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Abstract

In the recent development of avionics systems,
Integrated Modular Avionics (IMA) is advocated for next
generation architecture that needs integration of mixed-
criticality real-time applications. These integrated
applications meet their own timing constraints while
sharing avionics computer resources. To guarantee
timing constraints and dependability of each application,
an IMA-based system is equipped with the schemes for
spatial and temporal partitioning. We refer the model as
SP-RTS (Strongly Partitioned Real-Time System), which
deals with processor partitions and communication
channels as its basic scheduling entities.      

This paper presents a partition and channel-
scheduling algorithm for the SP-RTS. The basic idea of
the algorithm is to use a two-level hierarchical schedule
that activates partitions (or channels) following a
distance-constraints guaranteed cyclic schedule and then
dispatches tasks (or messages) according to a fixed
priority schedule. To enhance schedulability, we devised
heuristic algorithms for deadline decomposition and
channel combining. The simulation results show the
schedulability analysis of the two-level scheduling
algorithm and the beneficial characteristics of the
proposed deadline decomposition and channel combining
algorithms.

1. Introduction

Advances in computer and communication technology
have introduced new architectures for avionics systems,
which emphasize the integration of applications,
dependability, and cost reduction. Away from the
traditional federated implementation for avionics systems,
the new approach, referred to as Integrated Modular
Avionics (IMA) [1], utilizes multiple standardized
processor modules in building functional components of
avionics systems. It allows the applications to be merged
into an integrated system. While permitting resource
sharing, the approach employs temporal and spatial
partitioning to set up the application boundaries needed to
maintain system predictability, real-time response, and

dependability [2, 6]. For the interactions between
applications, it adopts a message model that can easily
accommodate replicated executions of mission-critical
applications.

Under the IMA architecture, each processor can host
multiple partitions in which applications can be executed
using the assigned resources. Spatial partitioning implies
that a partition cannot access other partition’s resources,
like memory, buffers, and registers. On the other hand,
temporal partitioning guarantees a partition’s monopoly
use of a pre-allocated processing time without any
intervention from other partitions. Thus, a partition is the
sole owner of its resources, such as memory segments,
I/O devices, and processor time slots. As a result, the
applications running in different partitions cannot
interfere with each other. To facilitate communications
between applications, each partition can be assigned with
one or more communication channels. An application can
transmit messages during the slots allocated to its channel
and access exclusively the channel buffers. In this sense,
the channels are spatial and temporal partitions of
communication resource and are dedicated to one
message-sending application.

An application running within a partition can be with
multiple cooperating tasks. For instance, the Honeywell’s
Enhanced Ground Proximity Warning System (EGPWS)
consists of tasks for map loading, terrain threat detection,
alert prioritization, display processing, etc. With the
spatial and temporal partitioning, the EGPWS application
can be developed separately and then integrated with
other applications running in different partitions of an
IMA-based system. Its execution cannot be affected by
any malfunctions of other applications (presumably
developed by other manufactures) via wild writes or task
overruns. However, sufficient resources must be allocated
to the partition and the channels, so that the EGPWS
application can ensure a proper execution and meet its
real-time constraints.

One apparent advantage of IMA-based systems with
spatial and temporal partitioning is that each application is
running in its own environment. Thus, as long as the
partition environment is not changed, an application’s
behavior remains constant even if other applications are
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modified. This leads to a crucial advantage to avionics
systems, i.e. when one application is revised, other
applications don’t need to be re-certified by the FAA.
Thus, the integration of applications in a complex system
can be upgraded and maintained easily. It is conceivable
that such architecture with spatial and temporal
partitioning can be useful for integrating general real-time
applications, and will be referred to as a strongly
partitioned real-time system (SP-RTS) in the paper.

In this paper, we investigate the issues related to the
partition and channel scheduling in SP-RTS. To schedule
processor execution, we need to determine which partition
is active and to select a task from the active partition for
execution. According to temporal partitioning, time slots
are allocated to partitions. Within each partition, fixed
priorities are assigned to tasks based on rate-monotonic or
deadline-monotonic algorithms [14, 5]. A lower priority
task can be preempted by higher priority tasks of the same
partition. In other words, the scheduling approach is
hierarchical that partitions are scheduled following a
cyclic schedule and tasks are dispatched according to a
fixed priority schedule. We can conjecture a real system
where partitions are processes with protected memory
spaces and tasks are threads in a process. At process level,
a cyclic scheduling is employed, whereas, in thread level,
thread priorities are compared. The scheme doesn’t need
to make a global priority comparison between threads of
different processes. Similar hierarchical scheduling is also
applied to the communication media where channels are
scheduled in a cyclic fashion and have enough bandwidth
to guarantee message communication. Within each
channel, messages are then ordered according to their
priorities for transmission.

