1992.

[13] D.M. Ogle, K. Schwan, and R. Snodgrass, “Application-Dependent Dynamic Monitoring of Distributed and Parallel
Systems,” IEFE Transactions on Parallel and Distributed Systems, Vol. 4, No.7, July 1993.

[14] G. Pospischil, P. Puschner, A. Vrchoticky, and R. Zainlinger, “Developing Real-Time Tasks with Predictable Timing,”
IEEE Software, special issue on Real-time systems, pp.35-44, September 1992.

[15] C.Park and A. Shaw, “Experiments with a Program Timing Tool Based on Source-Level Timing Schema,” Proceedings
of the 11th Real-Time Systems Symposium, pp.72-81, 1990.

[16] K. Ramamritham, “Allocation and Scheduling of Complex Periodic tasks,” Proceedings of the 10th International
Conference on Distributed Computing Systems, pp.108-115, 1990.

[17] M. Spezialetti and R. Gupta, “Perturbation Analysis: A Static Analysis Approach for the Non-Intrusive Monitoring
of Parallel Programs,” to appear International Conference on Parallel Processing, August 1994.

[18] A. D. Stoyenko, “A Real-Time Language With A Schedulability Analyzer,” Ph.D. Thesis, University of Toronto,
August 1987.

[19] H. Tokuda, M. Kotera, and C.W. Mercer, “A Real-Time Monitor for a Distributed Real-Time Operating System,”
Technical Report, Carnegie Mellon University, CMU-CS-88-179, 1988.

[20] J.J.P. Tsai, K-Y. Fang, and H-Y. Chen, “A Noninvasive Architecture to Monitor Real-Time Distributed Systems,”
IEEE Computer, pp.11-23, March 1990.

