Fault-Tolerant Scheduling on a

Hard Real-Time Multiprocessor System
Sunondo Ghosh, Rami Melhem and Daniel Mossé*

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

Fauli-tolerance is an important issue in hard real-
time systems due to the critical nature of the supported
tasks. One way of providing fault-tolerance is to sched-
ule multiple copies of a task on different processors. If
the primary copy of a task cannot be completed due
to a fault, the scheduled backup copy is run and the
task is completed. In this paper, we propose a new
algorithm for fault-tolerant scheduling on multiproces-
sor systems. The algorithm guarantees the completion
of a scheduled task before its deadline in the presence
of processor failures. Our algorithm schedules several
backup tasks overlapping one another and dynamically
deallocates the backups as soon as the original tasks
complete ezecutions, thus increasing the utilization of
processors.

Stmulation results show that our method achieves
higher task schedulability compared to using a spare
processor as a backup to be invoked in the event of a
failure. Further, we show that the cost, in terms of
schedulability, of guaranteeing fault tolerance for dy-
namic systems is quite low.

1 Introduction

Multiprocessor systems have been widely used for
parallel applications. In the ideal case, an application
can be divided into n independent tasks, each task
can be run on one of the processors in the system,
and hence the runtime can be decreased by a factor of
n.

For multiprocessor systems, reliability is an im-
portant issue. A system is fault-tolerant if it pro-
duces correct results even in the presence of faults [4].
Fault-tolerance is particularly relevant for multipro-
cessor systems because a higher number of processors
increases the chances of a fault in the system. Fault-
tolerance becomes even more important when the mul-
tiprocessor system is used to run real-time applica-
tions for which timing constraints should be satisfied.
Real-time systems are those in which the temporal
correctness is as important as the functional correct-
ness. They can be classified as hard real-time systems,

*Authors’ e-mail: {ghosh, melhem, mosse}@cs.pitt.edu

in which the consequences of missing a deadline may
be catastrophic, and soft real-time systems, in which
the consequences are relatively smaller. Examples of
hard real-time systems are a space station, a radar for
tracking missiles, a system for monitoring a patient
in critical condition, etc. In these real-time systems,
it is essential that tasks complete before their dead-
line even in the presence of processor failures. This
makes fault tolerance an inherent requirement of hard
real-time systems.

A crucial issue in real-time systems is the schedul-
ing of tasks in a way that does not violate the timing
constraints. The general problem of optimal schedul-
ing of tasks on a uniprocessor or a multiprocessor sys-
tem is NP-complete [3]. Therefore, different heuris-
tics have been used to schedule real-time tasks to
maximize schedulability and/or processor utilization
[2, 7, 18].

In a real-time multiprocessor system, fault toler-
ance can be provided by scheduling multiple copies
of tasks on different processors [6, 12, 13]. Pri-
mary/backup (PB) and triple modular redundancy
(TMR) are two basic approaches that allow multiple
copies of a task to be scheduled on different proces-
sors [14]. One or more of these copies can be run to
make sure that the task completes before its deadline.
In the PB approach, if incorrect results are generated
from the primary task, the backup task is activated.
In TMR, multiple copies are executed and error check-
ing is achieved by comparing results after completion.
In this scheme, the overhead is always on the order of
the number of copies running simultaneously.

In [6], a fault-tolerant scheduling algorithm is pro-
posed to handle transient faults. The tasks are as-
sumed to be periodic and two instances of each task
(a primary and a backup) are scheduled on a unipro-
cessor system. One of the restrictions of this approach
is that the period of any task should be a multiple of
the period of its preceding tasks. It also assumes that
the execution time of the backup is shorter than that
of the primary.

In the area of multiprocessor systems, Son and Oh
describe a fault-tolerant scheduling strategy for peri-
odic tasks [12, 13]. In this strategy, a backup schedule

Int’l Parallel Processing Symposium

is created for each set of tasks in the primary sched-
ule. The tasks are then rotated such that the primary
and backup schedules are on different processors and
do not overlap. Thus, it is possible to tolerate up to
one processor failure in the worst case. In [13] the
number of processors required to provide a schedule
to tolerate a single failure is double the number of the
non-fault-tolerant schedule.

