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he demand for real-time systems increases with the demand for time- 
critical applications such as multimedia, robotics, factory automation, 
telecommunication, and air traffic control. Traditional programming 

languages do not support real-time systems development. They have neither the 
analytical techniques for modeling systems accurately nor the explicit specifica- 
tions for timing constraints. 

By providing high-level abstractions of program modules, the object-oriented 
paradigm makes it easier to design and develop applications. However, the object- 
oriented model and its implementing languages typically offer no more support for 
real-time programming than traditional languages do. 

We have developed an extended object-oriented model -the real-time object 
model. It encapsulates rigid timing constraints in an object. We have also designed 
and implemented RTC++, a programming language that extends C++ on the basis 
of the real-time object model. 

Basic issues 

Schedulability analysis. A system is said to be schedulahle if it meets all deadlines 
of a task set. One major difficulty in building a real-time system is the lack of good 
techniques for analyzing schedulability. 

Schedulability analysis lets a program designer predict (under certain condi- 
tions) whether given real-time tasks can meet their timing constraints. It requires 
a bound on the execution time of each task. To meet this requirement, the system 
must avoid priority inversion problems that occur when a higher priority task must 
wait while a lower priority task executes.’ For example. under priority-based 
scheduling. a low-priority task that holds a computational resource, such as a 
shared lock, blocks a higher priority task from this resource until the low-priority 
task completes. If several tasks of intermediate priority lie between the lower and 
higher priority tasks. the blocked high-priority task must wait for a period bounded 
only by the number of medium-priority tasks. This problem makes it very difficult 
to put an accurate bound on task execution times. 

Specifying rigid timing constraints. Conventional real-time programs do not 
explicitly describe timing constraints in the program text. Instead, they describe 



them in a separate timing chart or doc- 
ument. This makes it difficult to enforce 
timing constraints or detect timing er- 
rors during compile time or runtime. 

Moreover. current systems pose diffi- 
culties in specifying the timing charac- 
teristics of a periodic task. Languages 
or operating systems often use the dura- 
tion of a delay statement to implement 
a periodic task. However. this can lead 
to an inaccurate value for the waiting 
time. For example. consider the follow- 
jng program written in Ada: 

1 loop 
2 -.. body of cyclic activity . 
3 dtime := nexttime - currenttime: 
4 delay dtime: 
5 end loop 

The execution of the statement at 
line 3 is not an atomic action. so the 
dtime variable may have a wrong val- 
ue. For example, if the program’s ex- 
ecution is suspended after currenttime 
is evaluated and resumed later. dtime 
is calculated with the incorrect value 
of currenttime. So the program might 
be delayed too long in the delay state- 
ment. 

This delay problem and other issues 
related toreal-time programming in Ada 
are addressed in a proposal for the com- 
ing Ada standard. Ada 9X.’ 

Scheduling approach 

Many developers use the cyclic exec- 
utive to predict timing correctness for 
real-time systems with periodic tasks’ 
(see the sidebar on scheduling). This 
approach offers a framework for sched- 
uling periodic tasks, but it has some 
problems. First, a programmer must use 
toolsfordeterministicscheduling. These 
tools require much insight into timing 
requirements and program structure. 
Sometimes, a task’s structure must be 
changed to satisfy the timing constraints: 
for example, a single logical task might 
be split into two parts that fit better into 
the timing structure. 

Second, programs built with the cy- 
clic executive are very difficult to ex- 
tend or modify. Changes tend to violate 
timing structure and constraints that 
were tuned to specific characteristics of 
the original problem. 

Instead of the cyclic executive, our 
approach employs the rate monotonic 
scheduling analysis.” Rate monotonic 

Scheduling 

Two major approaches to developing schedulable real-time systems domi- 
nate the current state of the art. 

The cyclic executive. This approach performs a sequence of actions dur- 
ing fixed periods of time. The execution is divided into two parts. The major 
cycle schedules computations to be repeated indefinitely. The major cycle is 
composed of minor cycles. A programmer divides each task into subcompo- 
nents so that the execution of each subcomponent fits into the minor cycles 
in a way that satisfies the timing constraints. In other words, this program- 
ming style forces a programmer to schedule programs using static analysis 
tools with some manual scheduling or reprogramming to ensure predictable 
execution timing. 