Given task execution characteristics, we are to
determine the cyclic schedules for partitions and channels
under which the computation results can be delivered
before or on the task deadlines. The problem differs from
the typical cyclic scheduling since, at the partition and
channel levels, we don’t evaluate the invocations for each
individual task or message. Only aggregated task
execution and message transmission models are
considered. In addition, the scheduling for partitions and
channels must be done collectively such that tasks can
complete their computation and then send out the results
without missing any deadlines.

A different two-level hierarchical scheduling scheme
has been proposed by Deng and Liu in [8]. The scheme
allows real-time applications to share resources in an open
environment. The scheduling structure has an earliest-
deadline-first (EDF) scheduling at the operating system
level. The second level scheduling within each application
can be either time-driven or priority-driven. For
acceptance test and admission of a new application, the
scheme analyzes the application schedulability at a slow
processor. Then, the server size is determined and server

deadline of the job at the head of the ready queue is set at
run-time. Since the scheme does not rely on fixed
allocation of processor time or fine-grain time slicing, it
can support various types of applications, such as release
time jitters, non-predictable scheduling instances, and
stringent timing requirements.

The scheduling approach for avionics applications
under the APEX interface of IMA architecture was
discussed by Audsley and Wellings [4]. A recurrent
solution to analyze task response time in an application
domain is derived and the evaluation results show that
there is a potential for a large amount of release jitter.
However, the paper does not address the issues of
constructing cyclic schedules at the operating system
level. To remedy the problem, our first step is to establish
scheduling requirements for the cyclic schedules such that
task schedulability under a given fixed priority schedules
within each partition can be ensured.  The approach we
adopt is similar to the one in [8] of comparing the task
execution in SP-RTS environment with that at a dedicated
processor. The cyclic schedule then tries to allocate
partition execution intervals by “stealing” task inactivity
periods. This stealing approach resembles the slack stealer
for scheduling soft-aperiodic tasks in fixed priority
systems [11]. Once the schedulability requirements are
obtained, suitable cyclic schedules can be constructed.
Following the partitioning concept of IMA, the operating
system level cyclic schedule is flexible to support system
upgrade and integration. It is designed in a way that no
complete revision of scheduling algorithms is required
when the workload or application tasks in one partition
are modified.

The rest of the paper is organized as follows. In section
2, we describe the system models that describe tasks,
partition servers, messages, and channel servers in SP-
RTS. Then, we show the overall system scheduling
algorithm and its specific components, such as deadline
decomposition, task and message schedulability checking,
channel combining, and cyclic scheduling for partition
servers and channel servers in section 3. Evaluation
results are presented in section 4. A conclusion is then
given in section 5.

2. System Models

The SP-RTS system model, as shown in Figure 1,
includes multiple processors inter-connected by a time
division multiplexing communication bus such as ARINC
659 [3]. Each processor has several execution partitions to
which applications can be allocated. An application
consists of multiple concurrent tasks that can
communicate with each other within the application
partition.  Task execution is subject to deadlines. Each
task must complete its computation and send out the result
messages on time in order to meet its timing constraints.
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Messages are the only form of communication among
applications, regardless of whether their execution
partitions are in the same processor or not. For inter-
partition communication, the bandwidth of the shared
communication media is distributed among all
applications by assigning channels to a subset of tasks
running in a partition.  We assume that there are hardware
mechanisms to enforce the partition environment and
channel usage by each application, and to prevent any
unauthorized accesses. Thus, task computation and
message transmission are protected in their application
domain. The mechanisms could include memory
protection controller, slot/channel mapping, and separate
channel buffers.

 In our task model, we assume that each task arrives
periodically and needs to send an output message after its
computation. Thus, as illustrated in Figure 2, tasks are
specified by several parameters, including invocation
period (Ti), worst-case execution time (Ci), deadline (Di)
and message size (Mi). Note that, to model sporadic tasks,
we can assign the parameter Ti as the minimum inter-
arrival interval between two consecutive invocations.

