
Achieving Real-Time Communication over Ethernet with Adaptive

Tra�c Smoothing

Seok-Kyu Kweon and Kang G. Shin

Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

fskkweon,kgshing@eecs.umich.edu

Gary Workman

General Motors Tech Center, Warren, MI 48090-9040

workmangc@aol.com

ABSTRACT

Ethernet continues to be one of the most popular LAN technologies. Due to the low price and robustness
resulting from its wide acceptance and deployment, there has been an attempt to build Ethernet-based
real-time control networks for manufacturing automation. However, it is di�cult to build a real-
time control network using the standard UDP or TCP/IP and Ethernet, because the Ethernet MAC
protocol, the 1-persistent CSMA/CD protocol, has unpredictable delay characteristics. When both
real-time (RT) and non-real-time packets are transported over an ordinary Ethernet LAN, RT packets
from a node may experience a large delay due to (i) contention with non-RT packets in the originating
node and (ii) collision with RT and non-RT packets from the other nodes. To resolve this problem,
we designed, implemented, and evaluated adaptive tra�c smoothing. Speci�cally, a tra�c smoother is
installed between the UDP or TCP/IP layer and the Ethernet MAC layer, and works as an interface
between them. The tra�c smoother �rst gives RT packets priority over non-RT ones in order to
eliminate contention within each local node. Second, it smooths a non-RT stream so as to reduce
collision with RT packets from the other nodes. This tra�c smoothing can dramatically decrease the
packet-collision ratio on the network. The tra�c smoother, installed at each node, regulates the node's
outgoing non-RT stream to maintain a certain tra�c-generation rate. In order to provide a reasonable
non-RT throughput, the tra�c-generation rate is allowed to adapt itself to the underlying network
load condition. This tra�c smoother requires only a minimal change in the OS kernel without any
modi�cation to the current standard of Ethernet MAC protocol or the TCP or UDP/IP stack.

We have implemented the tra�c smoother on both the Linux and the Windows NT platforms,
demonstrating signi�cant reduction of the RT packet deadline-miss ratio when both RT and non-RT
packets are transported over the same Ethernet. More precisely, installation of the proposed tra�c
smoother on every node is shown to reduce the RT message deadline-miss ratio by two orders of
magnitude under a heavily-loaded condition, while lowering the non-RT throughput only by half.

Index Terms | 1-persistent CSMA/CD, Ethernet, real-time communication, tra�c smoothing.

The work reported in this paper was supported in part by General Motors, Warren, MI, and Lawrence Livermore Labo-
ratories under the TIMES Phase III contract.

1 Introduction

Advances in high-speed network technology have made it possible to transport various application

tra�c over data communication networks, resulting in an explosive growth of the Internet. The growth

of the Internet is creating a huge market for numerous network products related to ATM, FDDI,

Ethernet, and so on. Such commercial o�-the-shelf (COTS) network products are expanding their

application domains. For example, the manufacturing automation industry has been pursuing the use

of COTS network products for transporting control messages between PLCs (Programmable Logic

Controllers). Traditionally, proprietary networks such as Allen-Bradley's RIO (Remote Input/Output)

Network have been used in factory automation to meet the control applications' stringent real-time

requirements and deal with harsh working environments. However, the low price and the proven

stability of COTS networks have made them attractive for automated manufacturing. Although various

high-speed networks like ATM and FDDI are available, Ethernet has been drawing signi�cant interests

because of its extremely low price, maturity, and stability proven through its wide deployment and

acceptance. Despite its popularity and low-cost, Ethernet has a serious drawback when carrying real-

time control messages. In an Ethernet LAN, packets transmitted from di�erent nodes may collide

with each other. The medium access control (MAC) protocol of Ethernet, CSMA/CD (Carrier Sense

Multiple Access with Collision Detection), allows such collisions. These potential collisions make it

impossible to guarantee predictable delays in delivering packets to the local nodes.

In [1], we showed the feasibility of building a real-time control network using Ethernet by installing

a tra�c smoother at each local node. A tra�c smoother regulates the intrinsically bursty packet stream

relayed from the UDP or TCP/IP layer, making the packet stream as smooth as possible in order to

reduce the chance of packet collisions. By assuming that the smoothed tra�c follows a Poisson arrival

process, we modeled the CSMA/CD protocol with an Exponential Binary Backo� strategy as a semi-

Markov process, and derived the relationship between packet delay distribution and network utilization.

Based on the results obtained, we were able to provide a statistical bound on the deadline-miss ratio

over Ethernet by keeping the network utilization under a certain limit, called the network-wide input

limit . To keep network utilization under the network-wide input limit, we assigned a portion of the

network-wide input limit to each local node, and made each local node limit its packet generation

rate under its assigned portion. We called the node's portion of the network-wide input limit the

station input limit and installed a tra�c smoother at the node to enforce it. Through an experimental

study, we demonstrated the e�ectiveness of the tra�c smoothing approach in providing soft real-time

2

communication over Ethernet. This tra�c smoothing approach, however, was in
exible and hence

unscalable for the following reason. In that approach the network-wide input limit is �xed once we are

given packet deadline and tolerable packet-loss (or deadline-miss) ratio. So, the station input limits

must be reduced as the number of local nodes increases within the same LAN. The smaller the station

input limit gets, the smaller throughput provided to non-RT tra�c. (Note that real-time tra�c is not

a�ected, as only non-RT tra�c is smoothed [1].) Non-RT packets may experience very large delays

when a very small station input limit is assigned to a local node, as discussed in the next section.

In this paper, we propose an adaptive tra�c smoothing approach to overcome the scalability prob-

lem of the approach in [1]. By allowing each local node to vary its maximum tra�c-generation rate

depending on the current network load, the proposed approach improves its scalability signi�cantly.

Apart from this modi�cation, the proposed approach shares the same tra�c-smoothing mechanism

with the approach in [1]. The tra�c smoother is implemented as an interface between the transport

layer and the Ethernet MAC layer. This implementation minimizes the modi�cation in the current

standard network protocol. We implemented this adaptive tra�c smoother on both the Linux and

the Windows NT platforms, built testbeds, and conducted extensive experimental studies. Through

these experimental studies, we show that the adaptive approach provides much higher throughput for

non-RT packets than the non-adaptive scheme in [1], while still providing good delay characteristics

for RT packets.

Most earlier work in the area of supporting real-time communication over Ethernet focused on

modifying the Ethernet MAC sub-layer so that a bounded channel-access time may be achieved, thus

making hard real-time communication possible [2{4]. These approaches are very costly compared to

the widely-used current Ethernet standard. Venkatramani and Chiueh [5] proposed implementation

of a virtual token ring over Ethernet in order to avoid packet collision. On top of the CSMA/CD

protocol, they implemented a token-based medium access control protocol. Thus, their approach does

not require modifying any hardware but adds new protocol software. Speci�cally, it requires signi�cant

modi�cation of the OS kernel. Since token management requires a number of functionalities, e.g.,

restoration of a lost token, it may overload the OS. Our tra�c smoothing approach does not require

any new MAC protocol but rather installs an interface between the transport layer and the Ethernet

MAC layer. The only new function of the interface is to regulate the packet stream, and thus, it is

simple to implement.