Rate monotonic scheduling. This approach uses a preemptive fixed-pri- 
ority scheduling algorithm that assigns higher priority to tasks with shorter 
periods. The CPU utilization of a task i, U(i), is calculated by U(i) = C(i) I 
T(i), where C(i) and T(i) are the execution time and period of task i, re- 
spectively. 

Assume a tasks deadline is the same as its period. Its CPU utilization is 
schedulable up to 100 percent in the case of a harmonic task set where all 
periodic tasks start at the same time and all periods are harmonic. In the 
general case, n independent periodic processes can meet their deadlines if 
the following formula holds: 

g&(2”” -1) 

This formula is very simple but pessimistic: A task set that does not satisfy 
this condition may or may not be schedulable. There is a more precise 
schedulability analysis of the rate monotonic algorithm (see references 1 
and 5 in the main article). However, in this article, we use this pessimistic 
formula for simplicity. 

scheduling uses a preemptive fixed-pri- 
ority scheduling algorithm that assigns 
higher priority to the tasks with shorter 
periods. With this algorithm. the sched- 
ulability of a given task set is analyzed 
by applying a closed formula (see the 
sidebar on scheduling). 

Rate monotonic scheduling does not 
require programmers to split tasks by 
hand as the cyclic executive does, but 
the tasks must be preemptive and there 
is some penalty for context-switch over- 
head. Critical regions that require mu- 
tual exclusion interfere with the pre- 
emptability constraint of rate monotonic 
analysis. and the resulting potential for 
priority inversion must be accounted 
for. 

Therefore, our approach employs the 
priority inheritance protocol’ to bound 
the duration ofpriority inversion. In the 
priority inheritance protocol. if a task 
has to wait for the completion of a lower 
priority task’s execution. the low-prior- 

ity task’s priority is temporarily changed 
to the priority of the higher task. Thus, 
tasks of intermediate priority cannot 
disturb the execution of the lower pri- 
ority task. This lets us bound a task’s 
blocking time (that is, the time a task 
spends waiting for a resource, such as a 
mutual exclusion lock, to become avail- 
able). Note that the term inheritance as 
used in priority inheritance protocol has 
no relation to the inheritance of objects 
in the object-oriented methodology. 

Using the priority inheritance proto- 
col under rate monotonic scheduling, 
all periodic tasks meet their deadline if 
the following formula holds’? 

C(l) C(n) 
i 
B(1) -++..+-+max -,..., 

T(1) T(n) T(l) 

where C(i), T(i). and B(i) are the execu- 
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tion time, period, and blocking time, 
respectively, of the task i and n is the 
number of tasks. In this formula, a task 
whose subscript is smaller has a shorter 
period and a higher priority. To use 
these methods effectively for schedul- 
ing analysis, we need a good methodol- 
ogy to specify the execution and block- 
ing times (due to both synchronization 
and communication) in the program text. 

Real-time object model 

Timing encapsulation. The real-time 
object model extends the object-orient- 

ed model to describe real-time proper- 
ties in programs. In the real-time object 
model, active objects with timing con- 
straints describe a system, together with 
their interaction through message pass- 
ing. Such an active object is called a 
real-time object. 

An active object, as described here, 
has one or more threads that can be 
executing when a message arrives. Var- 
ious message-passing schemes have been 
introduced to describe concurrency 
among objects in object-oriented con- 
current programming.(’ Figure 1 illus- 
trates the typical execution flow be- 
tween active objects. The sender object 

Sender object 

Figure 1. Execution flow between active objects. 

Figure 2. An example of real-time objects. 
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at (1) sends a message to the receiver at 
(2) and waits for the reply message. 
After the execution of (3) in the receiv- 
er, the receiver sends a reply message at 
(4). Then both the sender and receiver 
objects execute concurrently at (5) and 
(6). 

Nonpreemptive object. A nonpre- 
emptive real-time object consists of in- 
ternal data, operations called methods 
with timing properties, and a thread. 
We call the object nonpreemptive be- 
cause the object performs the senders’ 
requests sequentially and cannot inter- 
leave the execution of various requests. 
The following notation describes the 
timing properties of objects in the real- 
time object model: 

=&z(o) is the set of methods in an 
object o. 

l C(m, o) is the worst case execution 
time (not including blocking time) of 
method m of object o. 

l Ms(m, o) is the multiset of other 
objects’ methods called by method m of 
object o. 