In order to schedule tasks and messages at processors
and communication channels, the task deadline, Di, is
decomposed into message deadline (MDi) and
computation deadline (CDi). The assignment of message

deadlines influences the bandwidth allocation for the
message. For example, when the message size, Mi, is 1K
slots, and the message deadline of 10ms, then the
bandwidth requirement is 0.1M slots per second. In the
case of the 1ms message deadline, the bandwidth
requirement becomes 1M slots per second.  However, a
tradeoff must be made since a long message deadline
implies a less amount of bandwidth to be allocated, thus
the task computation has to be completed immediately.

For each processor in SP-RTS architecture, the
scheduling is done in a two-level hierarchy. The first level
is within each partition server where the application tasks
are running and a higher priority task can preempt any
lower priority tasks of the same partition. The second
level is a cyclic partition schedule that allocates execution
time to partition servers of the processor. In other word,
each partition server, Sk, is scheduled periodically with a
fixed period. We denote this period as the partition cycle,
ηk. For each partition cycle, the server can execute the
tasks in the partition for an interval αkηk where αk is less
than or equal to 1 and is called partition capacity. For the
remaining interval of (1-αk)ηk, the server is blocked. In
Figure 3, an example execution sequence of a partition
that consists of three tasks is depicted. During each
partition cycle, ηk, the tasks, τ1, τ2, and τ3, are scheduled
to be executed for a period of αkηk. If there is no active
task in the partition, the processor is idle and cannot run
any active tasks from other partitions.

Similarly, a two-level hierarchical scheduling method
is applied to the message and channel scheduling. A
channel server provides fixed-priority preemptive
scheduling for messages. Then, a cyclic schedule assigns
a sequence of communication slots to each channel server
according to its channel cycle, µk, and channel capacity,
βk. A channel may send out messages using βkµk slots
during every period of µk slots. Note that we use the unit
of “slot” to indicate both message length and transmission
time, with an assumption that communication bandwidth
and slot length are given. For instance, a 64-bit slot in the
30MHz 2-bit wide ARINC 659 bus [3] is equivalent to
1.0667µs, and a message of 1000 bytes will be transmitted
in 125 slots. For convenience purposes, we define the
conversion factors ST as a slot-to-time ratio based on slot
length and bus bandwidth.

τ1 τ2 τ2 τ3 τ1 τ1 τ3 τ2 τ1 τ2idle

ηk

αkηk

Figure 3.  An illustrative task and partition execution
sequence

Task period  Ti

Task deadline  Di

Computation deadline CDi Message deadline MDi

Ci Mi

Figure 2. Task model and deadlines
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Figure 1. The architecture model for strongly
partitioned real-time systems (SP-RTS)
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3. Scheduling Approach

The objective of our scheduling approach is to find
feasible cyclic schedules for partition and channel servers
which process tasks and transmit messages according to
their fixed priorities within the servers. With proper
capacity allocation and frequent invocation at each server,
the combined delays of task execution and message
transmission are bounded by the task deadlines. In Figure
4, we show the overall approach which first applies a
heuristic deadline decomposition to divide the problem
into two parts: partition-scheduling and channel-
scheduling. If either one cannot be done successfully, the
approach iterates with a modified deadline assignment.
We also assume that the initial task set imposes a
processor utilization and a bus utilization less than 100%
and each task’s deadline is larger than its execution time
plus its message transmission time, i.e., Di ≥ Ci + ST∗ Mi

for task i.

3.1. Deadline Decomposition

 It is necessary to decompose the original task
deadline, Di, into computation and message deadline, CDi

and MDi, for every task, before we can schedule the
servers for partition execution and message transmission.
A deadline decomposition algorithm is used to assign
these deadlines in a heuristic way. If we assign tight
message deadlines, messages may not be schedulable.
Similarly, if tasks have tight deadlines, processor
scheduling can fail. The following equation is used to
calculate the message deadline and computation deadline
for each task:

Message Deadline, i
ii

i
ii f

MSTC

MST
DMD )(

∗+
∗

=

Computation Deadline, iii MDDCD −=

where fi is an adjusting factor for each task. The main idea
of deadline decomposition is that it allocates the
deadlines, CDi and MDi, proportionally to their time
requirements needed for task execution and message
transmission. In addition, the adjusting factor fi is used to
calibrate the computation and message deadlines based on
the result of previous scheduling attempts and the
utilization at processor and communication bus. Since the
message and task deadlines must be lower-bounded to the
transmission time (ST∗ Mi) and computation time (Ci),
respectively, and upper-bounded to Di, we can obtain the
lower bound and upper bound of the adjusting factor f as
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Since an adjusting factor of 1.0 is a fair distribution
and always included in the range of fi, we set the initial
value of fi to be 1. The heuristic deadline decomposition,
as show in Figure 5, is similar to a binary search
algorithm in the attempt of finding the right proportion of
task and message deadlines. If we reach the situation that
it cannot assign new value for all tasks, we declare the
input set of tasks as unschedulable.