Another way to bound the channel-access time is to use full duplex Ethernet switches such as IEEE

802.1p or IEEE 802.12, known as Ethernet 100VG-AnyLAN [6], instead of ordinary shared Ethernet

3

hubs. They both avoid packet collisions by eliminating the CSMA/CD MAC protocol, and thus, can

provide bounded packet-delivery delays while retaining compatibility with 10Base-T technology. In

particular, 100VG-AnyLAN can provide prioritized service to real-time packets by employing two pri-

ority queues. However, both full duplex switched Ethernet and 100VG-AnyLAN are far more expensive

than shared Ethernet LANs. At present their prices are an order of magnitude higher than shared Eth-

ernet LANs. In an automated factory, because the tra�c-generation rate of each station is, in general,

quite low compared to the link capacity, it is not economical to assign a pair of ports of a full-duplex

Ethernet switch to each individual control station. In most cases, an Ethernet switch is likely to be

used to partition a large-scale LAN into multiple sub-LANs, each of which consists of a shared Ethernet

LAN. In this environment, one must still be able to control the tra�c arrival behavior of each sub-LAN

in order to control end-to-end packet delays through the Ethernet switch. By employing our tra�c

smoothing mechanism at each sub-LAN, we can control the tra�c arrival behavior at each individual

sub-LAN, and thus can control the end-to-end delay characteristics in such a switched Ethernet.

The rest of the paper is organized as follows. Section 2 describes our previous tra�c-smoothing

approach in [1], discusses its scalability problem, and presents the adaptive tra�c smoothing approach

in procedural forms which we use to implement the tra�c smoother on the Linux OS. Sections 3 details

our experimental study with the Linux version of the tra�c smoother. In Section 4, we describe the

implementation of the tra�c smoother on the Windows NT, and present the result of its experimental

evaluation. The paper concludes with Section 5.

2 Problem Statement and Approach

In an automated manufacturing facility | a prototypical real-time control system | real-time

control messages need to be generated and exchanged among the stations in the factory. Most propri-

etary control networks scan and send I/O (Input/Output) continuously, even though the data changes

infrequently or slowly. An alternative approach is to send data only when the data has changed. An

event-driven approach for factory automation control messaging is acceptable provided the underlying

network can guarantee timely delivery of the updated data. Although the former approach is used in

most proprietary control networks, the latter approach is drawing considerable interests since it reduces

the rate of generating real-time messages. In this paper, we assume that control stations employ this

event-driven approach in generating real-time control messages. In this approach, each control station

generates at most one maximum-sized (1500 bytes) IP datagram once every several seconds (or several

4

hundred milliseconds), and hence, its rate of generating real-time control messages is very low rela-

tive to the Ethernet link capacity. Moreover, control messages arrive pseudo-periodically due to the

characteristics of the underlying control system. For example, in an automated manufacturing system,

control messages notify the end of an operation and the initiation of a new operation to a neighboring

station, and these operations are performed periodically.

Concurrently with RT control messages, bursts of non-RT tra�c are generated on an irregular

basis by controllers and the central server, mainly for the purpose of monitoring production status

and downloading programs or new setup parameters. While per-message delay is an important QoS

(Quality-of-Service) parameter for real-time applications, average throughput is also important to non-

RT tra�c. In other words, while a small delivery delay is desirable for non-RT messages, it is not

a requirement. Because of its burstiness, the arrival rate of non-RT tra�c can be quite high during

the transmission even if its long-term average tra�c arrival rate is low. For example, when only a

single station transmits a large burst of non-RT tra�c (e.g., a �le transfer) over an Ethernet LAN, the

tra�c arrival rate can reach up to 8{9 Mbps. Such temporarily high network utilization makes it very

di�cult to provide bounded delivery delays for the other stations' RT messages when both RT and

non-RT messages are concurrently transported over the same Ethernet LAN. During the transmission

of a large burst of non-RT tra�c from another station (node), RT messages may experience a large

delay because of collisions and possibly due to the capture e�ect [7].

Since our previous analysis [1] to resolve this problem was based on the boundedness of network

utilization and the assumption that the arrival process is Poisson, it is crucial to employ a tra�c

smoother at every local node. By making each local node keep its tra�c-generation rate under its

station input limit, one can keep network utilization under the network-wide input limit. We installed

the tra�c smoother between the TCP/IP layer and the Ethernet MAC (Medium Access Control) layer,

as shown in Figure 1, in order to minimize the changes in the current standard protocol stack while

achieving the good smoothing e�ect. Although installing the tra�c smoother on top of the TCP/IP

layer would be a simpler approach, the resulting smoothed packet stream would be distorted (become

burstier) due to the un-smoothed TCP/IP protocol messages in the packet stream that do not convey

application data.

When a burst of non-RT messages arrive from the TCP/IP layer, the tra�c smoother spreads them

out by enforcing a minimum packet inter-arrival time at the Ethernet MAC layer to meet the station

input limit. More speci�cally, the tra�c smoother regulates the packet stream using a credit bucket,

which is the same as the well-known leaky-bucket regulator [8]. The credit bu�er has two parameters:

5

TCP/IP

Application

Ethernet

Traffic Smoother

Figure 1: The software architecture

credit bucket depth (CBD) and refresh period (RP). CBD limits the maximum number of credits

that can be stored in the credit bucket. Up to CBD credits are added to the bucket every RP seconds.

If the number of credits exceeds CBD, over
ow credits are discarded. When a packet (IP datagram)

arrives from the IP layer, if there is at least one credit in the bucket, the tra�c smoother forwards it

to the Ethernet NIC (Network Interface Card) and removes as many credits as the size of the packet

(in bytes). When the number of available credits is smaller than the packet size, credits are allowed to

be \borrowed." So, the balance of credits can be negative. If there are no credits in the credit bucket,

the packet is held in the bu�er until one or more credits become available. By changing RP and

CBD, one can control the burstiness of a packet stream while keeping the same average throughput

guarantee. For example, if we set CBD

RP
to 312500, the average throughput guaranteed for a station

is 312.5 Kbytes/sec or 2.5 Mbps. Two possible pairs of (CBD, RP) satisfying the ratio are (1500,

0.0048) and (150000, 0.48). When (CBD, RP) = (1500, 0.0048), the maximum amount of tra�c that

can be transmitted consecutively is limited to 2999 bytes (1499 bytes plus 1500 bytes). In this case,

tra�c is smoothed with a very �ne time granularity and the worst-case tra�c arrival rate in a short

period is the same as the average tra�c arrival rate. In the other case, up to 151499 bytes can be

transmitted consecutively. Although the average tra�c arrival rate is the same, this case generates a

much burstier output and the worst-case tra�c arrival rate in a short period is much higher than the

average tra�c arrival rate. Our experimental study has shown that better real-time performance can

be achieved with �ner-granularity smoothing.