Figure 2 shows an example of real- 
time objects. Object 0, has method M,, 
whose worst-case execution time is 55 
milliseconds. Object 0, has method M,, 
whose worst-case execution time is 30 
milliseconds. Object 0, has three meth- 
ods, M,,, M,,, M,,, whose worst-case 
execution times are 30,20, and 30 milli- 
seconds, respectively. An arrow indi- 
cates an object’s invocation sequence. 
Method M, in object 0, invokes meth- 
ods M,, and Mjz in object O,, while 
method M, in object 0, invokes method 
M,, in object 0,. 

By using the information about tim- 
ing and execution dependency, we can 
analyze the timing constraints of the 
program as follows: Because M, of 0, 
calls two methods (Mi, and M,,) in O,, 
the worst case execution time of M, 
must be greater than the summation of 
the worst-case execution times of M,, 
and M,,. Moreover, the worst-case exe- 
cution of M, must be greater than the 
worst case execution of M,,. That is, 

C(M,, 0,) ’ C(M,,, 0,) 
+ C(M,,, 0,) -3 55 > 30 + 20 

C(M,, 02) > C(M,,, 0,) + 30 > 20 

One advantage of this model is that 
the schedulability of a task set is easily 
analyzed under the rate monotonic 
scheduling as described in the sidebar 
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on scheduling. Another advantage is 
that a reusable object is easily built for 
real-time applications. For example, we 
can provide a real-time object library 
such that several objects have the same 
functionality with the same interface 
but with different timing constraints, 
arising from their internal algorithms. 
Programmers can choose an object from 
the real-time library that fits their tim- 
ing constraints. 

Preemptive object. Nonpreemptive 
real-time objects can suffer from prior- 
ity inversion due to blocking at an ob- 
ject invocation (see the sidebar on pri- 
ority inversion in an active object). TWO 
ways to reduce the blocking time are 
concurrent execution in the object or 
the abort-and-restart methodology.’ 

An object can execute requests con- 
currently if it has multiple threads, each 
of which is responsible for some meth- 
ods. However, this doesn’t eliminate 
blocking time due to the synchroniza- 
tion of internal data in an object. In the 
abort-and-restart methodology, if a pro- 
cess is going to be blocked at the request 
of an object, the current execution of 
the object is aborted. When the execu- 
tion is aborted, the object is responsible 
for maintaining the consistency of the 
data. This methodology should be ap- 
plied if the abort, recovery, andrequeue- 
ing cost is less than the blocking cost. 
For simplicity, we do not consider the 
abort-and-restart methodology here. 

The real-time object model can de- 
scribe objects with multiple threads.” 
Each thread is responsible for perform- 
ing one or more methods. A collection 
of threads may be responsible for the 
same set of methods, in which case the 
threadsconstitute a thread group.‘Real- 
time objects with multiple threads are 
called preemptive objects. A preemp- 
tive object is described using the follow- 
ing notation in addition to the notation 
of the nonpreemptive object: 

l G(i) is thread group i (that is, the set 
of thread numbers), where Vi,j,i#j,G(i) 
n GO’) = 4. 

l Gm(m, o) is a thread group that 
executes the method. 

l Mr(m. o) is the multiset of pairs of 
critical region and its worst-case execu- 
tion time in the method. 

Let us say 0, is a preemptive object 
instead of a nonpreemptive object. As 
shown in Figure 3, threads Th, and Th2 
are responsible for executing methods 

Priority inversion in an active object 

Figure A shows an example of priority inversion in an active object. Sup- 
pose we have a server object S and client objects L and H where L’s priority 
is lower than H ‘s. If the sewer is executing for L as a result of a request re- 
ceived from client L and client H sends a message to S, client t-f ‘s request 
is postponed until the server’s execution for client L finishes. Because H ‘s 
priority is higher than L’s but processing for L precedes processing for H, we 
have a case of priority inversion in the server. 

Moreover, if we assume that another object A4 is running independently 
with a medium priority, effectively bounding the execution time of H requires 
S to run with no interference from M whenever H is waiting for S ‘s reply. 
Thus, the priority of S has to change based on the highest priority of the re- 
quests waiting for service. This scheme for dynamically adjusting the priori- 
ties is called the priority inheritance protocol. 

