In Proc. of 14th IEEE Real-Time Systems Symposium, pp. 232-242, December, 1993

Semantics-Based Compiler Transformations for Enhanced
Schedulability *

Richard Gerber and Seongsoo Hong
Department of Computer Science
University of Maryland
College Park, MD 20742

rich@cs.umd.edu

Abstract

We present TCEL (Time-Constrained Event Lan-
guage), whose timing semantics is based solely on the
constrained relationships between observable events.
Using this semantics, the unobservable code can be
automatically moved to convert an unschedulable task
set into a schedulable one. We illustrate this by an
application of program-slicing, which we use to auto-
matically tune control-domain systems driven by rate-
monotonic scheduling.

1 Introduction

The construction of a real-time system involves
reconciling two “adversersial” factors: the system’s
real-time specification and the timing characteristics
of its hardware platform. Specification-based prop-
erties “come from above,” and establish constraints
between occurrences of events [3, 10]. An example is
the robot arm must receive a next-position update ev-
ery 10 ms. Such a constraint arises from the system’s
requirements, or from a detailed analysis of the appli-
cation environment. On the other hand, the hardware
platform’s timing characteristics “come from below,”
and are affected by factors such as the CPU’s archi-
tecture, instruction-cycle times, memory-cycle times,
bus arbitration delays, etc.

The gap between a specification and its implemen-
tation platform frequently results in the painful pro-
cess of system-tuning to achieve schedulability. This
may involve re-implementing key modules in assem-
bly language (or even in silicon), hand-optimizing the
code, manually counting instruction-cycle times, and

*This research is supported in part by NSF grant CCR-
9209333 and ARPA contract N00014-91-C-0195.

sshong@cs.umd.edu

experimenting with various orderings of operations.
As a last resort, entire subsystems may have to be
re-designed altogether.

The goal of our research is to assist programmers in
bridging this gap. Our approach consists of two inter-
related factors: a programming language and compiler
transformations. The real-time programming lan-
guage is called TCEL (Time-Constrained Event Lan-
guage), which contains first-class timing constructs,
and whose semantics is based on time-constrained re-
lationships between observable events. As the only
timing constraints are imposed by observable events,
the unobservable code can be transformed to auto-
matically assist in the low level tuning process. As we
show in this paper, it is precisely the TCEL semantics
which makes the compiler transformations possible.

The TCEL Language. TCEL contains constructs
quite similar to those developed in other experimental
languages [9, 11, 13, 15, 18, 26]. In these approaches,
however, timing constraints are established between
blocks of code. The TCEL semantics, on the other
hand, establishes constraints between the observable
events within the code.

For example, consider a construct such as “every
10ms do B,” where the block of code “B” is executed
once every 10 milliseconds. In a code-based semantics,
allof the code in B must fit properly within each 10 ms
time-frame. In the TCEL event-based semantics, only
the observable events in B must fit properly within
the time-frame. This looser semantics yields two im-
mediate benefits. First, the decoupling of timing con-
straints from code blocks enables a more straightfor-
ward implementation of an event-based specification.
But more importantly, the unobservable code can be
moved to automatically tune the program to its hard-
ware environment.

In the sequel we consider all “send” and “re-

to
Actuator

send(Actuator, cmd)

Figure 1: Structure of Controller Subsystem.

ceive” operations to be observable. Consider a sim-
ple real-time program specification, rendered pictori-
ally in Figure 1. The requirements specification is also
given below:

(1) Every 2bms, an external sensor sends a message
to the controller, containing physical world mea-
surements.

(2) The controller must receive every message.

(3) Using the sensor data and the current state,
the controller computes a next-position command
and sends it to an actuator.

(4) The command must be sent within each period.

ased on the sensor-input, the controller updates
5) Based th t, th troll dat
its current state.

The TCEL program fragment below realizes the spec-
ification.

Al: every 25ms

{

A2: receive(Sensor, data);
A3: cmd = nextCmd(state, data);
A4: state = nextState(state, data);
A5: send(Actuator, cmd);

}

The system’s only observable events are triggered in-
stantaneously during the executions of the “send” and
“receive” operations. The “every” statement estab-
lishes timing constraints only between these two op-
erations. On the other hand, the local statements A3
and A4 are simply constrained by the program’s nat-
ural control and data dependences.

Under a code-based semantics the program is in-
terpreted in a different way; that is, the statements
A2-A5 must be executed within a single frame. This
interpretation is in fact much stronger than the re-
quirements mandate, and indeed, may result in an
unnecessary fault. For example, if the system expe-
riences a transient overload caused by higher-priority
tasks, the program may not meet its deadline.

In this case there are obvious remedies, which would
have to be performed by hand. For example, part or
all of the next-state update in A4 could be relocated
beyond A5. Then, in the case of transient overload,

this operation could be postponed beyond the end of
the period. However, the necessary corrections would
include manually decomposing A4, moving part of it,
and adding necessary hooks for the scheduler to post-
pone a deadline. The actual changes would heavily
depend on the particular characteristics of the com-
puter, and thus, the very reason for using high-level
timing constructs would be defeated.

Transforming Tasks for Enhanced Schedulabil-
ity. The event-based semantics provides a founda-
tion to automatically tune a real-time system. Re-
turning to our example, a compiler transformation
can be used to automatically decompose A4. Yet an-
other transformation can relocate as much (or as little)
code as is necessary to tolerate single-period overloads.
In performing these transformations, the TCEL com-
piler uses the observable events as “semantic markers,”
which establish boundaries of code decomposition, and
constrain the places where code can be moved.