Two other works have studied fault-tolerant
scheduling, but have not performed any type of sim-
ulation or obtained experimental results [1, 5]. In
[1], there is a description of a primary/standby ap-
proach, where the standby has execution time smaller
than the primary tasks (as in [6]). Both primary and
standby start execution simultaneously and if a fault
affects the primary, the results of the standby are used.
On the other hand, [5] presents theoretical results
that assume the existence of an optimal schedule, and
augments that schedule with the addition of “ghost”
tasks, which are standby tasks. However, since not all
schedules will permit such additions, the scheme does
not offer firm guarantees in faulty environments.

The remainder of the paper is organized as follows.
In Section 2 we describe the problem. In Section 3 we
introduce an algorithm for fault-tolerant scheduling of
tasks on a multiprocessor system. Simulation results
are presented in Section 4. In Section 5 we discuss
future work and provide some concluding remarks.

2 The Fault-Tolerant Scheduling Prob-

lem

We introduce a fault-tolerant scheduling approach
for real-time multiprocessor systems. We consider a
system which consists of n interconnected identical
processors and we assume that there is a task schedul-
ing processor (central controller) which maintains a
global schedule. Although we consider a central con-
troller, the basic scheduling strategy can be be imple-
mented with distributed schedulers.

A task is modeled by a tuple T; = (ai, i, di, c;),
where a; is the arrival time, r; is the ready time (ear-
liest start time of the task), d; is the deadline, and c¢;
is maximum computation time (also called worst case
execution time). We assume that tasks are indepen-
dent, that is, have no precedence constraints. This
assumption can be removed if we can transform the
precedence graph into independent nodes with new
ready times and deadlines [9]. We also assume that
the window of a task (w; = d; —r;) is at least twice as
large as the computation time. This makes it possible
to schedule both the primary and its backup within
its time constraints. Tasks arrive dynamically in the
system and are scheduled as they arrive.

Tasks scheduled on this system are guaranteed to
complete if a processor fails at any instant of time and
if a second processor does not fail before the system
recovers from the first failure. A fault detection mech-
anism (e.g., fail-signal processors [11]) is assumed to
immediately detect a fault and its type. If a comple-
tion guarantee cannot be assured for a given task, the

April 1994

task is rejected (i.e., the system does not try to sched-
ule the task at a later time). Safety-related tasks are
examples of such types of tasks, where the tasks need
to be guaranteed to execute with fault tolerance, or
should not execute at all. Both permanent and tran-
sient faults are handled by our approach. We do not
consider the problem of software faults or correlated
component failures.

We address the fault-tolerant scheduling problem
by using a primary/backup approach. When a task
arrives, two copies, a primary and a backup, are sched-
uled on two different processors. The backup copy of
a task executes only if the execution of the primary
copy is not completed in time (i.e., if a fault is de-
tected, the backup is activated). However, unlike the
scheduling algorithm presented in [12, 13], we assume
dynamic systems in which tasks are aperiodic. The dy-
namic property allows us to deallocate backup copies
of tasks as soon as the primary copies finish execut-
ing. In this manner, we are able to better estimate
the system state (available free time) when new tasks
are scheduled. Note that, unlike some previous studies
[6], we assume that the primary and backup execution
times are equal.

To evaluate the performance of our scheme, we
compare our results with the spare method, in which
one processor is allocated to be used as a spare. If a
non-spare develops a fault, all tasks scheduled on this
processor are executed on the spare. We also estimate
the overhead of providing fault tolerance, in compari-
son with a system that has no provision for fault toler-
ance, which we call the no fault tolerance (no FT)
method. In the case of real-time systems, this option
is not desirable due to the possibility of catastrophic
consequences if a fault occurs.