Lower priority 

Higher priority 

(1) L sends a message to S. 
(2) S begins processing L’s request. 
(3) H sends a message to S. Figure A. Prior- 

ity inversion in 
an object. 

Figure 3. Preemptive object 0,. 

Th - - - - - - + M : Thread Th is responsible for executing method M 
M VYVVVVY Cr : Method M accessing critical region Cr 

WO,) = I&,, Mm MA 
C(M,,, 0,) = 30 
G(1) = (W, Tf%) 
Gm(Mp,, 0,) = G(1) 
MW,,, OJ = {(Cr,, WI 

C(M,,, 0,) = 20 
G(2) = (T&l 
Gm(M,,, 0,) = G(1) 
MrW,,, 0,) = ((Cr,, lo)1 

C(M,,, 0,) = 30 

GmP,,, 0,) = G(2) 
MrW,, 04 = KCr,, 911 
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Active object scheduling analysis 

Suppose we have a real-time system composed of peri- 
odic tasks, active objects called by those tasks, and other 
independent active objects - all executing on a single 
CPU machine. We also assume that all method-calling se- 
quences to other objects can be detemined statically and 
that there are no recursive calls or unbounded iterations. 

A periodic task has its period and deadline specified as 
timing properties. The task set is described by several ob- 
jects and the interaction among those objects. Thus, a pe- 
riodic task is defined as follows: 

l T(n) is the period of task n. 
l D(n) is the deadline of task n. 
l MS(n) is the multiset of other objects’ methods called 

by periodic task n. 

Nonpreemptive object. Figure B shows an example where 
periodic tasks send messages to the objects defined in Figure 
2 of the main text. The system task Timer is defined to handle 
task scheduling. The context-switch overhead is accumulated 
in the execution of the Timer. To analyze the schedulability of 
this example under rate monotonic scheduling, we prioritize 
the tasks Timer, f,, f2, and P3 as highest, high, middle, and 
low, respectively. This priority corresponds to the shortest to 
longest task periods. 

We analyze the worst-case execution time of each task first. 
This is easy to do because each of an object’s methods has 
timing constraints. The worst-case execution of P, is 85 milli- 
seconds because it calls two methods, M, of 0, and r\A, of 4, 
whose worst-case execution times are 55 and 30 milliseconds, 
respectively. In the same way, we determine that the worst- 
case execution times for P2 and P3 are 30 milliseconds each. 

Deadline = 250 ms 

Period = 300 ms 
Deadline = 300 ms 

Period = 400 ms 
Deadline = 400 ms 

Timer 

0 
Period =lOms 
Deadline = 10 ms 
Exection time = 1 ms 

T(P,) = 250 D(P,) = 250 Ms(P,) = ((43 O,L (kO*)l 
T(P,) = 300 D(P,) = 300 Ms(P2) = (W,! 411 
T(P,) = 400 D(P,) = 400 Ms(P3) = ((4 4)l 

Figure B. A task set. 
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Second, we analyze the blocking time of all tasks ex- 
cept for the lowest priority task. In other words, we deter- 
mine the tima each task must wait for synchronization or 
communication with other activities. There are two cases 
where the execution of P, is blocked due to f2. One case 
is when P2 has called method M2 of OZ and then P, tries to 
call the same method. In this case, the worst-case block- 
ing time of P, is 30 milliseconds because the request can 
be postponed until the execution of M2 is finished. 

The second case, is when Mm of 0, has been called by 
M2 under P;s request and later 0, calls M,, or & under 
f,‘s request. The execution of MS,, and MS cannot both be 
blocked by P2 during one period of P,. However, under the 
priority inheritance protocol, one of them can be blocked 
because the execution of P2 is temporarily given the high- 
est priority until the completion of 4’s M,. After P2 exe- 
cutes, it cannot disturb P,. Thus, the blocking time at OS is 
20 milliseconds. 

P2 can block the execution of P, at OZ for 30 millisec- 
onds and at OS for 20 milliseconds. However, if P2 blocks 
P,‘s execution at Mzr then P2 also blocks the execution of 
M2 for P, during one period of P,. Thus, we estimate that 
30 milliseconds is the worst-case blocking time of P, due 
to P2. 