In previous work we show how to use code-
motion optimizations to resolve conflicts within single
tasks [7]. These conflicts can arise when tasks have
nested constraints; e.g., when deadlines are tighter
than periods, or when there are inserted delay state-
ments. Since these timing constraints may conflict
with the task’s execution time, it may appear to be
inherently unschedulable. Hence the objective is to
automatically achieve “internal” consistency between
real-time requirements and elapsed execution time.
Our approach is to use instruction-scheduling tech-
niques [5], with which our compiler moves code from
blocks constrained by tight deadlines into blocks with
sufficient slack.

In this paper we address a more aggressive goal —
inter-task transformations for schedulability. To help
attack this problem, we have developed a compiler de-
composition technique to support control-domain pro-
grams under rate-monotonic scheduling [16]. In par-
ticular, our technique can be viewed as a safe, au-
tomatic way to use deadline postponement [21]. (We
explain deadline postponement in Section 3.3.) The
framework consists of the following ingredients:

(1) An algorithm which uses standard rate-
monotonic analysis to find unschedulable tasks,
and determines the amount that they must be
transformed.

(2) A program slicer, which decomposes a task and
isolates the component that can have its deadline
postponed.

(3) An online, dynamic adaptation to the rate-
monotonic scheduler, which enforces precedence
constraints between task iterations. (We call this

adaptation priority ezchange.)

The remainder of the paper is organized as follows.
In Section 2 we present an overview of the TCEL lan-
guage. In Section 3 we motivate our transformation
algorithm via a discussion of rate monotonic schedul-
ing for control systems. We also present the algorithm
itself. In Section 4 we provide a technical treatment of
program slicing, and its applicability to task decom-
positions. We conclude in Section 5 with a discussion
of related work in compilation techniques for real-time
systems. We end the section (and the paper) with re-
marks on our future work.

2 Overview of TCEL

In this section we present two of TCEL’s constructs
to denote timing constraints within a program. Both
constructs are syntactic descendents of the temporal
scope, introduced in [13]. However, as we have stated,
our semantics is quite different, in that it relies on
constrained relationships between observable events.

We use the “do” construct to denote a sporadic
program with relative timing constraints:

do

(reference block)
[start after ¢min] [start before tmaz1]
[finish within t,,422]

(constraint block)

The reference block (RB) and the constraint block
(CB) are simply C statements, or alternatively, timing
constructs themselves. The “do” construct induces
the following timing constraints:

e start after t,,;,: There is a minimum delay of
tmin between the last event executed in the RB,
and the first event executed in the CB.

e start before t¢,,,;1: There is a maximum delay
of t,,qz1 between the last event executed in the
RB, and the first event executed in the CB.

e finish within ¢,,,,2: There is a maximum delay
of tmars between the last event executed in the
RB, and the last event executed in the CB.

Since either block may contain conditionals, depend-
ing on the program’s state there may be several such
events executed either “first” or “last.”

The second real-time construct denotes a statement

t

t+p ‘ t+2p

| |
| — T 1T T 1>

tHmin t+tmax1 t+tmax2 t+p+tmin t+p+tmaxl t+p+tmax2
f observable event occurrence

Figure 2: Behavior of Periodic Timing Construct.

with cyclic behavior of a positive periodicity:

every p [while (condition)]
[start after ¢min]| [start before tmaz1]
[finish within ¢a22]

<c0nstraint block)

As long as the “while” condition is true, the observ-
able events in the constraint block execute every p
time units. Akin to an untimed while-loop, when
the condition evaluates to false the statement termi-
nates. In its real-time behavior, the interpretation of
the “every” construct is similar to that of “do.” For
example, assume that the statement is first scheduled
at time t, and that the “while” condition is true for
periods 0 through 7. As depicted in Figure 2, the fol-
lowing constraints on events are induced for period ¢:

e start after ¢,,;,: The first event executed in the
CB occurs after ¢ + ip + tmin.

e start before t,,,;1: The first event executed in
the CB occurs before t + ip + timae1-

e finish within ¢,,,,2: The last event executed in
the CB occurs before t + ip + timaes.

Timing constructs may be arbitrarily nested.
For example, consider the arm controller pro-
gram specification in Figure 3 (left), and its
TCEL realization in Figure 3 (right). From the
event-based semantics, the timing constraints only
apply to the observable events associated with
the “send” and “receive” instructions. The
local statements “z1 = newemd(dim, loc1)” and
“z2 = newemd(dim, loc2)” can “float,” and are con-
strained only by their natural dependences — as in any
other program.

3 Scheduling with Compiler Transfor-
mations

The event-based semantics of TCEL gives a clear
separation between constraints based on time, and
those based on data and control dependences. Using
the semantics as a foundation, we present a system-
atic task transformation algorithm, which is guided
by the rate-monotonic scheduling theory. The algo-
rithm is specifically intended for periodic tasks in the

1. Every 10.0 ms, receive
message from sensor.

2. Delay at least 1.5 ms
after receiving message.

3. If object was detected,

every 10.0 ms
do
receive(Sensor, dim);
start after 1.5 ms finish within 4 ms
if (null(dim)) {

send new commands to
arml and arm2 within
4.0 ms of receiving
message from sensor,
and before next message.

z1 = newcmd(dim, locl);
z2 = newcmd(dim, loc2);
send(arml, z1);
send(arm?2, z2);

}

Figure 3: The Specification (left), and The Program (right).

domain of guidance, navigation and control (GN&C).
To motivate our transformation, we give an example
set of GN&C tasks, which is shown to be unschedu-
lable via a rate-monotonic scheduler. In addition,
we discuss a simple (dynamic) modification of rate-
monotonic scheduling algorithm to support our task
transformation.