3.2. Partition and Channel Scheduling

In SP-RTS, partitions and channels are cyclically
scheduled. The partition cyclic schedule is based on
partition cycle, ηk, and partition capacity, αk. Similarly, a
channel cyclic schedule with parameters, βk and µk

implies that the channel can utilize βkµk slots during a

    Initialization for all tasks
           MinF = 1 / (Di * (1/(Ck+ ST∗ Mk)));
           MaxF = (Di-Ci) / (Di * (ST∗ Mi /(Ci+ ST∗ Mi)));
           fi = 1.0;

    Iterative change of fk when either partition or channel
    scheduling fails
           If (Partition scheduling fails) {

MaxF = fi; fi = (MinF + fi) / 2.0;
           }
           else if (Channel scheduling fails) {

MinF = fi; fi = (MaxF + fi) / 2.0;
           }

Figure 5. The deadline decomposition algorithm

Task and message
deadline assignment

Determine partition
capacities and cycles

Channel server
initialization and

combining

Determine channel
capacities and cycles

Communication slot
allocation

Processor
cyclic scheduling

fail

cannot
combine

fail

succeed

succeed

Integrated schedule

Figure 4. Combined partition and channel scheduling
approach
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period of µk slot interval. While tasks and messages are
scheduled according to their priority within the periodic
servers, the cyclic schedule determines the response time
of task execution and message transmission. In this
subsection, we give a short description of the scheduling
theory that can be used to schedule the cyclic partition
and channel servers. A full discussion of the scheduling
theory and the associated proof are given in our previous
paper [10].

Note that, at the system level, the partition server Sk is
cyclically scheduled with a fixed partition cycle, ηk. For
every partition cycle, the server can execute the task in
partition Pk during an interval of αkηk where αk ≤ 1. For
the remaining interval of (1-αk)ηk, the server is blocked.
Suppose that there are n tasks in partition server Sk listed
in priority order such that τ1 < τ2 < τ3 < … < τn where τ1

has the highest priority and τn the lowest. According to
deadline monotonic algorithm, we assume that the highest
priority is given to the task with shortest task deadline. In
order to evaluate the schedulability of the partition server,
Sk, we first consider that the task set is executed at a
dedicated processor of capacity αk. Based on the
necessary and sufficient condition of schedulability
analysis [12, 13], task τi is schedulable if there exists a t 0
Hi = {CDi ∪  lTj | j=1,2,…,i-1; l=1,2,…,  CDi/Tj  }such
that:

t
T

tC
tW

j

i

j k

j
ki ≤



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






= ∑

=1

),(
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α

The expression Wi(αk, t) indicates the worst cumulative
execution time demand on the processor made by the
tasks with a priority higher than or equal to τi during the
interval [0,t]. We now define Bi(αk) = max t ∈  Hi {t –
Wi(αk, t)} and B0(αk) = min i=1,2,..n Bi(αk), where n is the
total number of tasks in the partition. Note that, when τi is
schedulable, Bi(αk) represent the total period in the
interval [0, t] that the processor is not running any tasks
with a priority higher than or equal to that of τi in the
partition server. Bi(αk)  is equivalent to the level-i
inactivity period in the interval [0, t] [11].

  By comparing the task executions at server Sk and at a
dedicated processor of capacity αk, we can obtain the
following theorem [10].

 Theorem 1. The partition server Sk is schedulable if Sk

is schedulable at a dedicated processor of capacity αk,
and ηk ≤ B0(αk)/(1-αk)

Note that B0(αk) is a non-decreasing function of αk.
There is a minimum αk such that B0(αk)  equals to zero,
i.e., a zero inactive period for at least one task in the
partition. The minimum αk indicates the minimum
processor capacity needed to schedule the partition. Thus,

partition scheduling can fail if the sum of the minimum
αk, for all partitions in a processor, is larger than 1.

With Theorem 1, we can depict the plot of maximum
partition cycle vs. the assigned capacity αk. To illustrate
the result, we consider an example in Table 1 in which
four application partitions are allocated in a processor.
Each partition consists of several periodic tasks and the
corresponding parameters of (Ci, Ti) are listed in the
Table. Tasks are set to have deadlines equal to their
periods and are scheduled within each partition according
to a rate-monotonic algorithm. The processor utilization
demanded by the 4 partitions, ρk, are 0.25, 0.15, 0.27, and
0.03, respectively.