In this approach, within a local node, RT packets are given priority over non-RT packets, and only

6

non-RT packets are delayed to keep the station tra�c-arrival rate (which includes both RT and non-RT

tra�c) under the station input limit. That is, transmission of extra RT packets causes non-RT packets

to experience additional delays. RT tra�c is assumed to arrive pseudo-periodically and thus, is already

smooth as discussed earlier.

The network-wide input limit can be either equally distributed among local nodes or dispropor-

tionately distributed depending on each local node's needs. Once the station input limit is assigned to

a local node, the maximum tra�c transmission rate of the node is �xed at its station input limit by

the tra�c smoother. We call this type of tra�c smoothing �xed-rate tra�c smoothing and the tra�c

smoother is called a �xed-rate tra�c smoother . Since, however, the station input limit is calculated

based on the worst-case tra�c arrival scenario in which all the local nodes are generating tra�c at their

maximum allowable rates, it depends on the number of nodes, more precisely, the maximum number

of nodes that may generate non-RT tra�c. This raises a scalability issue. Especially, in a real-time

control network in which all the nodes do not always generate non-RT tra�c concurrently, non-RT IP

datagrams may experience excessively large delays even when overall network utilization is low. That

is, when only a few of the nodes are generating non-RT tra�c during a certain time period, the band-

width assigned to the rest of the nodes is wasted and non-RT IP datagrams experience unnecessarily

large delays.

We propose a new tra�c smoothing approach to resolve the poor scalability of �xed-rate tra�c

smoothing while still providing low delays for RT messages. In the next two subsections, we describe

the new tra�c smoother. In particular, in Section 2.2, we present the tra�c smoother in procedural

forms which is used to implement the tra�c smoother in the Linux OS. The Windows NT version of

the smoother will be presented in Section 4.2.

2.1 Adaptive-Rate Tra�c Smoothing

In order to meet the delay requirement of RT packets, we still need to regulate non-RT tra�c as

smoothly as possible and keep network utilization under a certain limit. Unlike a �xed-rate tra�c

smoother, however, our new tra�c smoother, called an adaptive-rate tra�c smoother , changes the

station input limit at each local node depending on the current network tra�c arrival rate. That is,

if network utilization by non-RT tra�c is low, those nodes generating non-RT tra�c are allowed to

increase their station input limits subject to the condition that the overall network utilization does not

cause RT packets to experience delays larger than those in the �xed-rate tra�c smoothing approach.

7

Tim
e

Tim
e

Tim
e

(c)
(a)

(b)

t
t

0
1

m
ax

F

Arrival rate

Arrival rate

Arrival rate

F
ig
u
re

2
:
T
ra�

c
sm

o
oth

in
g

L
ikew

ise,
as

n
etw

o
rk

u
tiliza

tio
n
b
y
n
on
-R
T
tra�

c
gets

h
igh

er,
th
ose

n
o
d
es

gen
eratin

g
n
o
n
-R
T
tra

�
c

low
er

th
eir

sta
tion

in
p
u
t
lim

its.
F
igu

re
2
com

p
ares

th
e
arrival

rate
of

tra�
c
sm

o
oth

ed
b
y
a
�
x
ed
-rate

tra�
c
sm

o
o
th
er

an
d
th
at

b
y
a
n
a
d
ap
tive-rate

tra�
c
sm

o
oth

er.
L
et's

assu
m
e
th
at

a
large

b
u
rst

of

p
a
ck
ets

g
en
erated

b
y
a
n
ap
p
licatio

n
th
rou

gh
th
e
T
C
P
/IP

layer
d
u
rin

g
[t
0 ;t

1].
If
th
e
n
o
d
e
h
ad

a
large

T
C
P
w
in
d
ow

w
h
en

th
e
b
u
rst

h
a
s
arrived

from
th
e
a
p
p
lication

,
th
e
tra�

c
a
rrival

d
u
ration

m
ay

b
e
very

sh
ort

an
d
th
e
arriva

l
ra
te

m
ay

b
e
q
u
ite

h
igh

a
s
sh
ow

n
in

F
igu

re
2(a).

T
h
e
arrival

rate
of

th
e
tra�

c

sm
o
o
th
ed

b
y
a
�
x
ed
-rate

tra
�
c
sm

o
oth

er
is
sh
ow

n
in

F
igu

re
2(b

).
H
ere,

th
e
station

in
p
u
t
lim

it
is
set

to
F
m
a
x ,

an
d
th
u
s,
th
e
a
rrival

ra
te

is
alw

ay
s
kep

t
u
n
d
er

F
m
a
x .

O
n
th
e
oth

er
h
an
d
,
th
e
arrival

rate

of
tra�

c
sm

o
oth

ed
b
y
an

ad
a
p
tive-rate

tra�
c
sm

o
oth

er
is
a
p
iece-w

ise
con

stan
t
fu
n
ction

of
tim

e
as

sh
ow

n
in

F
ig
u
re

2(c),
a
n
d
it
d
ep
en
d
s
on

th
e
tra�

c-gen
eration

statistics
of

th
e
o
th
er

n
o
d
es.

T
h
at

is,

th
e
ad
ap
tiv

e-ra
te
tra�

c
sm

o
oth

er
regu

lates
th
e
p
acket

stream
u
sin

g
th
e
station

in
p
u
t
lim

it
in

ord
er

to

k
eep

th
e
stream

as
sm

o
o
th

a
s
th
e
�
x
ed
-rate

on
e
d
o
es,

b
u
t
th
e
station

in
p
u
t
lim

it
ch
an
ges

w
ith

tim
e.

In
ord

er
to

im
p
lem

en
t
an

a
d
ap
tive-rate

tra�
c
sm

o
oth

er
w
h
ich

m
eets

th
e
d
elay

req
u
irem

en
t
of

R
T

p
ackets

w
h
ile

p
rov

id
in
g
im
p
roved

average
th
rou

gh
p
u
t
for

n
on
-R
T

p
ack

ets,
w
e
m
u
st

resolv
e
th
e

follow
in
g
tw
o
p
rob

lem
s:
(1)

h
ow

to
d
etect

a
ch
an
ge

in
n
etw

ork
u
tilization

an
d
(2)

h
ow

to
ad
ap
t
to

th
e

d
etected

ch
a
n
ge.