The objective of the algorithm is to enhance schedu-
lability by transforming unschedulable tasks into mul-
tiple threads. Our method is to reduce CPU demands
in overloaded frames. In this section we present the
overview of the transformation algorithm, while in the
next section we provide a more detailed development
of program-slicing.

3.1 Characterization of Control Software

One of the major properties of control algo-
rithms is that computations fit a fixed-rate algorithm
paradigm [12]. Fixed-rate algorithms are those which
execute repetitively with fixed periods. During each
period, the physical world measurement data is sam-
pled, and then actuator commands are computed.
Meanwhile, a set of states is updated, based on current
states and sampled data.

The dynamic behavior of GN&C systems can often
be expressed by the following equations.

Or = 9(Xk, I) (1)
Xes1 = h(Xg, It) (2)

In these equations, I, X, and Oy respectively rep-
resent the input, current state, and output of the k"
period, while g is an output generation function and
h is a state evolution function.

Since GN&C equations are thought of as simulta-
neous relationships (not as a computation procedure),
there are usually many valid computational orderings.
One possible ordering of Eq 1 and 2 is given pic-
torially in Figure 4. It delineates the k'" instance

1(k)

|
| State |
| Transformer f— = X(k+1)
(ST)
| Common |
X®) | Coede |
(Com) Output }
‘ Generator
: 1 |
- |

oK)

Figure 4: Task Decomposition in the k*? Period.

of the control task. Note that in addition to two
separate code components (the output generator 0G
and the state transformer ST), the common computa-
tional part is factored out, which then becomes the
third code component Com. Thus function g() corre-
sponds to code components “Com;0G” while function
h() corresponds to “Com;ST”.! In this figure arrows
between code components represent precedences (de-
noted by “<”) caused by data availability. For exam-
ple, Com(k) < ST(k) means that the k" instance of
Com must be executed before the k' instance of ST.

In addition to these intra-task precedence con-
straints, the following orderings between components
of task instances must be observed during the execu-
tion of the task.

(1) Com(k);ST(k) < Com(k + 1);ST(k+ 1)
(2) Com(k);ST(k) < Com(k + 1);0G(k + 1)

3.2 Rate-Monotonic Schedulability Anal-
ysis

Rate-monotonic scheduling is well suited for con-
trol domain applications, not only because they pos-
sess the fixed-rate property, but also because an ef-
ficient schedulability test can be applied. Whereas

1The operator “;” denotes sequential composition of code

fragments.

there has been significant amount of research on an-
alytical characterization of the algorithm [14] and its
practical application to various problems [21], there
has been little work on the automatic translation of
unschedulable task sets into schedulable ones. How-
ever, complex real-time system development can be
supported by such an automatic scheme. For example,
consider a task set which is derived from a real-time
application. The derivation process involves careful
implementation and tedious tuning of each task to sat-
isfy various timing and functional constraints. In this
setting, most of the task tuning must be repeated if the
task set is determined to be unschedulable. Of course,
the situation is even worse if the code is rehosted.

Our task transformation approach is motivated by
the exact (necessary and sufficient) schedulability test
in [14], which is based on the critical instant analy-
sis. A critical instant for a task occurs whenever the
task is initiated simultaneously with all higher prior-
ity tasks [16]. Let T; and Cj; be the period and the
worst case computation time of task 7;, respectively.
Assume that the 7;’s are numbered in the increasing
order of their 7;’s. Since the rate-monotonic schedul-
ing algorithm assigns a higher priority to a task with
a smaller period, a task with a smaller number has a
higher priority.

To determine if task 7, can meet its deadline under
the worst case phasing, it is necessary to check if there
is point ¢ in time in the interval [0, Tj] (i.e. 7’s critical
instant), which satisfies the following inequality.

il
>l ®)

=1

To do so, we need to check only those points in the
interval [0, T}] which are multiples of the periods of
k tasks {r,72,...,7%}. They are called scheduling
points, and become points where the left-hand-side of
the above inequality achieves the local minima.

Example 1: Consider the case of three periodic tasks,
where U; = C;/T;.

Task(r): C1 =4.0;71 =10;U; = 0.4

Task(rz) : C; =4.0; T2 = 16; U, = 0.25

Task(rs) : Cs = 6.41; T3 = 25; Us = 0.2612

The source code of task 73 is given in Figure 5, where
the bracketed numbers represent the best and worst-
case execution times, respectively. These times are
generated by a timing analysis tool, such as those
found in [20, 27].

The two highest priority tasks 7, and 75 are schedu-
lable, because their total utilization factor (U + Uz =
0.65) is below the rate-monotonic utilization bound:

every 25ms

{

L1: receive(Sensor, data);
L2: if (Inull(data))

[0.2ms,0.5ms]
[0.05ms,0.06ms]

L3: t1 = Fl(state); [0.8ms,1.05ms]
L4: t2 = F2(state); [0.9ms,1.35ms]
L5: t3 = F3(data); [0.9ms,1.35ms]
Lé6: t4 = F4(data); [0.9ms,1.35ms]
L7: cmd = t1 % (t3 +t4); [0.09ms,0.1ms]
L8: send(Actuator, cmd); [0.2ms,0.5ms]
L9: state = t1 % (t2 + t3); [0.11ms,0.15ms]
}
L10: }

Figure 5: TCEL Program for Task 3.