3 The Scheduling Strategy

Our scheduling scheme is based on the following
observations: (a) in real-time systems, tasks must be
memory resident at the time of execution; (b) a pro-
cessor functioning as a spare will be idle throughout
the life-time of the system; and (c) reservations of re-
sources for backup copies must be ensured, but backup
copies can have a different scheduling strategy than
primaries. The first and second observations steered
us away from the single spare processor approach. To
comply with real-time constraints, the spare processor
would have to maintain in main memory all tasks in
the system. This is a necessary condition for tasks to
be able to execute in a timely fashion in case a proces-
sor fails. Although memory prices are relatively low,
this approach is still spatially and financially imprac-
tical. We also notice that the spare processor would
not be used by any executing tasks in the case of fault-
free operation, thus lowering the schedulability of the
system.

The third observation, namely that resources re-
served for backup copies could be re-utilized, moti-
vated us to introduce the notion of overloading. Over-
loading is the scheduling of more than one backup in

Int’l Parallel Processing Symposium

the same time slot. This notion will be explained fur-
ther in the next section. If we can ensure that there
will be at most a single fault in the multiprocessor sys-
tem, we can overload a backup slot on a processor with
backup tasks from the other n — 1 processors. Note
also that due to the dynamic nature of our system,
we are able to reclaim resources in case of fault-free
operations.

3.1 Rationale
Our method applies two techniques while schedul-
ing the primary and backup copies of the tasks:

e backup overloading which is scheduling backups
for multiple primary tasks during the same time
period in order to make efficient utilization of
available processor time, and

e deallocation of backup tasks dynamically when
the corresponding primaries complete success-

fully.

These techniques help us ensure high schedulability
while providing fault-tolerance.

The primary and backup copies of a task ¢ will
be referred to as simply the primary (Pr;), and the
backup (Bk;). The time slots on which the primary
and the backup copies are scheduled are called the
primary and backup time slots, respectively. If the
backup copies of more than one task from different
processors are scheduled to run in the same time slot,
that backup slot is said to be overloaded. A free slot
is the time not used by primaries and backups. For-
ward Slack is the maximum amount of time a slot can
be postponed without violating any tasks’ timing con-
straints. Forward slack will be called slack.

It is easy to see that the following restrictions lead
to a schedule which satisfies the real time and the fault
tolerance requirements stated above.

e Pr; and Bk; for task 7 have to be scheduled on
different processors to allow any single fault to be
tolerated. This restriction can be removed if only
transient faults are to be tolerated.

e The begin time of Bk; has to be greater than
the end time of Pr; so that Bk; can execute if a
fault is detected in the processor on which Pr; is
executing.

e Both Pr; and Bk; should be scheduled between
r; and d;.

e two primary tasks that are scheduled on the same
processor, their backups must not overlap. Oth-
erwise it will not be possible to reschedule two pri-
maries from the same processor p onto the backup
slot if p fails.

A simple schedule for four tasks is shown in Figure
1. For these tasks it is assumed that a; = r;. Bk; and
Bkg are overloaded on the same backup slot. Note

April 1994

that Bkz could have been scheduled later on processor
2, but that would decrease the overlap of backups and
would also diminish the available free slot time. Bk, is
not overloaded with Bk, because d4 is earlier than the
begin time of Bks; which was scheduled earlier when
task 2 arrived. Moreover, the two backups should not
overlap since their primary copies are scheduled on
the same processor. Pry is scheduled on processor 2
because that is its earliest possible schedule.

pri mary
scheduled I D
as early as :
ossible ;
possii; \ [| backup
i scheduled
primary 1 i aslate as
i possible
processor 1 AN
primary 2 priméry\{ backup 1 and 3
N ;
processor 2 S -
— s
Nl -
Nkt
N -~
processor 3 - N =
time —=— primary 3 backup 4 backup 2
| | | | | | | | |
(o] 2 4 6 8 10 12 14 16

LEGEND

backup copy of task
- dark part is‘overloaded

com{._)utatl on
ime

window of the task

deadline

rescheduling the task in case
the primary Tails

Figure 1: Scheduling 4 tasks on 3 processors

A modification of the initial schedule is shown in
Figure 2, where the completion of tasks 2 and 1 (in
that order) causes the de-allocation of their respec-
tive backups. The arrival of tasks 5 and 6 (Figure 3)
causes further modifications in the schedule. Bkj is
overloaded with Bks, and due to the de-allocation of
the Bk;, Prg can be scheduled on processor 2.