Table 1. Task parameters for the example partitions

Partition 1
(utilization=0.25)

Partition 2
(utilization=0.15)

tasks
(Ci, Ti)

(4, 100)
(9, 120)
(7, 150)

(15, 250)
(10, 320)

(2, 50)
(1, 70)
(8, 110)
(4, 150)

Partition 3
(utilization=0.27)

Partition 4
(utilization=0.03)

tasks
(Ci, Ti)

(7,80)
(9,100)

(16,170)

(1,80)
(2,120)

In Figure 6, the curves ηk = B0(αk)/(1-αk ) are plotted
for the example 4 partitions. If the points below the curves
are chosen to set up cyclic scheduling parameters for each
partition, the tasks in the partition are guaranteed to meet
their deadlines.

For instance, the curve for partition 2 indicates that, if
the partition receives 28% of processor capacity, then its
tasks are schedulable as long as its partition cycle is less

α
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Figure 6. Partition Cycles vs. Processor Capacities for the
Example Partitions
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than or equal to 59 time units. Note that the maximum
partition cycles increase as we assign more capacity to
each partition. This increase is governed by the
accumulation of inactivity period when αk is small. Then,
the growth follows by a factor of 1/(1-αk) for a larger αk.
The curves in Figure 6 show that there are sharp rises of
the maximum partition cycle when we increase αk just
beyond the minimum required capacities. The rises
indicate that a small amount of extra capacity can enlarge
the inactive period of a partition server significantly.

According to the design objectives, there are several
methods we can use to choose a set of (αk, ηk) for all
partition servers. For instance, we can calculate the
minimum αk first. If the sum of the minimum αk, for all
partition server Sk, and the reserved portion of processor
capacity, is less than 100%, the extra capacity can be
allocated to all partitions proportionally to their minimum
αk. Then, ηk can be calculated based on Theorem 1. The
other approach is to search for the saddle point in the
B0(αk)/(1-αk) curve where the initial rise just begins to
slow down. The pair (αk, ηk) at the saddle point is used as
the initial capacity allocation and partition cycle. Further
increase or reduction can be done proportionally if the
total capacity allocated is less than or larger than 1.

We can use the same scheduling method of the
partition scheduling for channel scheduling. A channel
server, Gk, transmits its messages according to a fixed
priority preemptive scheduling method. It provides a
bandwidth of βkµk slots to the messages in the channel
during every channel cycle, µk, where βk ≤ 1. For the
remaining slots of (1-βk)µk, the channel server is blocked.
Since each channel server follows the identical two-level
hierarchical scheduling as partition servers, Theorem 1
can directly applied to obtain the pair of parameters (βk,
µk). However, there are several differences. First, only
integer number of slots can be assigned to a channel
server. Thus, we can use either  βkµk  slots or restrict βkµk

to be integer. The second difference is that the message
arrivals are not always periodic due to possible release
jitters. Release jitters can be included in the schedulability
test if they are bounded by some maximum value [15].
The release jitter can also be eliminated if the
communication controller incorporates a timed message
service that becomes active immediately after the
computation deadline is expired. The last difference is the
assignment of messages into a channel. According to the
principle of partitioning, tasks from different partitions
cannot share the same channel for message transmission.
For the tasks in a partition, we can group a subset of tasks
and let them share a channel server. The grouping can be
done based on the semantics of the messages or other
engineering constraints. Also, the multiplexing of
messages in a shared channel may lead to a saving of

bandwidth reservation. We should address this issue in the
following subsection.

3.3. Channel  Combining

For a channel server that transmits a periodic message
with a deadline MDi and a message size Mi, we must
allocate a minimum bandwidth of Mi/MDi. Since there is a
limitation in the total bus bandwidth, we may not always
assign one channel server to each message. However, we
may be able to combine some messages and let them
share a common channel server. This can lead to a
bandwidth reduction since the reserved bandwidth can be
better utilized by the messages of different deadlines. For
example, given two messages 1 and 2 with parameters
(M1, MD1, T1) and (M2, MD2, T2), respectively, the
minimum bandwidth requirements, in terms of slots per
time unit, for separate channels of messages 1 and 2, and
for the combined channel, can be computed as following:

      CB1 = M1/MD1, CB2 = M2/MD2,
    CB12 = max{ M1/MD1, (M2+M1*  MD2 /T1 )/MD2 }

We assume that message 1 has a higher priority than
message 2 in the above computation. The cost of message
preemption is ignored which can be at most one slot per
preemption since we assume that slots are the basic
transmission units in the communication bus. Notice that
CB12 is not always less that CB1+CB2. However, if
message 1 has a much shorter deadline comparing with its
period and message 2 has a longer deadline than message
1’s period, then the bandwidth reduction CB1+CB2-CB12

becomes substantial. While we reserve a proper amount of
bandwidth for an urgent message, the channel is only
partially utilized if the message arrives infrequently. This
provides a good chance to accommodate additional
messages in the same channel and results in a reduction in
the required bandwidth.