0.83 = 2(2'/2 — 1) [16]. On the other hand, the entire
task set is not schedulable, because the total utiliza-
tion factor exceeds 1 at all scheduling points within
the critical instant of 73 as shown below:

C1+C+C: <Th (4—|—4—|—641>10)

207 + Ce + C3 <15 (8—|—4—|—641>16)

201 +2Cy + C5 < 2T (8 +8+6.41 > 20)

3C1 +2C; +C5 < Ts (12+8+641 > 25)

|

The reason the above task set is unschedulable is

obvious: the computation demands exceed all avail-
able time at 73’s critical instant.

3.3 Task Transformation Algorithm

A straightforward technique to achieve schedula-
bility is to let some of 73’s code “slide” into the next
period. This can be done by postponing the deadline
(i.e. expanding the period) of 73, as suggested by Sha
et al. in [21]. The application of deadline postpone-
ment to task 7 can be described with the following
steps:

Step 1 Task 7 is duplicated into two tasks 7,
and 7.

Step 2 Both 7, and 7, are given 27" as their pe-
riod, where T is 7’s original period.

Step 3 7; is initiated at times 0,27, ..., while 7,
is initiated at times 7', 37,

A task transformation is safe only when the resul-
tant task preserves the original timing and functional
semantics. Deadline postponement is, however, not a
safe transformation, since its correctness depends on
the timing constraints of applications. Particularly
it may not be applicable to GN&C domain software,

/* Subtask 734 */
every 25ms
{
receive(Sensor, data); [0.2ms,0.5ms]
¢ = 'null(data); [0.05ms,0.06ms]
if (c) [0.01ms,0.02ms]
{
t1 = F1(state); [0.8ms,1.05ms]
t3 = F3(data); [0.9ms,1.35ms]
t4 = F4(data); [0.9ms,1.35ms]
[
[

cmd = t1 % (t3 + t4); [0.09,0.1ms]
send(Actuator, cmd); 0.2ms,0.5ms]
}

}

/* Subtask 735 */
every 25ms

{

if (c) [0.01ms,0.02ms]
{
t2 = F2(state); [0.9ms,1.35ms]
state = t1 * (t2 + t3); [0.11ms,0.15ms]
}

}

Figure 6: Two Decomposed Subtasks.

in which the computation of (observable) output op-
erations has a strict deadline and depends on current
state and input. The problem with deadline postpone-
ment is that some observable events may miss their
deadlines.

We solve this problem via a compiler-driven task
decomposition technique. We put the greatest em-
phasis on preserving the timing behavior of observ-
able events and the precedence constraints derived in
the Section 3.1. Before presenting a systematic proce-
dure, we describe our approach with the task set used
in Example 1.

First, we decompose 73’s code into two parts:
(1) code that computes the output command (denoted
by 734) and (2) code that computes the state update
(denoted by 733). Figure 6 shows the subtasks which
result from the decomposition. Note that subtasks 734
and 73 correspond to “Com;0G” and “ST” respectively
in Figure 4. Their computation times are calculated
by adding the individual execution times of the state-
ments of the subtasks:

C34 = 4.93ms, Cs3; = 1.52ms

Now that subtask 73; consists of only local computa-
tions, we can subject it to deadline postponement, and
obtain two duplicated tasks, 7351 and 7332. Of course,
both of them have 275 as their period, and 7339 is ini-
tiated after a delay of T3 from the initiation of 73p1.

Original Task

1(K) O(K)
i I'm I
' OG(K) ST(K) ')
(k=1)st k-th period (k+D)st (k+2)nd
1) Ok Constructed Tasks
L I | | | l | | l | |
OG(k-1) OG(K) OG(k+1) OG(k+2)
L |
ST(k-1) ST(k+1)
| . |
ST(K) ST(k+2)

Figure 7: Scheduling of Newly Constructed Tasks.

Figure 7 shows a possible execution of the three new
tasks {734, 7351, Tap2} after the task transformation.

Unfortunately, even this transformation is unsafe,
unless we ensure that the precedence constraints be-
tween the subtasks are maintained. To name just two,
the 7" instance of 7s5; must finish before the it* in-
stance of Tapo; or, the k*® instance of 735, must finish
before the 2k + 1°? instance of 73, starts. However, we
present in Section 3.4 a simple (dynamic) modification
to rate-monotonic scheduling that maintains our de-
sired precedence constraints. Moreover, the modifica-
tion preserves standard rate-monotonic analysis; that
is, critical-instant analysis suffices to show schedulabil-
ity. With this fact, we now analyze the schedulability
of the newly constructed task set.

Example 1 (revisited): Consider the constructed
task set {71, T2, T34, T3p1, Tap2}. For the sake of schedu-
lability analysis, we can coalesce 7331 and 7332 back
into m3p, since they have the same period. (Of course,
Tzp = 275 and C3p = Csp1 + C3pa.)

The first two tasks are schedulable, as we have
shown in Example 1. The first three tasks including
T3, can be shown to be schedulable at scheduling point
T3. Finally, the entire task set is schedulable, since it
passes the schedulability test at scheduling point 37%.