3.2 Algorithm Principles

While scheduling the tasks and their backups, we
maintain a list of the existing slots. Whenever a new
task is received, the primary and backup have to be
scheduled. We schedule the primary as early as pos-
sible and the backup as late as possible. When a pri-
mary task completes, its corresponding backup slot is
deallocated. Since the deallocated slot is as far from
the present time as possible, the probability of reusing
the newly created free slot increases. This improves
the utilization of the processors and provides fault-

Int’l Parallel Processing Symposium

processor 1

primary 4 backup 3
processor 2 \ _ 7
N Pk
/\)\/ -
-7 i \\
processor 3 - N
primary 3 backup 4

Figure 2: After the completion of tasks and de-
allocation of respective backups.

L I
L

primary 5

N

proc 1 R

N
N
N
N
N

primary 4 primary 6 \\ backup 3 and 5

proc 2 \ N2 _
s \ N
proc 3 e N
primary 3 backup 4 backup 6
\ \ \ [\ \ \ \
2 4 6 8 10 12 14 16

Figure 3: The new schedule after the arrival of two
more tasks

tolerance with low overhead, in terms of schedulabil-
ity.

Our algorithm schedules a primary before schedul-
ing its corresponding backup, due to the following.
It is more difficult to schedule the primary than its
backup and we want to minimize the number of con-
straints while scheduling the primary. Scheduling the
backup is easier because we can overload it on any
of the existing backups or simply schedule it on any
available free slot. If the backup is scheduled first,
we have two added constraints on the schedule for the
primary: the end time of the primary has to be ear-
lier than the begin time of the backup (as mentioned
earlier) and there is one less processor for scheduling
the primary. This is because we cannot schedule the
primary and the backup on the same processor (see
previous section). This constraint has less effect when
we try to schedule the backup after the primary due
to the possibility of overloading.

If the backup is scheduled first, many options exist,
some of which have conflicting requirements. First,

April 1994

we have two choices, namely overloading an existing
backup slot or scheduling the backup on free slots.
Overloading is preferred because it minimizes the uti-
lization of available processor time. However, we may
reduce the time span in which the primary can be
scheduled if the overload schedule for the backup is
early in the task’s window. On the other hand if we
simply schedule the backup on a free slot, we leave a
bigger span for the primary to be scheduled but we
decrease the utilization of the processors.

If the primary is scheduled first, we remove the
above conflicts. We schedule the primary as early
as possible on some processor. This ensures that we
have the maximum possible time span to schedule the
backup. In a system with a central controller, the
existence of a global schedule makes it easy to deter-
mine the earliest possible schedule for the primary. In
this case we can simply try to overload the backup
wherever possible and if no such schedule exists, we
schedule it on a free slot.

The schedule that we choose for a primary may af-
fect the schedulability of the backup for that task. For
instance, let’s assume that we find the earliest pos-
sible schedule of a primary on processor p; and call
this schedule s;. It may not be possible to sched-
ule a backup for the task using s; because there is
space for the backup only on p;. In order to solve this
problem, we find the second earliest schedule for the
same primary on another processor p; and call this
schedule s;. If we cannot schedule the backup using
s1, we look at s;. In s2 we can schedule the backup
on p; (since the primary is now on p;). This solu-
tion, however, is not complete. Specifically, it may
be shown that there are cases in which both s; and
sy cannot be used to schedule the backup while the
backup can be scheduled if the primary is scheduled
on some processor other than p; and p;. The solution
is complete if we find a schedule for the primary on
every processor and then try to schedule the backup
for each primary schedule. Since this would increase
the scheduling costs, we have considered in our simula-
tion only the earliest and the second earliest schedules
of the primary when trying to schedule the backup.
A similar approximation approach is suggested in the
focussed addressing scheme [19].