The above equation also implies that the maximum
bandwidth reduction can be obtained by combining the
message with a long deadline and the message with a
short deadline where the period of the latter should be
greater than message deadline of the former. With this
observation, we devise a heuristic channel-combining
algorithm which is shown in Figure 7. The computation of
the minimum bandwidth requirement of a channel
consisting of messages 1,2,…,k-1, and k, is:

    )}/){((max
1

1,1
...12 jj

i

jj

i
i

kj
k MDM

T

MD
MCB +








∗= ∑

−

==

where we assume that message j has a higher priority then
message j+1. Note that the real bandwidth allocation must
be determined according to the choice of channel cycle as
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described in Theorem 1. However, in order to calculate
channel cycle and capacity, the messages in each channel
must be known. The channel-combining algorithm
outlined in Figure 7 is developed to allocate messages to
channels for each partition and to reduce the minimum
bandwidth requirement to a specific threshold. If the
combined channels cannot be scheduled, we can further
decrease the target threshold until no additional
combining can be done.

    Initialization (Channel combining is allowed to the tasks in
    the same partition)

           Assign one channel server Gk to the message of each task

    Iterate the following steps until the sum of total CBk is less
    than the target threshold

           determine all pair of combinable channel server Gk and
           Gj  where the max. message deadline in Gk is larger than
           the min. task period in Gj

           For every pair of combinable channel servers Gk and Gj  {
       calculate the bandwidth reduction CBk+CBj− CBkj

           }

           Combine Gj with the server Gk that results in the
           maximum reduction

Figure 7. A heuristic channel combining algorithm

3.4. Cyclic Scheduling for Partition and Channel
Servers

Let a feasible set of partition capacities and cycles be
(α1, η1), (α2, η2), … , (αn,ηn) and the set be sorted in the
non-decreasing order of ηk. The set cannot be directly
used in a cyclic schedule that guarantees the distance
constraint of assigning αk processor capacity for every ηk

period in a partition. To satisfy the distance constraint
between any two consecutive invocations, we can adopt
the pinwheel scheduling approach [7, 9] and transfer {ηk}
into a harmonic set through a specialization operation.
Note that, in [9], a fixed amount of processing time is
allocated to each task and would not be reduced even if
we invoke the task more frequently. This can lead to a
lower utilization after the specialization operations. For
our partition-scheduling problem, we allocate a certain
percentage of processor capacity to each partition. When
the set of partition cycles {ηk} is transformed in to a
harmonic set {hk}, this percentage doesn’t change. Thus,
we can schedule any feasible sets of (αk, ηk) as long as the
total sum of αk is less than 1.

A simple solution for a harmonic set {hk} is to assign
hk=η1 for all k. However, since it chooses a minimal

invocation period for every partition, a substantial number
of context switches between partitions could occur. A
practical approach of avoiding excessive context switches
is to use Han’s SX specialization algorithm with a base 2
[9]. Given a base partition cycle η, the algorithm finds a hi

for each ηi that satisfies:

hi = η * 2j ≤ ηi < η * 2 j+1 = 2*hi,

To find the optimal base η in the sense of processor
utilization, we can test all candidates η in the range of

(η1/2, η1] and compute the total capacity ∑k kα . To

obtain the total capacity, the set of ηk is transferred to the
set of hk based on corresponding η and then the least
capacity requirement, h

kα , for partition cycle hk is

obtained from Theorem 1. The optimal η is selected in
order to minimize the total capacity. In Figure 8, we show
a fixed cyclic processor scheduling example that
guarantees distance constraint for the set of partition
capacities and cycles, A(0.1,12), B(0.2,14), C(0.1,21),
D(0.2,25), E(0.1,48), and F(0.3,50). We use the optimal
base of 10 to convert the partition cycles to 10, 10, 20, 20,
40, and 40, respectively.