3C1 +2C, + C34 < T3
(12 + 8 +4.93 < 25)
5C1 +3C% + 2Cs34 4+ Csp < 3T
(20 + 12 + 9.86 + 3.04 < 48)

|
As long as the precedence constraints are maintained,
the above transformation guarantees that observable
operations meet their deadlines.

We now present the task transformation algorithm
in Figure 8. As input, the algorithm is given a task set
I, in which tasks are ordered in the increasing order
of their periods. Here, |T| is the cardinality of the set
I' and 75, denotes the k'* task in I'. Mark[r] is a flag

associated with 7, which is used to indicate that task
7 is not transformable when the flag is checked (/).

The function MinPoini(k,T) calculates the overload
associated with all the scheduling points, and selects
the point where the overload achieves a minimum.
This point — as well as the overload associated with
it — is returned by the function.

The transformation algorithm itself examines tasks
in T in order. For each task 7y, it calls MinPoint(k,T})
to compute the excessive processor demand (line (8)).
If there is no excessive demand, this means that the
first k& tasks are schedulable (line (9)), and the algo-
rithm goes on to the k + 1! task.

At this point 71 is deemed to be unschedulable, so
the algorithm attempts to transform it. If it is found
to be marked — that is, the state-computation element
of a previously decomposed task — it cannot be trans-
formed further. Thus the algorithm exits. Otherwise,
the scheduling point “p” in [0, 27%] is retrieved by
again calling MinPoint(k,2T}) (line (11)). Then the
algorithm determines the idle time (¢;pqre) in the in-
terval [0, p] (line 12).

If the amount of the overload is greater than the
available idle time, schedulability is not achieved (line
(13)). There is hope, however, if sufficient delay exists.
In this case the algorithm calls a subroutine (Algo-
rithm 4.2) to actually produce specialized subtasks
as in Figure 6. In Section 4 we present the subroutine,
as well as the method of program-slicing on which it
is based.

The subroutine produces the two residual threads
of 1, Tkq and 7p, and then two copies of 71 are coa-
lesced to produce 1y . (Recall that Crp = Crp1+ Chraz
and that Ty = 27%.) On line (15), the excessive pro-
cessor demand at 73, s critical instance 1s reduced. Line
(16) checks the sufficiency of the transformation. If it
was successful, the two threads are marked and placed
into the list I" in their appropriate places. Thus I' may
grow to a maximum of twice its original size. Other-
wise, the task set is deemed unschedulable.

Of course, the algorithm can be enhanced by allow-
ing decomposition of tasks {71, 72, ..., 7—1}, if the de-
composition of 7 is determined to be insufficient on
line (16). However, this alteration requires an addi-
tional loop as well as a more complex control struc-
ture. For the sake of brevity, we do not present the
enhanced algorithm here.

3.4 Modifying the Scheduler:
Exchange

Priority

As we have stated, deadline postponement assigns
to the rate-monotonic scheduler the duty of ordering
subtasks, so that they observe the precedence con-

(1) function MinPoint(k, T)
(2) let f(5,1)=)7_, Cil£1 -t

begin
(3) SPi={j TN <i<kj=|F]}
(4) Find s € SP such that f(k,s) = min{t € SP|f(k,t)};
(5) return (s, f(k,s));

end

(6) algorithm Transform Task Set T’
begin
7) for k := 1 to |I'| do
() tezcess) := MinPoini(k, Tx);
if tezcess > 0 then begin
) if Mark[r;] = +/ then exit(failure);
) (p, t) := MinPoint(k, 2 * T%);
) tspare = —t;
) if tezcess > tspare then exit(failure);
) Decompose task 7 into 75, and 715
using Algorithm 4.2;
(15) tercess = texcess — (Ck - Cka);
(16) if tezcess > 0 then exit(failure);
(17) Mark[7y,] := Mark[rB] := /;
(18) Replace 74, with 75, in [';
(19) Insert 71,5 in I’ with its period as T} 5;
end
end
end

Figure 8: Algorithm for Task Transformation.

straints introduced earlier in Section 3.1. However, a
“pure” rate-monotonic scheduling algorithm is unable
to enforce these constraints, except for simple prece-
dences between high-rate tasks and low-rate tasks.
This mandates that we modify the scheduling algo-
rithm.

Before we proceed, we rewrite below the origi-
nal precedence constraints in terms of three subtasks
{74, Tb1, To2}, which are constructed from the task 7.
Recall that 7317 and 735 are copies of 73, which result
from applying deadline postponement to the state-
update component of 7. Here, we let 7% denote the
instance of task 7 at the k** period.

(CL) 7 < 74 and (C2) 7, < Tbkl+1
(C3) 72k < Tbkl and (C4) 728+ < 7'67“2

(C5) 7k < 72641 and (C6) 7f, < r2F+Y

The rate-monotonic scheduling algorithm can eas-
ily ensure constraints C1 and C2 via a tie-breaking
scheme, in which when two tasks have the same pri-
ority, the task with an earlier deadline (also an earlier
period start time) is favored. Also, it guarantees con-
straints C3 and C4, since 7, has a higher priority than

both 71 and 733. However, a pure rate-monotonic
priority assignment cannot guarantee constraints Ch
and C6 without sacrificing schedulability. Such a case
happens when task 731 (or 72) has not finished dur-
ing the first half of its period. This problem leads to
a dynamic modification to rate-monotonic scheduling
called priority exchange.