3.3 Steps to schedule the task

In this section we present the scheduling algorithm
in macrosteps. The primary for task 7 is scheduled
as follows: We look at each processor to find if Pr;
can be scheduled between r; and d;. If there is a free
slot larger than ¢; on a processor, p, between r; and
d;, then we know Pr; can be scheduled on p. If Pr;
cannot be scheduled without overlapping another time
slot, slot;, then we have to check if we can reschedule
slot;. This can be done by checking the slack of slot;.
If the slack of slot; added to the preceding free slot is
greater than c;, then Pr; can be scheduled after shift-
ing slot; forward. We consider the earliest two tenta-
tive schedules on two different processors. For each of

Int’l Parallel Processing Symposium

these, we consider a different possibility of scheduling
the backup.

The backup for task 7 is scheduled as follows: Let
the earliest schedule of primary ¢ be on processor p;.
We look at the possible schedules for the backup on
processors other than p;. Our first choice is to over-
load an existing backup slot as explained earlier. If
there is no backup slot that can be overloaded, we
schedule the backup on the latest possible free slot.
We maintain forward slacks of primary slots and we
allow them to be moved forward if necessary. We do
not allow backup slots to be moved. That is because
the backup slot may be supporting more than one pri-
mary and if the backup slot is moved, the slacks of all
those primaries will change. This will have a cascad-
ing effect and each movement of a backup slot will be
very costly in terms of time spent to recalculate slacks.
If it is not possible to schedule the backup for task i’s
earliest schedule, we look at task i’s second earliest
schedule and again try to schedule the backup.

Finally the task is committed as follows: Once the
schedules for both the primary and the backup have
been found, we commit the task, that is, we guarantee
that the task will be completed before its deadline even
in the presence of a single fault. To do this we have to
insert the primary and the backup in a global schedule
being maintained by the central controller. Note that
the slacks need to be recalculated only on the two
processors on which the new slots were scheduled.

Therefore the algorithm for the fault-tolerant
scheduling of task 7; is:

e Schedule Pr; as early as possible.

e Try to overload Bk; on an existing backup slot. If
that is not possible, schedule it as late as possible
on a free slot.

o If a schedule has been found for both Pr; and
Bk;, commit the task. Otherwise reject it.

3.4 Runtime Behavior

As the tasks arrive in the system, two copies of
the task (primary and backup) are scheduled on two
different processors by the scheduling algorithm pre-
sented above. While the primary is in execution, if no
faults occur in the processor on which the primary is
scheduled, the primary can run to completion. In that
case, the backup is deallocated and the newly gener-
ated free slot is made available for scheduling any task
that arrives after the deallocation. This results in a
remarkable increase in schedulability.

If there is a permanent fault in a processor, the
backups of all primaries scheduled or running on that
processor are executed on their respective backups.
For any task that arrives after the fault, both the pri-
mary and backup copies have to be scheduled on the
remaining non-faulty processors. A second fault can
be tolerated in the system only after the last primary
scheduled on the faulty processor has been run on its
backup schedule and the last task which had a backup

April 1994

scheduled on the faulty processor has been executed
to completion.

In case of a transient fault, only the backup copy
of the currently executing primary is activated. All
other tasks remain as scheduled.

4 The Simulation

To study the scheduling algorithm presented above,
we have performed a number of simulations. To the
best of our knowledge, no simulation studies have been
done for fault-tolerant scheduling of aperiodic tasks in
dynamic real-time multiprocessor systems.

The schedule generated by the algorithm described
in Section 3.3 can tolerate any single transient or per-
manent fault. This fault tolerance capability, however,
comes at the cost of increasing the number of rejected
tasks. The first goal of our simulation is to estimate
this cost by comparing the schedulability in our fault-
tolerant algorithm with that of the no FT method.
The second goal of our simulation is to compare the
schedulability of our scheme with that of the single
spare processor scheme. In the spare and the no FT
methods, the primary copies are scheduled using the
same algorithm as the one used in our method. Note
that the spare method is equivalent to having backup
copies of all the primaries implicitly scheduled on the
spare processor.