The basic method of cyclic scheduling for channel
servers is same as that of partition server scheduling. The
only difference is that we need to consider that channel
bandwidth allocation must be done based on integer
number of slots. Let the feasible bus bandwidth capacity
allocation set be (β1, µ1), (β2, µ2), … , (βn,µn). Using the
SX specialization, the set {µk} will be transformed to a
harmonic set {mk}. Then, based on Theorem 1 and the
reduced mk, we can adjust the channel capacity βk to βk

h

subject to   k

n

i
k

h
i mm ≤∑

=1
β .  There will be βk

h mk  slots

allocated to the channel server Gk.

4. Algorithm Evaluation

In this section, we present the evaluation results of the
proposed algorithms for SP-RTS. First, we show the
percentage of schedulable task sets in terms of processor
and bus utilization under the two-level scheduling,
deadline decomposition and channel combining
algorithms. Then, we show that the penalty of the
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Figure 8. Example of processor cyclic scheduling
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harmonic transformation even if channel server
scheduling is negligibly small. Finally, the characteristic
behavior of deadline decomposition is illustrated. The
evaluations are done with random task and message sets
that are generated with specific processor and bus
utilization.

4.1. Schedulability Test

A schedulability test of the algorithm is obtained using
the simulations of a system model that composes of four
processors, three partitions per each processor and five
tasks per each partition, i.e., a configuration of (4, 3, 5).
The simulations use random task sets that result in
variable processor utilization of 15%, 30%, 45%, 60%
and 75%. The task periods are uniformly distributed
between the minimum and maximum periods. The total
processor utilization is randomly distributed to all tasks in
each processor and is used to compute the task execution
times.  To create message sets, we vary the total bus
utilization from 10% to 90%. Message lengths are
computed with a random distribution of the total bus
utilization and task periods.

Using the scheduling procedure of Figure 4, we first
assign task and message deadlines for each task. Then the
partition capacity and cycle for each partition are
computed and the cyclic schedule for each processor is
constructed. To schedule message transmission, messages
are combined into channels in order to reduce bandwidth
requirement. After channel cycle and capacity are
determined, a cyclic schedule is formed. For the priority
schedules within partitions and channels, we adopt the
deadline monotonic approach to order the task and
message priorities. With all randomly created task sets,
we report the percentage of schedulable task sets among

all sets in Figure 9. The figure shows the algorithms are
capable of finding proper deadline assignments and, then,
determining feasible partition and channel cyclic
schedules. For instance, consider the case of 60%
processor and bus utilization. Even if the deadlines are
less than task periods, almost 100% of task sets are
schedulable.  Figure 9 also reports the test results of the
configuration (2, 2, 4). The curves have the similar trends
as that of the configuration of (4, 3, 5).

4.2. The Effects of Deadline Decomposition and
Channel Combining Algorithm

It is worthy to look into how the bus is utilized in the
channel schedules resulted from the heuristic algorithms
of deadline decomposition and channel combining.
Consider the following measures:

1. Measure1 is the bus utilization which equals to
the sum of (ST∗ Mi)/Ti for all tasks. No real-time
constraint of message delivery is considered in
this measure.

2. Measure2 is the total bus capacity needed to
transmit messages on time with no channel
combining (i.e., each task has a dedicated
channel). This capacity will be equal to the
summation of  (ST∗ Mi)/MDi for all tasks and can
be computed after message deadlines are
assigned.

3. Measure3 is the minimum bus capacity needed
to schedule channels. This measure is equal to
the summation of minimum βk for all channels.
Note that, according to Theorem 1, the minimum
βk for a channel is defined as the minimum
capacity that results in a zero inactive period for

(N,P,T) = (4,3,5)
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Figure 9. Schedulability test for configurations (4, 3, 5) and (2, 2, 4)
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at least one message in the channel. It can be
determined after message deadlines are assigned
and messages are combined into the channel.

4. Measure4 is the total bus capacity selected
according to Theorem 1. This measure can be
formulated as the summation of βk for all
channels.

5. Measure5 is the final bus capacity allocated to all
channels based on a harmonic set of channel
cycles and the integer number of slots for each
channel. The capacity is equal to the summation
of βk

hmk /mk for all channels.

We can expect an order of Measure2> Measure5>
Measure4> Measure3> Measure1 among the measures.
Measure2 should be much higher than other measures as
we allocate bandwidth for each message independently to
ensure on schedule message delivery. With the message
multiplexing within each channel, the on schedule
message delivery can be achieved with a less amount of
bandwidth. However, a bandwidth allocation following
Measure3 cannot be practical since the channel cycles
must be infinitely small. According to Theorem 1,
Measure4 contains additional capacity that is added to
each channel to allow temporary blocking of message
transmission during each channel cycle. Furthermore, in
Measure5, an extra capacity is allocated as we make
integer number of slots for each channel and construct a
cyclic schedule with harmonic periods.