The priority exchange scheme enables two phased,
harmonic tasks to preserve our necessary precedence
constraints during their execution. We present the
mechanism with the tasks 7, and 737 where p, and py;
respectively denote their priorities.?

e When a period of 7, starts in the middle of T},
and if 757 has not yet finished its execution, then
Tp1 exchanges its priority with 7,. Also, a count-
down timer gets set to Cy.

e The timer is only decremented (1) if it has been
set, and (2) if 71 or 74 are running with priority
pq- That is; if either 737 or 7, get preempted by
a higher priority task, the timer is temporarily
stopped.

e If 71 finishes before the timer expires, then 7, is
restored to its original priority p,.

e When the timer expires, the currently running
task gets pp1 as its priority, and proceeds.

The last case induces a subtle situation, which de-
serves further explanation. Consider a scenario in
which the timer expires while 737 is running. Accord-
ing to the protocol, 77 is restored to its original pri-
ority of pp1, and it proceeds. Then, at some time af-
ter 131 finishes, both 7, and 72 may be in the ready
queue. Constraints C3 or C4 mandate that 7, exe-
cutes first. However, the protocol achieves the desired
effect: although 7, inherited the priority of 71, by the
tie-breaking scheme 7, is dispatched first.

The implementation of the priority exchange
scheme requires one countdown timer for each “fam-
ily” of slices, e.g., T4, 71 and 2. However, the count-
down timers for all such “families” of tasks can eas-
ily be managed by only one programmable hardware
timer — a standard component in most systems. Also,
the priority exchange scheme can easily be achieved
by a slight modification to the kernel.

Our task transformation tool automatically ex-
tracts the needed precedence information for the run-
time system. Most importantly, priority exchange al-
lows us to continue utilizing standard rate-monotonic
schedulability, while guaranteeing the desired prece-
dence constraints.

2The same mechanism is applied to arbitrate between 7, and
TH2 -

4 Automatic Task Decomposition by
Program Slicing

The idea behind task decomposition is to accept
a task, and then generate its two code components
as discussed in Section 3.1. That is, one thread trig-
gers all observable events, while the other computes
the next-state update. Straightforward as it may
look, the decomposition can in reality be a very com-
plex compiler problem. Many factors make this the
case, among which are intertwined threads of control,
nested control structures, complex data dependences
between statements, procedure calls in the task code,
etc. To cope with these problems in a systematic man-
ner, we harness a novel application of program slicing
[19, 24, 25]. For the sake of brevity, we assume the
following:

e Function calls are inlined.
e Loops are unrolled.

e The intermediate code of programs is translated
into static single assignment form [2, 7].

The first assumption allows us to avoid interprocedural
slicing [8]. The next two assumptions simplify prob-
lems induced by spurious data dependences such as
anti-dependences and output dependences [1]. How-
ever, we can easily alleviate the restrictions, relying on
dependence breaking transformations, such as scalar
expansion [1]. Static single assignment is one such
transformation.

A slice of program P with respect to program point
p and variable v consists of P’s statements and control
predicates that may affect the value of v at point p.
We call a pair (p, v} a slicing criterion, and denote its
associated slice by P/(p,v). The result is that we can
just execute the slice P/(p,v) to obtain the value of
v at location p. Recall our periodic controller task of
Figure 5, which we call P.operol. The following frag-
ment is the slice Peontrol/(€0t, state) where eot is a
pseudo-location at the end of the loop body.

every 25ms

{

L1: receive(Sensor, data);
L2: if (Inull(data))

L3: t1 = Fl(state);
L4: t2 = F2(state);
L5: t3 = F3(data);
L9: state = t1 x (2 + t3);
}
}

Statements L1, L3, L4, L5 and L9 are included in the
slice, because variable “state” depends on their com-
putations (this is called data dependence). Also, the
predicate on line L2 is included, because the execu-
tion of statements L3, L4, L5 and L9 (hence the value
of “state”) depends on the boolean outcome of the
predicate (this is called control dependence).

Thus the computation of slices is based on data
dependence as well as control dependence. In this re-
gard, using a program dependence graph [4, 8, 19] is
ideal, since it represents both types of dependences
in a single graph. The program dependence graph is
defined as follows.

Definition 4.1 The program dependence graph is a
directed graph G = (V, E), where

e The vertices V represent the task’s statements;
i.e., assignments, control predicates and observ-
able statements (such as send and receive). In
addition there is a distinguished vertex “entry,”
which represents the root of the task.

e The edges E are of two sorts. An edge n; — ny
denotes a control dependence between n; and ns.
That is, either (1) ny is an entry vertex and ng
is not nested within any loop or conditional, or
(2) ny represents a control predicate and ng is
immediately nested within the loop or conditional
whose predicate is represented by n;. An edge

ny LY ny denotes a data dependence. That is
(1) ny defines variable v, and ny uses v, and (2)
control can reach ns after n; via an execution
path along which there is no redefinition of v.

In general, we can further classify ny 4, nq as either
loop independent or loop-carried. A data dependence
is carried by a loop if the execution path between n;
and n» includes a backedge to the loop header, and
both n; and nq are enclosed within the loop.

Finally, we define “p =. ¢” to mean that node p
can reach node ¢ via zero or more control dependence
edges or data dependence edges. O

The program dependence graph of our controller
program is shown in Figure 9. Note that loop-carried
dependences caused by “state” exist in the program
dependence graph, even if there is no inner loop in the
program: they derive from a loop-like nature of peri-
odic tasks. We call these dependences periodic loop-
carried dependences.