A
n
e�

cien
t
d
etection

m
ech

an
ism

is
essen

tial
for

th
e
ad
ap
tation

to
b
e
fast

en
ou
gh

to
m
eet

th
e
d
elay

req
u
irem

en
t
of

R
T
p
ack

ets.
H
ow

ev
er,

sin
ce

u
n
like

A
T
M

or
F
D
D
I,
th
e
C
S
M
A
/C

D

p
ro
to
col

is
n
o
t
a
reservatio

n
-b
a
sed

m
ed
iu
m

access
con

trol
sch

em
e,
d
irect

in
form

ation
on

th
e
cu
rren

t

n
etw

ork
u
tilization

is
u
n
ava

ilab
le
to

lo
cal

n
o
d
es.

T
h
erefore,

each
lo
cal

n
o
d
e
m
u
st
d
ep
en
d
on

an
in
d
irect

m
eth

o
d
of
d
eterm

in
in
g
n
etw

ork
u
tilization

su
ch

as
d
etectin

g
p
ack

et
collision

s
at

its
N
IC

or
m
easu

rin
g

8

the bu�er-clearing rate at its Ethernet device driver. Or, each local node may use the promiscuous

mode to measure the network utilization for a recent period of time. We have chosen the �rst option

for its good responsiveness. In particular, if the tra�c smoother is set to vacate the credit bu�er

immediately upon detection of a collision, transmission of non-RT packets is suspended, except for

those packets already in NICs. This increases the chance to deliver the RT packets generated from

other nodes sooner, as they do not su�er the \packet starvation" [9] caused by the burst of non-RT

packets generated from this node. For this reason, we use packet collision as a trigger to decrease

throughout as well as to deplete the current credits.

2.2 Harmonic-Increase and Multiplicative-Decrease Adaptation

Next, let's consider the adaptation mechanism. Two parameters, CBD and RP , can be used to

change the station input limit which is given as CBD

RP
. By changing CBD while keeping RP constant,

we can change the station input limit, but this approach causes the size of a burst to
uctuate. Since

we want to keep the packet stream as smooth as possible, we instead vary RP while keeping CBD

constant. Especially, by setting CBD to the Ethernet MTU (Maximum Transfer Unit) (i.e., 1500

bytes), one can set the maximum amount of tra�c that can be transmitted up to 2999 bytes. In this

approach, one can increase the station input limit by decreasing RP , and vice versa.

There are many ways to change the station input limit. For example, one may employ the

\slow-start increase and multiplicative decrease" that is being used in the TCP/IP congestion avoid-

ance mechanism [10]. In this paper, we use a very simple adaptation mechanism called Harmonic-

Increase and Multiplicative-Decrease Adaptation (HIMD). HIMD is similar to the slow-start increase

and multiplicative-decrease algorithm in decreasing the throughput but di�ers in increasing the through-

put. HIMD works as follows. First, HIMD periodically increases the station input limit by decreasing

RP periodically in the absence of packet collisions. The size of each decrement is �xed at a constant,

and thus, the station input limit is harmonically incremented. This harmonic increment is conserva-

tive but easy to implement. When a packet collision is detected, the tra�c smoother immediately

depletes the current credits, delays the transfer of the non-RT packet, and doubles RP . By choosing

an appropriate size of decrement for RP , one can adapt the station input limit very fast.

Figures 3 and 4 describe the tra�c smoother in a procedural form. First, the procedure smoothing

in Figure 3 smoothes the packet stream. To provide low delivery delays to RT packets, the tra�c

smoother maintains a priority queue with two priority levels. The high-priority queue is used for

9

storing RT packets and the low-priority queue is used for storing non-RT packets. When packets

arrive from the upper layer, they are inserted into the corresponding priority queue in the order of

their arrivals. Whether a packet is RT or non-RT is determined using the Type-of-Service (ToS) �eld

of an IP datagram. When the procedure smoothing is called by the kernel scheduler, it �rst checks

whether there is a packet waiting to be transferred to NIC in the queue, starting from the high-priority

queue. If there is a packet belonging to a real-time stream, it is immediately transferred to NIC by

a function call, send to NIC, and as many credits, denoted by CurrentNetworkShare, as the size of

the packet, denoted by Packet.FrameSize, are removed from the credit bucket. If the packet belongs

to a non-RT session, the last collision time, denoted by LastCollisionTime (which will be described

shortly), is checked. If the di�erence between the current time and the last collision time falls within

a certain bound �, the tra�c smoother assumes that another station is trying to send a real-time or

non-real-time packet. Therefore, it returns the packet to the low-priority queue by making a function

call, send back to queue. In addition, it vacates the credit bucket by setting CurrentNetworkShare

to zero, and doubles RP . RP is capped by RPmax. If the packet belongs to a non-RT session and

CurrentNetworkShare is positive while there has been no recent collision, the packet is transferred

to NIC by a function call, send to NIC, and CurrentNetworkShare is decremented by the size of the

packet. If there is no credit in the credit bucket, i.e., CurrentNetworkShare � 0, the packet is returned

to its original location in the low-priority queue. The packets sent back to the low-priority queue are

served the next time when this procedure is called by the kernel scheduler.

Procedure refresh in Figure 4 is called once every � where � is a user-de�ned parameter, and

Procedure refresh decrements RP by � (harmonic decrease). The minimum value of RP is set to

RPmin. In addition, when the current time reaches NextRefreshTime, it increments the number of

credits by CBD, and sets the next credit bucket refreshing time to CurrentT ime+ RP . If the total

number of credits exceeds CBD, the number of credits is set to CBD.

In addition to the above two procedures, we need to modify the Ethernet device driver to record

the time when a packet in NIC encounters a collision so that the procedure smoothing may use it.

Many available device drivers request their Ethernet NICs to notify the number of collisions that the

recently-transmitted packet has experienced. If this function is not provided by default, one should

modify the device driver to invoke it. When the device driver receives this collision information, it

records the current time as LastCollisionTime if the recently-transmitted packet has experienced a

collision.

In our tra�c smoother, �, �, � , RPmax, and RPmin are user-controllable parameters. By using

10

Procedure smoothing

If (Packet:TypeOfService = RealT ime) then f

send to NIC;

CurrentNetworkShare := CurrentNetworkShare� Packet:FrameSize;

g

else if (LastCollisionTime � CurrentT ime� �) then f

send back to queue;

CurrentNetworkShare := 0;

RP = min(RPmax; 2� RP);

g

else if (CurrentNetworkShare > 0) then f

send to NIC;

CurrentNetworkShare := CurrentNetworkShare� Packet:FrameSize;

g

else send back to queue;

Figure 3: Procedure of tra�c smoothing

di�erent values, one can obtain di�erent delay and throughput characteristics.