In the simulation, we measured the number of re-
jections in a set of tasks as a function of the load,
the window size, and the number of processors. To
aid in the development of the simulation, we used a
visual tool [10] that displays the tasks and animates
the behavior of the schedule. It shows the task to
be scheduled, the running primaries, and the sched-
uled primaries and backups in different colors. It also
shows the computation time of the incoming task and
whether it was scheduled or rejected. We used this
tool to verify that the generated schedule was not vi-
olating timing constraints and to find out bugs in the
simulator.

4.1 Simulation Parameters

We generated task sets for the computation of the
schedules and ran each policy on the same task set.
The simulation parameters that can be controlled are:

e number of processors P: this is a fixed user
input.

e the average computation time, ¢: the compu-
tation time of the arriving tasks is assumed to be
uniformly distributed with mean c.

e the load 7: this parameter represents the average
percentage of processor time that would be uti-
lized if the tasks had no real-time constraints and
no fault-tolerance requirements. Larger v values
leads to larger task inter-arrival time. Specifi-
cally, the inter-arrival time of tasks is assumed to
be uniformly distributed with mean o = ¢/ * P.

Int’l Parallel Processing Symposium

e a parameter B: this parameter controls the win-
dow size, which is uniformly distributed with
mean ¢ X G.

e the lead time, §: this parameter is the differ-
ence between the ready time and the arrival time.
That is, r; = a; + 6.

In the simulations, our task sets consisted of 1000
tasks. We generated 100 task sets for each set of pa-
rameters and calculated the average of the results gen-
erated. We also assumed that § = 0, which means
that the arrival time and ready time of a task are the
same. Thus, we have a dynamic system. Formally,
ag = r;1 = 0and r;, = r_1 + o4, where «; is the
interarrival time. The load ranges from zero to one
(i.e., 0 < 4 < 1). For example if y = 1, P = 4, and
¢ = 4, then the average task inter-arrival time is 1.
This means that, on an average, one task will arrive
in the system every unit of time and thus the load on
each of the 4 processors will be 1. These parameters
are summarized in Table 1.

As mentioned earlier, in our simulations we main-
tain only the earliest and the second earliest schedules
of the primary before trying to schedule the backup.
We noticed during our simulations that the second ear-
liest primary schedule is rarely used for a successfully
scheduled task. This indicates that the two earliest pri-
mary schedules are sufficient to find a feasible schedule
for the task if one exists.

4.2 Analysis of results

The results of our simulations can be found in Fig-
ures 4 through 7. In Figure 4 we plot the rejection rate
of tasks for our method as a function of load (using 5
processors). As expected, the rejection rate increases
with an increase in load. We can also see that, due to
the primary/standby approach used and our dealloca-
tion technique, the larger the window size, the smaller
the rejection rate is. The schedulability of tasks does
not suffer when the window size is 9. This window
size is commonly used in applications such as signal
processing systems, where the utilization® of different
tasks is often less than 11% [15].

In Figure 5 we compare the three schemes, namely
the spare scheme, our scheme, and the no FT scheme
for different loads. Note that our scheme consistently
performs better than the single spare scheme, for all
values of window size.

In Figure 6 we can see the drastic improvement of
having smaller loads when the window size is fixed
(plotting the rejection rate versus the number of pro-
cessors). Note that the schedulability of our method is
better when the window is large, the load is small, and
the number of processors is large. This combination of
factors results in a higher degree of overloading, thus
allowing more tasks to be scheduled in the multipro-
cessor system.

1Utilization can be seen as the inverse of the window size
with respect to computation time.

April 1994

Rejection rate by load, 5 processor s

Rejection Rate
| | |

0.24 —

0.22 —

window =11

0.20 —
0.18 —
0.16 —
0.14 —
0.12 —
0.10 —
0.08 —

0.06 —

0.50 0.60 0.70 0.80 0.90 1.000

Figure 4: Rejection rate, as a function of load, for
different window sizes, with 5 processors

Rejection rate by load, 5 processor s

Rejection Rate

024 —| | | |
0.22 —
0.20 —
0.18 —
016 —
0.14 —
0.12 —
010 —
0.08 —

0.06 —

Figure 5: Comparison of rejection rates, as a function
of load, for different loads

In Figure 7 we can see the rejection rate of the three
schemes, as a function of the window size. It is clear
that the schedulability in the no FT method is higher
than in our method. However, notice that the gap
is small when the window size is large. This, coupled
with the window sizes shown in [15], leads us to believe
in the high applicability of our scheme.