The slice of program P with respect to program
point p and variable v (i.e., P/{p,v)) can be obtained
through a traversal of P’s program dependence graph.
A simple algorithm to compute the slice is given below.

@ ——— control dependence

—_— data dependence
—_— loop carried dependence
receive(—, data) if('null(data))

e

Figure 9: Program Dependence Graph.
@ ——— control dependence

—_— data dependence
—_ loop carried dependence
— if(tnull(data))

Figure 10: Slice of Program Dependence Graph.

In the algorithm the program point p corresponds to
a vertex of G.

Algorithm 4.1 Computes the slice P/{p,v):

Step 1 Compute reaching definitions RD(p,v)
such that for any vertex n € RD(p,v), the
statement n defines variable v, and control
can reach p from n via an execution path
along which there is no redefinition of v.

Step 2 Compute the slice by a backward traver-
sal of G such that
P/(p,v) ={m|3In € RD(p,v) : m =, n}.

The definition of the program slice can be extended for

a set of slicing criteria C' in such a way that P/C =

U(p,v)EC P/(p’ U)'

Figure 10 shows the graph that results from taking

a slice of the program dependence graph in Figure 9

with respect to criterion (eot, state), where eot is an

imaginary vertex representing the end of the task.
The most essential part of our task decomposition
algorithm is to pick the right slicing criteria so that the
resulting slices of a task “cover” all behaviors of the
original task. To meet the requirements of the algo-
rithm in Figure 8, which drives the decomposition, we
use the two following sets of slicing criteria for task 7.

(1) Set C,(7) of all slicing criteria (o, var(o)) where
o is an observable operation which occurs in task

7’s code, and var(o) is a variable® appearing in o.

(2) Set Cy(7) of slicing criteria (eot, s) where s is a
state variable in 7. In a periodic task, a state
variable is defined to be a variable which causes
a periodic loop-carried dependence.

From the viewpoint of our application domain, this
decomposition is correct if the two slices Co(7) and
Cs(7) preserve the task 7’s original behavior. In other
words, if the two slices are scheduled to maintain their
precedence constraints, then for any initial state s, all
original observable behaviors are exhibited by C,(7T)
and Cs (7). The following facts ensure that this is true:

e Variables defined in task 7 can be classified into
two classes: (1) variables which affect observable
output operations through data dependences, pe-
riodic loop-carried dependences and/or control
dependences; and (2) variables which do not af-
fect output.

o All statements defining class (1) variables are in-

cluded in 7/C, or 7/C5.

o All statements defining a type (2) variable can
be deleted, since they do not change the original
observable behaviors.

Using the two criterion sets, the task decomposition
algorithm is given below:

Algorithm 4.2 Decompose task T into 1, and 1

Step 1 Compute C,(7) and slice task 7 with re-
spect to C,(7). Then the generated slice
7/C,o(T) becomes 7.

Step 2 Compute Cs(7) and slice task 7 with re-
spect and Cy(7).

Step 3 Delete from 7/Cs(7) non-conditional
statements common to both of the slices.
The remaining code becomes .

Recall the source code of 73, as shown in Figure 5.
Establishing our slicing criteria, we find that C,(73) =
{(L1,data), (L8, cmd)}, and C,(73) = {(L10,state}}.
Figure 6 shows the slice 7/C,(7) as subtask 73,. The
original slice 7/C,(7) was given earlier in this subsec-
tion as an introductory example, while the subtask 73;
in Figure 6 shows the final result of removing common
statements L1 and L3 from 7/C;(7).

3For notational convenience, we assume that each observable
operation has at most one variable.

5 Conclusion

In this paper we have presented (1) a new real
time programming language, TCEL, whose semantics
is based on the interrelationships between observable
events; and (2) a compilation technique which auto-
mates task tuning operations for enhanced schedula-
bility.

There have been several other compiler-based ap-
proaches to real-time programming. In [22] a schedu-
lability analyzer is embedded in a compiler to extract
and analyze timing information from the assembly-
language output. In [6] a compiler classifies applica-
tion code on the basis of its predictability and mono-
tonicity, and creates partitions which have a higher
degree of adaptability. In [18] a partial evaluator is
applied to a source program, which produces resid-
ual code that is both more optimized and more deter-
ministic. In [17] time-critical statements (or events)
are assumed in the underlying programming language,
and used for developing the notion of safe real-time
code transformations. Based on this notion of safety, a
large number of conventional code transformations are
examined, and then classified for application in real-
time programming. Finally, in [7] a code scheduling
algorithm is presented, which is used to achieve the
timing consistency of sequential real-time programs.
Each of these efforts addresses a different problem as-
sociated with real-time programming.

The work in [17] comes closest to this work, in that
the timing behavior of real-time programs is described
in terms of events or the executions of time-critical
statements. Unlike the semantics for TCEL, however,
the execution times of non-time-critical statements are
not explicitly decoupled from timing constraints im-
posed on the events. Thus, the applicability of some
transformations may be unnecessarily restricted.

The compiler-assisted scheduling approach in [6] is
also similar to this work, in that the compiler creates
code partitions to mainly support run-time adaptabil-
ity of a real-time scheduler. However, the partition-
ing is guided by “hints” supplied by the program-
mer. Further, it is limited to code segment breaking.
Our transformation, on the other hand, uses static
dataflow analysis to isolate intertwined threads of con-
trol.