The simulation results of the above measures are
shown in Figure 10. The results confirm our expectation
of the order relationship. However, when we change the
bus utilization from 0.1 to 0.8, the curves are not
monotonically increasing (except the curve of Measure1).
This is the consequence of the deadline decomposition
(DD) algorithm. When channels don’t have enough
bandwidth to meet short message deadlines, the algorithm
adjusts the factor fk and assigns longer deadlines for
message transmission. As shown in Figure 5, the DD
algorithm uses an approach similar to binary search
algorithm and makes a big increase to fk initially. This
results in long deadlines and the reduced capacity
allocations in Measure2-5. In fact, when the bus
utilization is less than 30%, the average number of
iterations performed in the DD algorithm is slightly larger
than 1, i.e., only the initial fk is used to allocate deadlines.
When the bus utilization is raised to 40% to 70%, the
average number of iterations jumps to 1.6, 1.98, 2.0, and
2.04, respectively. It further increases to 11.09 when the
bus utilization is set to 80%.

Figure 10 also illustrates the magnitude of the
measures and the differences among them. The gap
between Measure3 and Measure2 is very visible. This
difference is the product of channel combining algorithm.
In order to meet a tight message deadline, we have to

reserve a large amount of bandwidth. With channel
combining, messages of different deadlines share the
allocated slots. As long as the message with a shorter
deadline can preempt the on-going transmission, the slots
in each channel can be fully utilized by multiplexing and
prioritizing message transmissions. There is a moderate
gap between Measure3 and Measure4. As indicated in
Theorem 1, we search for a channel capacity and a
channel cycle located in the knee of the curve ηk ≤
B0(αk)/(1-αk) after the initial sharp rise. This implies that a
small increase of βk will be added to Measure3 in order to
obtain a reasonable size of channel cycle. Finally, the
difference between Measure4 and Measure5 is not
significant at all. It is caused by the process of converting
ηk to a harmonic cycle mk, and by allocating an integer
number of slots βk

hmk  for each channel.
The other way of looking into the behavior of the

deadline decomposition algorithm is to investigate the
resultant decomposition of task deadline, Di. In Figure 11,
we showed the average ratio of message deadline to task
deadline, under different processor and bus utilization. If
the adjustment factor fi is constant, the ratio,
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should follows a concave curve as we increase bus
utilization (by increasing message length, Mi). For
instance, when the processor utilization is 15%, there are
two segments of concave curves from bus utilization 10%
to 70% and from 70% to 90%. The segmentation indicates
a jump in the adjustment factors resulted from the
deadline decomposition algorithm. In Figure 11, the
concavity and the segmentation can also be seen in other
curves that represent the message deadline ratios of
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different processor utilization. When the processor
utilization is high, fi may be modified gradually and
partition scheduling may fail if we introduce a sharp
increase to fi. Thus, the concavity and the segmentation
are not so obvious as the deadline ratio in an underutilized
processor.

5. Conclusion

In this paper, we present several algorithms in order to
produce cyclic partition and channel schedules for the
two-level hierarchical scheduling mechanism of IMA-
based avionics systems. The system model of the IMA
architecture supports spatial and temporal partitioning in
all shared resources. Thus, applications can be easily
integrated and maintained.

The main idea of our approach is to allocate a proper
amount of capacity and to follow a distance constraint on
partition and channel invocations. Thus, the tasks
(messages) within a partition (channel) can have an
inactive period longer than the blocking time of the
partition (channel). Also we use a heuristic deadline
decomposition technique to find feasible deadlines for
both tasks and messages. To reduce bus bandwidth
requirement for message transmission, we develop a
heuristic channel-combining algorithm which leads to
highly utilized channels by multiplexing messages of
different deadlines and periods. The simulation analyses
show promising results in terms of schedulability and
system characteristics.

Based on the work in this paper, we have developed a
scheduling tool for the IMA-based avionics systems. The
tool includes additional features for practical
implementations, such as time-tick based processor
scheduling, non-zero context switch overhead, replication

execution and transmission, incremental changes, etc. We
are currently looking into different network
infrastructures and communication scheduling algorithms
that can be employed in the scalable IMA-based systems.
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