Let us consider the relation between P, and P3 in terms 
of blocking time. P, can be blocked by P3 when P, calls 
M,, or Mm of Oa during the execution of MS under P3(s re- 
quest. Here, the worst-case blocking time of P, is 30 milli- 
seconds because the execution time of 4’s MS is 30 mil- 
liseconds. 

To summarize this analysis of P,, the blocking time of 
P, is 60 milliseconds - 30 milliseconds due to P2 and 30 
milliseconds due to Pa. In this way, we can estimate other 
blocking times. The execution of P2 can be disturbed by 
P3 at iU= of 4. The worst-case blocking time of f2 is 30 
milliseconds. 

Table A summarizes the timing analysis. Using the table 
we can analyze the schedulability of the task set under 
rate monotonic scheduling by applying formula (1) from 
the main text: 

C(Timef) C(l) C(2) C(3) -+-+-+-+max 
T(7her) T(l) T(2) T(3) 

= 0.1 + 0.34 + 0.1 + 0.075 + max(0.24, 0.1) 
= 0.655 > 3(2’” - 1) = 0.760 

Thus, using this simple (pessimistic) test, we cannot 
guarantee the schedulability of this task set under rate 
monotonic scheduling. 

Preemptive object. Suppose we replace object 0, de- 
scribed above with another implementation that is pre- 
emptive (as defined in Figure 3 of the main text). To ana- 

fable A. Timing information for Figure B (in millieeco~de) 

Execution C/T Blocking BIT 
(Cl (4 

10 1 0.100 0 0 
250 85 0.340 60 0.24 
300 30 0.100 30 0.10 
400 30 0.075 0 0 

Table B. Timing information for Figure B with preem&e 
object (in miilisecqtde) 

Process Period Deadline Execution C/T Blocking B/T 
(T) (0) (6) 

Timer 10 10 1 0.100 0 0 
1 250 250 85 0.340 39 0.156 
2 300 300 30 0.100 9 0.030 
3 400 400 30 0.075 0 0 

lyze the schedulability of a task set with this object, we mod- 
ify the implementation of object OS without changing the ei- 
ecution time. The execution times of all tasks are the same 
as in the previous example. 

Now we estimate the blocking time of P, and P> P,‘s 
blocking time due to P2 does not change, because P, calls 
M2 of 4, which calls 0,. So the blocking time of P, by P2 is 
still 30 milliseconds. The blocking time of P, due to P3, how- 
ever, changes to 9 millis.econds because the method MS 
blocks only for the duration of the critical region shared in 
0,. Thus, the blocking time of P, is39 milliseconds - 30 
milliseconds for f2 and 9 milliseconds for Pp f2’s blocking 
time is also reestimated as 9 milliseconds., 

Table 6 shows the results of this analysis. Using the table 
we can analyze the schedulability of the task set under rate 
monotonic scheduling as follows: 

C(Tkrter) C(l) C(2) C(3) -+-+-+-+max 
T(Timer) T(1) T(2) T(3) 

= 0.1 + 0.34 + 0.1 + 0.075 + max(0.156, 0.03) 
= 0.771 < 3(21R - 1) = 0.780 

The result shdws that the task set is guaranteed schedu- 
labie. 
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1 active class 03 { 
2 mivate: 
3 - /I private data definition 

7 int m33(flbat r) b4xmd(Ot3Om); 
8 activity: 
9 slave[2] m3l(char*, int), m32(char*, int); 
10 slave mS(fl0at f); 
11 I; 

Figure 4. A  real-time object in RTC++. 

1 When a new message for those methods 
arrives and the sender’s priority is high- 
er than the current thread’s priority, the 
thread’s priority is changed to the high- 
er priority, and the message is enqueued 
at the head of the priority queue. 

Figure 5 shows an example of a peri- 
odic task in RTC++. The master thread 
in line 6 is declared to specify the peri- 
odic task within an active object. The 
syntax of the cycle clause is as follows: 

cycle(<start-time>; <end-time>; 
<period>; <deadline>); 

In Figure 5, <start-time> and <end- 
time> are unspecified, so those con- 

I ! straints are free, and Ot200 indicates a 

I 
r:-,. A  .._^ *:,... -F?rm 

1 ar -:lliseconds. There- 
c) mill iseconds and 

;tive class Pl ( 
L private: 
3 I! private date definition 
4 void main( ); 
5 activity: 
6 master main0 cycle{@ 0; Ot200; Ot2QO); 
7 1. 