The idea of adapting the tra�c-generation rate has already been implemented in other protocols

in order to avoid network congestion and improve throughput. For example, the TCP congestion

avoidance algorithm and the Ethernet collision resolution protocol (Exponential Binary Backo�) have

already been in use. Our scheme lies between them in time scale, but shares the same basic idea and

goal | avoid network congestion | with them. One signi�cant di�erence is that our scheme works

only on non-RT tra�c to provide better delay characteristics to RT tra�c.

3 Experimental Evaluation on Linux

In this section, we present the experimental evaluation results on a testbed of Linux workstations.

We installed the adaptive-rate tra�c smoother at all the local nodes, and measured the delay character-

istics of RT messages while measuring the throughput of non-RT messages. In addition, we conducted

similar experiments with the �xed-rate tra�c smoother and without employing any tra�c smoothing

mechanism for the purpose of comparison.

11

Procedure refresh

RP := max(RPmin; RP ��);

if (CurrentT ime = NextRefreshTime) then f

CurrentNetworkShare := min(CurrentNetworkShare+ CBD;CBD);

NextRefreshTime := CurrentT ime+ RP ;

g

Figure 4: Procedure of refreshing parameters

3.1 The Environment

The Linux testbed consists of two 300 MHz Intel Pentium II PCs, �ve 75 MHz Pentium laptop

computers, and four 486 DX/4 laptop computers, and they are connected through a 10BASE-T Eth-

ernet LAN. The collision domain diameter is 10 m. We con�gure the local nodes as PC-1 | PC-10

and a monitoring station. Figure 5 shows the topology of our testbed. One 300 MHz Intel Pentium II

PC works as the monitoring station, and since our target application is automated factory networking,

the rest of the PCs simulate PLCs. We use TCP sockets for transmitting RT control messages as

well as non-RT messages1. The PCs exchange real-time control information with RT messages. More

speci�cally, PC-1 sends a 100 byte long RT control information which is contained in a high-priority IP

datagram to PC-2. Then, PC-2 echos back to PC-1 with a high-priority IP datagram of the same size.

Likewise, PC-n and PC-(n+ 1) exchange RT control information of the same size where n = 1; : : : ; 9.

PC-10 sends a RT control message to PC-1, and PC-1 echos back to PC-10. We made the inter-arrival

time of real-time control messages at each simulated PLC follow an exponential distribution, and set the

average message inter-arrival time to 0.3 sec. Since we must count both RT control and echo messages,

the network load due to RT messages is (2 � 100 � 8 � 10=0:3) bps, i.e., 53.3 kbps2. The tra�c-generation

rate was chosen to re
ect the low tra�c condition observed in most automated manufacturing facilities.

In addition to RT messages, PCs generate non-RT messages when the monitoring station requests

1 We recognize that UDP sockets are generally preferred for transporting RT control messages in order to avoid possible
delays due to the TCP data-loss recovery mechanisms. Although we employed TCP sockets for transporting RT control
messages, we did not observe any data-loss recovery delays in our experiments.

2 This is the network load seen by the application layer. In the Ethernet physical layer, the load is slightly higher than
this value since the TCP/IP header, the Ethernet MAC header and the framing �eld must be counted towards the total
data size. For non-RT tra�c, we also measure the network load from the standpoint of the application layer.

12

Monitor Station

N
R

T
 m

essages

NRT m
ess

ages

N
R

T
 m

es
sa

ge
s

RT messagesRT messages

NRT messages

RT messages

PC-1 PC-2 PC-3 PC-10

Figure 5: Experiment environment

them to send their status information. The size of non-RT tra�c generated by an application is 1

Mbytes, and it is transmitted as a sequence of low-priority IP datagrams. This results in a high

instantaneous tra�c-generation rate (i.e., a burst of non-RT messages) especially at the TCP/IP layer.

To investigate the e�ectiveness of the adaptive-rate tra�c smoother, we measured the roundtrip

delay of every RT control message and the time to transmit each non-RT burst while transporting

both types of tra�c over the Ethernet and varying the non-RT tra�c-generation rate. From these

measurements, we calculated the deadline-miss ratio of RT messages and the average time to transmit

a 1 Mbyte-long non-RT burst. We set the roundtrip deadline of RT messages to 129.6 msec3. Since a

real-time message is considered lost if its deadline is missed, we treated the deadline-miss ratio as the

message-loss ratio.

We conducted two sets of experiments with di�erent non-RT tra�c-generation scenarios. In the

�rst set which we call non-greedy mode, the non-RT burst inter-arrival time of an activated4 PC

was exponentially-distributed, and the average burst inter-arrival time was set to 25 sec. Then, the

3 This value was selected through an analysis shown in [1]. According to [1], when 10 transmission trials are allowed
before a messages is declared lost, the worst-case delay is 64.8 msec. We simply doubled that value to select a worst-case
roundtrip delay of 129.6 msec as the roundtrip deadline.

4 A station/PC is said to be activated if the monitoring station requested its status information.

13

average non-RT tra�c-generation rate of an activated PC is 106 � 8=25 = 320 kbps. By changing the

number of activated PCs, one can control the non-RT tra�c load. When 10 PCs are activated, the

network load of non-RT tra�c is 3.2 Mbps, i.e., approximately5 32% of the Ethernet capacity. In the

second set which we call greedy mode, an activated PC was set to generate non-RT bursts in succession.

That is, once it had �nished the transmission of a non-RT burst, an activated PC starts transmission

of the next burst immediately. In this scenario, the network can be overloaded even with a single

activated PC. In reality, however, the maximum achievable network utilization is about 0.75 because

of the congestion-avoidance mechanism of the TCP
ow control and the Ethernet collision-resolution

mechanism.

3.2 Results

In the non-greedy mode, we experimented with the adaptive-rate tra�c smoothing, the �xed-rate

tra�c smoothing, and without any tra�c smoothing at all. In each case, we varied the number of

activated PCs from 2 to 10, i.e., we changed the non-RT tra�c load from 0.064 to 0.32, and measured

the loss ratio of RT messages and the average time to transmit a 1 Mbyte-long non-RT burst. The total

number of RT messages generated in each case was 500,000, which dictates the con�dence interval of

the deadline-miss ratio of RT messages. The results are plotted in Figures 6 and 7. Figure 6 shows the

RT message-loss ratio, i.e., the deadline-miss ratio, and Figure 7 shows the average time to transmit a

1 Mbyte-long non-RT burst. In the absence of tra�c smoothing, like in a conventional Ethernet LAN,

the measured deadline-miss ratio of RT messages ranged from 2:356� 10�3 to 1:682� 10�2, and the

maximum length of 99 % con�dence intervals was 1:33 � 10�6. Compared to the tra�c-smoothing

schemes, the case of no tra�c smoothing resulted in high deadline-miss ratios. On the other hand, it

showed the smallest average transmission times of non-RT bursts among the three schemes as shown

in Figure 7. They ranged from 1.073 to 1.819 sec, meaning that the average throughput provided to

each activated PC for transmitting non-RT bursts ranged from 4.398 to 7.455 Mbps.