Although we have shown here only a few of the
measurements we have done, it is important to note

Int’l Parallel Processing Symposium

April 1994

parameter name | distribution | values assumed
number of tasks T fixed 1000

number of processors | P fixed 3,4,5

computation time c uniform mean—>5

load ¥ fixed 0.5,0.6,0.7,0.8,0.9,1.0
inter-arrival time o uniform mean=c/(y * P)
window size Jé] uniform mean—c(3

Table 1: Parameters for Simulations

Rejection rate by number of processors, window =9

Rejection Rate

018 — | ‘ ‘

017 —

016 —

015 —

014 — |
013 — |
0.12 — |
041 — |
— |
o 7
o |
= :
006 — .. -
: ““u““~ T
004 = -~ “
0.03 — = ‘ N ”””dﬂ»ﬂnu»u» |

Figure 6: Rejection rate of overloading scheme, as a
function of number of processors, for different loads

that the experiments were done for various loads, in-
cluding overload situations (load = 1.2). Also, the
consistency of results emphasizes the appropriateness
of our algorithm for a variety of parameters.

5 Concluding Remarks and Future

‘Work

We have presented in this paper a fault-tolerant
scheduling method, that allows processor faults, be
them transient or permanent. We have shown that
the overloading of backup slots provides an efficient
utilization of the resource. Our preliminary results
show positive correlation between the schedulability of
task sets and the load on the system. We also observe
that the schedulability increases with the average task
window size.

One of the main contributions of this paper is
the introduction of the idea of backup overloading
which demands less processor time to provide fault-
tolerance (i.e., schedule all backup tasks) hence in-
creasing schedulability. Another important achieve-

Processors

Rejection rate by window size, load = 1

Rejection Rate

| | |
0.44 — —

042 — -
040 —

038 —

036 —

0.34 — T

032 — v

030 — e

028 =N L -
026 — NN -
024 — > Soo e —

~ SO TRUIe

spare scheme: 3 procs

no FT scheme: 4 procs
~ no FT scheme: 5 procs

022 — < N RREN —
020 — ~ - Theel —
018 — N - =
016 — - - -l -
014 — --_ -
012 — _ -
010 — _
008 —
0.06 —
004 —

002 = \ \ \ N

4 6 8

Figure 7: Rejection rate versus window sizes, for 3, 4,
and 5 processors

ment is the successful combination of the idea of
resource reclamation with the primary/backup ap-
proach. Resource reclamation has been used previ-
ously for tasks that finish execution earlier than their
worst case execution time [17] but not for the pri-
mary/backup approach. The backup de-allocation is
a combination of the two ideas. Overloading and deal-
location increase the schedulability of real-time tasks
on the multiprocessor system.

Our scheduling algorithm is different from other al-
gorithms in that it deals with aperiodic tasks in dy-
namic real-time multiprocessor systems. The algo-
rithm, which is easy to understand and implement,
results in a high degree of schedulability, predictably,
fast response to urgent events, and stability under
transient overload which are important measures in
real-time systems [16].

The type of results presented in this paper provides
a tool for real-time system designers to compare three
schemes, namely the spare processor, the no FT, and
our fault-tolerant scheduling approach. Depending on
the fault model, the memory availability, the schedu-

Window Size

Int’l Parallel Processing Symposium

lability required, and other parameters such as the
arrival rate, average window and computation time of
tasks, the designer can determine which approach best
matches the system’s requirements.

In its current form, the algorithm can only tolerate
more than one fault if they are separated by a sufficient
amount of time. To handle two simultaneous faults,
more than one backup copy should be scheduled for
each task. Note that, although the scheduling policy
for this case is different from the one presented in this
paper, the mechanisms we have developed remain the
same. Note also that it is not difficult to couple our
scheduling algorithm with hierarchical resource allo-
cation schemes that will accept local schedulers [8].