Also, the partial evaluator in [18] is tangentially re-
lated to program slicing, in that both techniques spe-
cialize programs. However, our approach also decom-
poses programs — producing multiple specialized ver-
sions for different variables and inputs. In this man-
ner, the program slicer can adapt to a given scheduling
technique. The partial evaluator, on the other hand,
manages problems such as program analysis and eval-

uation.

While our focus here is on rate monotonic schedul-
ing, our transformation techniques are not necessar-
ily confined to a particular scheduling paradigm. For
example, task decomposition by program slicing can
allow the state-update subtask to fill the delay which
occurs before a “send” operation in a periodic task.
This transformation can optimize out waiting time
due to a synchronization requirement and thus, uti-
lize the potentially wasted cycles. This, in turn, may
enhance the schedulability of the entire task set. In
the same manner, our semantics-based compiler trans-
formations will be even more beneficial for schedulers
that handle periodic tasks with inserted offsets [23].

References

[1] F. Allen, B. Rosen, and K. Zadeck. the forthcoming Opti-
mization in Compilers. Addison Wesley Publishing Com-
pany, 1992.

[2] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
F. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transac-
ttons on Programming Languages and systems, 9:319-345,
July 1987.

[3] B. Dasarathy. Timing constraints of real-time systems:
Constructs for expressing them, method for validating
them. IEEE Transactions on Software Engineering,
11(1):80-86, January 1985.

[4] J. Ferrante and K. Ottenstein. The program dependence
graph and its use in optimization. ACM Transactions
on Programming Languages and systems, 9:319-345, July
1987.

[5] J. Fisher. Trace scheduling: A technique for global mi-
crocode compaction. IEEE Transactions on Computer,
30:478-490, July 1981.

[6] P. Gopinath and R. Gupta. Applying compiler techniques
to scheduling in real-time systems. In Proceedings IEEE
Real-Time Systems Symposium, pages 247-256. IEEE, De-
cember 1990.

[7] S.Hong and R. Gerber. Compiling real-time programs into
schedulable code. In Proceedings of the ACM SIGPLAN
’98 Conference on Programming Language Design and Im-
plementation. ACM Press, June 1993. SIGPLAN Notices,
28(6):166-176.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graph. ACM Transactions on
Programmaing Languages and systems, 12:26-60, January
1990.

[9] Y. Ishikawa, H. Tokuda, and C. Mercer. Object-oriented
real-time language design: Constructs for timing con-
straints. In Proceedings of OOPSLA-90, pages 289298,
October 1990.

[10] F. Jahanian and Al Mok. Safety analysis of timing proper-
ties in real-time systems. IEEE Transactions on Software
Engineering, 12(9):890-904, September 1986.

[11] E. Kligerman and A. Stoyenko. Real-time Euclid: A lan-
guage for reliable real-time systems. IEEE Transactions
on Software Engineering, 12:941-949, September 1986.

(12]

(13]

(14]

(16]

(17]

18]

(19]

(20]

(21]

(22]

[23

(24]

(25]

(26]

(27]

J. Krause. GN&C domain modeling: Functionality re-
quirements for fixed rate algorithms. Technical Report
(DRAFT) version 0.2, Honeywell Systems and Research
Center, December 1991.

I. Lee and V. Gehlot. Language constructs for real-time
programming. In Proceedings IEEE Real-Time Systems
Symposium, pages 57-66. IEEE, 1985.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior. In Proceedings IEEE Real-Time Systems
Symposium, pages 166-171. IEEE, December 1989.

K. J. Lin and S. Natarajan. Expressing and maintaining
timing constraints in FLEX. In Proceedings IEEFE Real-
Time Systems Symposium. IEEE, December 1988.

C. Liu and J. Layland. Scheduling algorithm for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46-61, January 1973.

T. Marlowe and S. Masticola. Safe optimization for hard
real-time programming. In Second International Confer-
ence on Systems Integration, pages 438—446, June 1992.

V. Nirkhe. Application of Partial Evaluation to Hard Real-
Time Programming. PhD thesis, Department of Com-
puter Science, University of Maryland at College Park,
May 1992.

K. Ottenstein and L. Ottenstein. The program dependence
graph in a software development environment. In Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development
Environments, pages 177-184, May 1984.

C. Park and A. Shaw. Experimenting with a program tim-
ing tool based on source-level timing schema. In Proceed-
ings IEEE Real-Time Systems Symposium, pages 72—81.
IEEE, December 1990.

L. Sha, J. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritized preemptive scheduling. In
Proceedings IEFEE Real-Time Systems Symposium, pages
181-191. IEEE, December 1986.

A. Stoyenko. A schedulability analyzer for real-time Eu-
clid. In Proceedings IEEE Real-Time Systems Symposium,
pages 218-227. IEEE, December 1987.

K. Tindell. Using offset information to analyse static pri-
ority pre-emptively scheduled task sets. Technical Report
YCS 182 (1992), Department of Computer Science, Uni-
versity of York, England, August 1992.

G. Venkatesh. The semantic approach to program slicing.
In Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation, June
1991.

M. Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, 10:352-357, July 1984.

V. Wolfe, S. Davidson, and I. Lee. RTC: Language support
for real-time concurrency. In Proceedings IEEE Real-Time
Systems Symposium, pages 43-52. IEEE, December 1991.

N. Zhang, A. Burns, and M. Nicholson. Pipelined pro-
cessors and worst case execution times. The Journal of
Real-Time Systems, 5(4), October 1993. To appear.