To evaluate the �xed-rate tra�c smoothing, we installed a �xed-rate tra�c smoother at every PC.

CBD was set to 1500 and RP was set to 3.6 msec. Thus, the minimum and maximum throughputs

provided to each PC for transmitting non-RT bursts were 0.33 Mbps. As a result, it took about 25

sec for each activated PC to transmit a non-RT burst regardless of the number of activated PCs as

shown in Figure 7. The delay characteristics of RT messages were signi�cantly improved. As shown

5since we should consider the headers and framing �elds for the physical layer's tra�c-generation rate

14

1e-05

0.0001

0.001

0.01

0.1

0 2 4 6 8 10

M
e

ss
a

g
e

 lo
ss

 r
a

tio

Number of nodes generating non-real-time traffic

No traffic smoothing
Fixed-rate traffic smoothing

Adaptive-rate traffic smoothing
No non-real-time traffic

Figure 6: RT message loss ratio in the non-greedy mode

0

2

4

6

8

10

12

14

16

18

20

22

24

26

2 3 4 5 6 7 8 9 10

M
e

a
n

 d
e

la
y

o
f
a

 b
u

rs
t
o

f
n

o
n

-r
e

a
l-
tim

e
 m

e
ss

a
g

e
s

in
 s

e
cs

Number of nodes generating non-real-time traffic

No traffic smoothing
Fixed-rate traffic smoothing

Adaptive-rate traffic smoothing

Figure 7: Average transmission time of a 1 Mbyte non-RT burst in the non-greedy mode

15

in Figure 6, the deadline-miss ratio of RT messages6 was kept under 10�3, although it increased with

the number of activated PCs.

To evaluate the e�ectiveness of adaptive-rate tra�c smoothing, we installed an adaptive-rate tra�c

smoother at every PC. The parameters were chosen as: 10 msec for �, 100 �sec for �, 100 msec for

RPmax, and 3 msec for RPmin; and � was set to 1 msec. Thus, the decrement rate of RP was 0.1,

and the maximum throughput that can be provided to each PC in a short-term was 4 Mbps. These

values were selected empirically to achieve a low deadline-miss ratio of RT messages without sacri�cing

the throughput provided to non-RT bursts. Compared to the cases of no tra�c smoothing and �xed-

rate tra�c smoothing, adaptive-rate tra�c smoothing showed the smallest deadline-miss ratio, except

when only two PCs were activated. For the case of two activated PCs, adaptive-rate tra�c smoothing

showed a slightly larger value than �xed-rate tra�c smoothing as shown in Figure 6. The maximum

deadline-miss ratio of adaptive-rate tra�c smoothing was 2:48�10�4, which is smaller than that (1=3)

of �xed-rate tra�c smoothing and is attained when all the PCs were activated. The small deadline-

miss ratio of adaptive-rate tra�c smoothing is pronounced particularly when it is compared against

the other schemes in terms of the throughput provided to non-RT tra�c which is shown in Figure 7 as

a form of delay. The average transmission time of a 1 Mbyte non-RT burst ranged from 2.42 to 8.38

sec, and thus, the average throughput provided to an activated PC for non-RT tra�c ranged between

0.955 and 3.36 Mbps which is much larger than 0.33 Mbps, the throughput provided to non-RT tra�c

in the case of �xed-rate tra�c smoothing. In addition, the throughput provided to non-RT tra�c in

the case of adaptive-rate tra�c smoothing increased as the number of activated PCs decreased, unlike

the result obtained in the �xed-rate tra�c smoothing case. This indicates that the adaptive-rate tra�c

smoothing does not waste the bandwidth when a small number of PCs are activated, thus overcoming

the scalability problem, as we argued in the previous section.

In addition to the three tra�c smoothing schemes, we conducted an experiment without activating

any PC. In this case, it does not matter what tra�c smoothing scheme is enforced since there is no

non-RT tra�c to be smoothed. The total tra�c arrival rate which was due only to real-time tra�c

sources, was 53.3 kbps as mentioned earlier. The deadline-miss ratio thus obtained was 7:15� 10�5.

One can see that the result of adaptive-rate tra�c smoothing is very close to this value. This indicates

that the delay characteristics of real-time messages is almost una�ected by the presence of non-RT

messages in the adaptive-rate tra�c smoothing as compared to the other two schemes. This is due to

6The lengths of the con�dence intervals were smaller than 10�6. The lengths of the con�dence intervals in all the cases
hereafter were kept smaller than 10�5.

16

1 2 3 4 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n

Ro
und

 trip
 de

lay
 in

sec
s

1 2 3 4 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ro
und

 trip
 de

lay
 in

sec
s

n

(a) (b)

Figure 8: Roundtrip delay sequences of real-time messages: (a) no tra�c smoothing (b) adaptive-rate

tra�c smoothing

the fact that the smoother stops transmitting non-RT tra�c and doubles its RP as soon as it �nds

the on-going transmission experiencing any collision with a real-time message or a non-RT message

transmitted by another PC.

Figure 8 illustrates the e�ectiveness of adaptive-rate tra�c smoothing in achieving soft RT guaran-

tees over Ethernet. Figures 8(a) and 8(b) show, respectively, the roundtrip delay sequences of 50,000

RT messages when no tra�c smoothing was enforced and when the adaptive-rate tra�c smoothing

was enforced. The number of activated nodes were 10, and thus, the non-RT tra�c load was 0.32.

As shown in Figure 8(a), when no tra�c smoothing was applied, a fair number of real-time messages

experienced roundtrip delays larger than 1 sec while the roundtrip delays were kept below 300 msec

when the adaptive-rate tra�c smoothing was enforced. When the �xed-rate tra�c smoothing was

enforced, the measured roundtrip delay sequence of real-time messages was similar to that shown in

Figure 8(b).

The greedy-mode experiments re-con�rmed the e�ectiveness of adaptive-rate tra�c smoothing. In

this case, an activated PC was allowed to transmit non-RT tra�c at its maximum capacity without

being restricted by an application-level
ow control. Since the worst-case network-wide non-RT tra�c

arrival rate in this environment is deterministic when the �xed-rate tra�c smoothing is enforced, we

only compared the case without tra�c smoothing with that with adaptive-rate tra�c smoothing.