The next step in this research is to develop a
scheduling algorithm which uses some weight to
achieve a relative balance between backup overload-
ing and late backup scheduling. The optimal values
for the weight depend on system parameters.

References
[1] S. Balaji, Lawrence Jenkins, L.M. Patnaik, and
P.S. Goel. Workload Redistribution for Fault Tol-

erance in a Hard Real-Time Distributed Comput-
ing System. In IEEE Fault Tolerance Computing
Symposium (FTCS-19), pages 366-373, 1989.

[2] Ben A. Blake and Karsten Schwan. Experimental
Evaluation of a Real-Time Scheduler for a Mul-
tiprocessor System. IEEE Trans. on Soft. Eng.,
SE-17(1):34-44, Jan. 1991.

[3] M. R. Garey and D. S. Johnson. Computers
and Intractability, ¢ Guide to the Theory of NP-
Completeness. W. H. Freeman Company, San
Francisco, 1979.

[4] Barry W. Johnson. Design and Analysis of Fault
Tolerant Digital Systems. Addison Wesley Pub.
Co., Inc, 1989.

[5] C.M. Krishna and Kang G. Shin. On Scheduling
Tasks with a Quick Recovery from Failure. IEFE
Trans on Computers, 35(5):448-455, May 1986.

[6] A.L. Liestman and R.H. Campbell. A Fault-
tolerant Scheduling Problem. Trans Software En-
gineering, SE-12(11):1089-1095, Nov 1988.

[7] C. L. Liu and J. W.Layland. Scheduling Algo-
rithms for Multiprogramming in Hard Real-Time
Environment. jacm, pages 46-61, January 1973.

[8] Daniel Mossé, Sam H. Noh, Bao Trinh, and
Ashok K. Agrawala. Multiple Resource Al-
location for Multiprocessor Distributed Real-
Time Systems. In Workshop on Parallel and
Distributed Real-Time Systems (PDRTS), IEEE
IPPS’93, Newport Beach, CA, April 1992.

[9]

[12]

[19]

April 1994

Daniel Mossé. Extracting Task Timing Con-
straints from Applications. Technical Report,
University of Pittsburgh, 1992.

Daniel Mossé. Tools for Visualizing Scheduling
Algorithms. In Computers in University Educa-
tion Working Conference, Irvine, CA, Jul 1993.
IFIP.

Sam K. Oh and Glenn MacEwen. Toward Fault-
tolerant Adaptive Real-Time Distributed Sys-
tems. External Technical Report 92-325, De-
partment of Computing and Information Science,
Queen’s University, Kingston, Ontario, Canada,
January 1992.

Yingfeng Oh and Sang Son. Multiprocessor Sup-
port for Real-Time Fault-Tolerant Scheduling. In
IEEFE 1991 Workshop on Architectural Aspects of
Real-Time Systems, pages 76-80, San Antonio,
TX, Dec 1991.

Yingfeng Oh and Sang Son. Fault-Tolerant Real-
Time Multiprocessor Scheduling. Technical Re-
port TR-92-09, University of Virginia, April 1992.

D.K. Pradhan. Fault Tolerant Computing: The-
ory and Techniques. Prentice-Hall, NJ, 1986.

Robert L. Sedlmeyer and David J. Thuente. The
Application of the Rate-Monotonic Algorithm to
Signal Processing Systems. Real-Time Systems
Symposium, Development Sessions, 1991.

Lui Sha and Shirish S. Sathaye. A Systematic Ap-
proach to Designing Distributed Real-Time sys-
tems. Computer, July, 1993.

Chia Shen. Resource Reclaiming in Multiproces-
sor Real-Time Systems. PhD thesis, University
of Massachussets, Amherst, 1992.

J. Xu and D. L. Parnas. Scheduling processes
with release times, deadlines, precedence, and ex-
clusion relations. IEEE Trans. on Soft. Eng., SE-
16(3):360-369, March 1990.

W. Zhao and K. Ramamritham. Distributed
Scheduling Using Bidding and Focused Address-
ing. In Proc. IEEFE Real-Time Syst. Symp., pages
103-111, Dec. 1985.