Lllllt; UUI au”,, “I L”” 1111 
fore, the period is 200 
the deadline coincides with the period. 

Timing specification. Two types of 
timing information must be specified in 
RTC+t: execution time and deadline 
time. RTC+t allows us to specify this 

I 
Figure 5. A  periodic task in RTC++. 

’ timing information by using the Bound 
and Within constructs. The Bound con- 
struct asserts the worst-case execution 
time, while the Within construct asserts 
the deadline time. 

M,, and M,,, while thread Th, is in charge 
of performing the method M,,. Suppose 
there is one critical region inside the 
object. During the execution of method 
M,,, it accesses the critical region for 10 
milliseconds. The time of the critical 
region accessed by M,z is 10 millisec- 
onds while the time of the region ac- 
cessed by M,, is 9 milliseconds. All exe- 
cution times of methods in 0, are the 
same as they were in the nonpreemp- 
tive case. 

The sidebar on the previous two-page 
spread analyzes the schedulability of a 
nonpreemptive active object and com- 
pares it to a preemptive active object. 
The results show that a system built 
using preemptive active objects provides 
better schedulability. 

RTC++ 

A slave thread is an execution unit 
related to a method or a group of meth- 
ods. Line 10 of Figure 4 declares that 
one slave thread is dedicated to han- 
dling the M  ,? requests. Line 9 specifies 
that two threads are responsible for 
executing methods M,, and M,?. That is, 
at most two requests of either M,, or Mj2 
can be interleaved. These threads are 
called a slube thread group. 

RTC++” is an extension to C++. Its We employ the priority inheritance 
design is based on the real-time object protocol in object invocation. That is, a 
model. In addition to C++ objects, slave thread inherits the priority from 
RTC++ provides active objects. If an the sender. If there is a queue of waiting 
active object is defined with timing con- messages, the messages are ordered ac- 
straints, it is called a real-time object. cording to priority, and the priority of 
Figure 4 shows the declaration of the the slave thread is set to the highest 
active object 0,. An active object decla- priority of the invocations in the queue. 

ration is almost the same as the original 
C++ object declaration, except for the 
addition of the keyword Active before 
the keyword Class and the addition of a 
part for Activity. 

Activity part. An active object has a 
single thread by default. A  user can 
specify multiple threads, which we call 
member threads in the active object. 
Member threads are declared in the 
activity pan. of the class declaration. 
There are two types: slave and master. 

As shown in Figure 4, all methods are 
declared with the worst-case execution 
time constraint. For example, the CPU 
usage in the execution of method M,, 
must be completed within 30 millisec- 
onds. Line 6 shows that method M,, has 
a worst-case execution time of 20 milli- 
seconds and that if this constraint is 
violated at runtime, the exception han- 
dler, m32_abort, is called. 

Communication. RTC++ supports 
synchronous communication. The syn- 
tax of communication among active 
objects is the same as C++ syntax. For 
example: 

3 n = v->m31 (buf, size); 
4 Il.. 

RTC++ provides two means of send- 
ing a reply message: return and reply 
statements. In a return statement, a re- 
ply message is sent to the sender and the 
execution of the method is finished. In a 
reply statement, a reply message is sent 
and the subsequent statements are exe- 
cuted instead of finishing the execution 
of a method. 

72 COMPUTER 



I n addition to the features de- 
scribed in this article, RTC++ pro- 
vides sophisticated facilities for 

programming applications: statement- 
level timing constraints, guard expres- 
sions, critical regions with timing con- 
straints, and exception handling. 
Moreover, RTC+tprovides facilities for 
programming distributed applications. 

We think the constructs we proposed 
can be adapted to many other object- 
oriented languages besides C++. We 
have compared RTC++ with other real- 
time programming languages in a previ- 
ous paper,9 and the Ada 9X proposal2 
describes the impact of these issues on 
Ada. 

RTC++ is currently running under 
the ARTS KernellO on Motorola 
MC68030-based machines such as Sun3, 
Force Board, and Sony News. The 
RTC++ compiler generates C++ source 
programs and uses additional runtime 
support routines. w 
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