When no tra�c smoothing is enforced, the network can be fully-loaded by only one activated PC,

causing extremely large delays to RT messages. Even though real-time IP datagrams are given priority

17

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10

M
e

ss
a

g
e

 lo
ss

 r
a

tio

Number of nodes generating non-real-time traffic

No traffic smoothing
Adaptive-rate traffic smoothing

Figure 9: RT message loss ratio in the greedy mode

over non-RT ones within the same PC, they may collide with non-RT datagrams transmitted from the

other PCs and experience large delays. Under such an extreme tra�c-arrival condition, adaptive-rate

tra�c smoothing proved to work remarkably well. Figures 9 and 10 show the experimental results.

Figure 9 shows the deadline-miss ratios of RT messages for di�erent numbers of activated PCs when

no tra�c smoothing was enforced and when adaptive-rate tra�c smoothing was enforced. Figure 10

shows the throughput provided to all the activated PCs for transmitting non-RT bursts. This was

derived from the number of activated PCs and the average transmission time for transmitting a single

burst, considering that the throughput provided to an activated PC is given by the burst size divided

by the transmission time.

When no tra�c smoothing was enforced, the deadline-miss ratios of RT messages were extremely

high, i.e., in the range of 10�1 as shown in Figure 9, although the throughput provided for non-RT

tra�c reached up to 0:74 as shown in Figure 10. Thanks to the
ow controls mention above, we could

not overload the network.

On the other hand, when the adaptive-rate tra�c smoothing was enforced on every activated

PC, the throughput for transmitting non-RT bursts was reduced, approximately by half, but the RT

message deadline-miss ratios dropped dramatically. They ranged from 1:54 � 10�4 to 5:78 � 10�4,

and were much smaller than those achieved in the case of no tra�c smoothing. In this environment,

the transmission capability of a TCP socket of an activated PC was restricted not only by the TCP

18

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t

Number of nodes generating non-real-time traffic

No traffic smoothing
Adaptive-rate traffic smoothing

Figure 10: Throughput of non-RT tra�c in the greedy mode

ow control and Ethernet collision-resolution mechanism, but also by the adaptation mechanism of the

tra�c smoother. This explains the lower throughput achieved by the adaptive-rate tra�c smoothing.

These experimental results indicate that we can build two virtual networks | a soft real-time control

network and an Ethernet LAN with 5 Mbps transmission capability | using a single Ethernet LAN if

the adaptive-rate tra�c smoothing is employed.

In addition to HIMD, we experimented with various adaptation mechanism (e.g., Linear Increment

and Multiplicative Decrement), but HIMD yielded the best adaptation performance, thus omitting

their discussion.

4 Implementation and Experimental Evaluation on Windows NT

We have also implemented the adaptive tra�c smoother on the Windows NT platforms, and con-

ducted an indepth experimental evaluation. This implementation was motivated by the fact that the

Windows NT is widely deployed and used but gives less leverages to software developers than the Linux

OS. Although we will compare the performance of both the NT and the Linux implementations, our

focus will be placed on their qualitative aspects since their real-time performance depends not only on

the communication protocol stacks, but also on the operating systems themselves. For this reason, we

built an NT testbed which is totally independent of the Linux testbed.

19

4.1 The Tra�c Smoother on the Windows NT

Unlike the Linux OS, we are not allowed to, nor do we want to, modify the NT kernel. Moreover,

the source codes of Ethernet device drivers are not usually available to end users. Fortunately, however,

the Windows NT allows end users to insert an intermediate driver | called the NDIS (Network Driver

Interface Speci�cation) intermediate driver [11] | between the extant transport protocol layers and

network device drivers. Since it is a standard interface between protocol layers, we implemented the

tra�c smoother as an NDIS intermediate driver without modifying the NT kernel.

The NT-version tra�c smoother consists of two procedures: packet classifer and process NRTQueue.

Procedure packet classifer simply checks the class7of a packet arriving from the IP layer, and inserts

it into one of two queues according to its type, real-time or non-real-time queue. Packets inserted into

the RT queue are immediately transferred to the Ethernet NIC.

Packets inserted into the non-RT queue are serviced by a timer service routine, process NRTQueue,

shown in Figure 11. When this routine is called, it checks whether the non-RT queue is empty or

not. If it is not empty, the function Serve(CBD) is called, which transfers at most CBD bytes to the

Ethernet NIC.

Upon completion of Serve(CBD), the function CheckCollisions() is called, checking if the most

recently-transferred packet has successfully been transmitted over the network without having expe-

rienced any collision. Most Ethernet cards and drivers are designed to determine how many packets

have experienced collisions at least once before their successful transmission, and this information

is made available to upper layers upon request in case of the Windows NT. Using this information,

CheckCollisions() collects the most recently-transferred packet's collision statistics and indicates the

current network congestion condition. However, frequent collection of collision statistics by the traf-

�c smoother will introduce a high overhead on CPU, and can even freeze the system in an extreme

case. Therefore, CheckCollisions() should not be called too often. As a result, the NT-version tra�c

smoother is less responsive than the Linux version which uses the most recent collision-time information

as described in Section 2.2. Upon detection of a collision, the tra�c smoother decreases its sending

rate by invoking the function Decrease(CBD;RP). In contrast with the Linux version, the NT ver-

sion allows both CBD and RP to be changed, because the timing granularity that can be used in the

Windows NT is �xed at 10 msec. That is, Procedure CheckCollisions() can be called at most once

7 In the Windows NT, the ToS �eld of an IP datagram cannot be changed using the setsockopt() function like in the
Linux. For this reason, we chose the protocol name as a way of di�erentiating real-time from non-real-time packets. We
used UDP sockets for real-time connections and TCP sockets for non-real-time connections.

20

every 10 msec. If we set the maximum CBD to 1500 as we did in the Linux version, the maximum

throughput provided to a single node is 1.2 Mbps, which leads to low network utilization. Therefore,

we must allow CBD to be larger than 1500. However, in order to avoid the poor responsiveness of the

tra�c smoother due to large bursts, we must set a reasonable maximum value on CBD. Speci�cally,

we set the maximum CBD to 4500. Now, when Decrease(CBD;RP) is called, the tra�c smoother

decrements CBD by 1500 if CBD is greater than 1500. Otherwise, it doubles RP as in the Linux

version.

If CheckCollisions() indicates that there was no collision, function Increase(CBD;RP) is called.

If RP is larger than 10 msec, RP is decremented by � as in the Linux version. The minimum value of

RP is set to 10 msec. If RP = 10 msec, CBD is incremented by 1500. RP is capped by RPmax which

was set to 1000 msec. � was set to 10 msec in our implementation.

When the non-RT queue is empty upon invocation of process NRTQueue, function Increase(CBD;RP)

is called.

After �nishing all the routines, procedure process NRTQueue sets its next invocation time which

is given as the current time plus RP .

Procedure process NRTQueue

If (NonRealT imeQueue ! = Empty) then f

Serve(CBD);

if (CheckCollisions() == True) then f

Decrease(CBD;RP);

g

else f

Increase(CBD;RP);

g

g

else f

Increase(CBD;RP);

g

SetNextServiceT ime(RP);

Figure 11: Procedure of handling non-RT queue

21

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

no. of activated nodes

m
es

sa
ge

 lo
ss

 ra
tio

smoothing case
no−smoothing case

Figure 12: RT message loss ratio in the greedy mode observed in the NT testbed

4.2 Experimental Evaluation

We built a testbed with 5 NT workstations, and conducted the same experiment as we did on the

Linux testbed. We now present the results of the greedy-mode experiments.

The NT testbed consists of one 400 MHz Pentium II PC, and four 133 MHz Pentium laptop

computers, and they are connected through a 10 BASE-T Ethernet LAN. The collision domain diameter

is 10 m. We con�gured the NT testbed similarly to the Linux testbed as shown Figure 5, except that

there are one monitor station (400 MHz Pentium II PC) and four local stations denoted by PC-1,

PC-2, PC-3, and PC-4. RT control and echo messages were generated from the local stations in

exactly the same way as in the Linux testbed. Therefore, the network load due to RT messages is

2 � 100 � 8 � 4=0:3 = 21:3 kbps. We set the roundtrip deadline of RT messages to 129.6 msec as in

the Linux testbed. The volume of non-RT tra�c generated by an application was set to 1 Mbytes, and

activated stations generate non-RT tra�c in the greedy mode.

Figure 12 shows the RT message loss ratio in the greedy mode. The NT testbed generated experi-

mental results similar to the ones we obtained from the Linux testbed. When the adaptive-rate tra�c

smoothing was enforced (labeled by \smoothing case" in Figure 12), the RT message loss ratio ranged

from 0 to 3:5�10�4 when the number of activated nodes changes from 1 to 4. Especially, when a single

node was activated, no message was observed to miss its deadline among 400,000 messages. When no

22

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. of activated nodes

th
ro

ug
hp

ut

smoothing case
no−smoothing case

Figure 13: Throughput of non-RT tra�c in the greedy mode observed in the NT testbed

tra�c smoothing was enforced, RT message loss ratios are two orders of magnitude larger than those

observed when the adaptive-rate tra�c smoothing was enforced. As the Linux-version (see Figure 9),

the NT-version adaptive-rate tra�c smoother dramatically drops the RT messages loss ratio.

Figure 13 shows the throughput provided to the non-RT tra�c in the greedy mode. Compared

to the Linux-version, the NT-version tra�c smoother has better non-RT throughput characteristics.

That is, when the tra�c smoother was enforced, the throughput provided to non-RT tra�c drops only

by 25 %, approximately. This is possibly due to the smaller number of nodes in the NT testbed, but

we did not experiment with a larger testbed yet to con�rm this.

Overall, the NT-version adaptive-rate tra�c smoother can provide reasonable RT message deadline-

miss ratios while providing an acceptable throughput for non-RT tra�c. In addition, NT implementa-

tion of the adaptive-rate tra�c smoother is relatively simple thanks to the NDIS intermediate driver.

5 Conclusion

In this paper, we developed a methodology for providing soft real-time communication services over

an Ethernet LAN which transports both real-time and non-real-time packets. To provide faster and

predictive delivery service for real-time packets, in each local node real-time packets are given priority

23

over non-real-time ones. In order to reduce the collision with real-time packets transmitted from other

nodes, each local node is required to smooth its non-real-time packet stream. Speci�cally, we have

installed a tra�c smoother at each local node between the transport layer and the Ethernet MAC

layer. The packet stream arriving from the TCP/IP layer is bursty by nature, and hence, the tra�c

smoother regulates the stream to be as smooth as possible, then relays the packets to the Ethernet

MAC layer. Using tra�c smoothing, one can dramatically reduce the packet-collision ratio on the

network. Each tra�c smoother regulates its packet stream using a certain tra�c-generation rate. By

allowing the tra�c-generation rate to adapt to the current network load condition, we were able to

provide reasonably good throughput to non-real-time tra�c while meeting the real-time requirement of

each local node. We implemented the proposed tra�c smoother on both the Linux and the Windows

NT platforms, and conducted extensive experimental studies for various tra�c-arrival patterns on the

two testbeds. The studies showed that the message deadline-miss ratio can be kept well under 10�3

for any non-real-time tra�c arrival rate if all the local nodes are equipped with the proposed tra�c

smoothers. Moreover, the studies showed that the proposed tra�c smoother can provide a reasonable

average throughput to non-real-time tra�c while still yielding a remarkably low real-time message

deadline-miss ratio.

We considered only the soft real-time communication part of a real-time control system, but our

tra�c smoothing can be extended to various other applications. In particular, we would like to explore

ways of transporting real-time video over an Ethernet LAN using the proposed tra�c smoother. Our

tra�c smoothing approach can also be applied directly to Fast Ethernet which is expected to replace

10 Mbps shared Ethernet for multimedia support.

References

[1] S.-K. Kweon, K. G. Shin, and Q. Zheng, \Statistical real-time communication over ethernet for
manufacturing automation systems," in IEEE Real-Time Technology and Applications Symposium,
June 1999.

[2] Y. Shimokawa and Y. Shiobara, \Real-time Ethernet for industrial applications," in Proc. of
IECON, pp. 829{834, 1985.

[3] D. W. Pritty, J. R. Malone, S. K. Banerjee, and N. L. Lawrie, \A real-time upgrade for Ethernet
based factory networking," in Proc. of IECON, pp. 1631{1637, 1995.

[4] R. Court, \Real-time Ethernet," Computer Communications, vol. 15, pp. 198{201, Apr. 1992.

[5] C. Venkatramani and T. Chiueh, \Supporting real-time tra�c on Ethernet," in Proc. of Real-Time
Systems Symposium, pp. 282{286, Dec. 1994.

24

[6] M. Molle, \100Base-T/IEEE802.12/Packet Switching," IEEE Communication Magazine, pp. 64{
73, Aug. 1996.

[7] K. K. Ramakrishnan and H. Yang, \The Ethernet capture e�ect: analysis and solution," in Proc.
of 19th Conference on Local Computer Networks, pp. 228{240, 1994.

[8] R. L. Cruz, \A calculus for network delay, part I: network elements in isolation," IEEE Trans. on
Information Theory, vol. 37, pp. 114{131, Jan. 1991.

[9] B. Whetten, S. Steinberg, and D. Ferrari, \The packet starvation e�ect in CSMA/CD LANs and
a solution," in Proc. of 19th Conference on Local Computer Networks, pp. 206{217, 1994.

[10] D. E. Comer, Internetworking with TCP/IP Volume I, Principles, Protocols, and Architecture.
Englewood Cli�s, New Jersey: Prentice-Hall International, third ed., 1995.

[11] Microsoft Corporation, MSDN library (CD-ROM). 1999.

25

